Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/platforms/pseries/ras.c
10818 views
1
/*
2
* Copyright (C) 2001 Dave Engebretsen IBM Corporation
3
*
4
* This program is free software; you can redistribute it and/or modify
5
* it under the terms of the GNU General Public License as published by
6
* the Free Software Foundation; either version 2 of the License, or
7
* (at your option) any later version.
8
*
9
* This program is distributed in the hope that it will be useful,
10
* but WITHOUT ANY WARRANTY; without even the implied warranty of
11
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
* GNU General Public License for more details.
13
*
14
* You should have received a copy of the GNU General Public License
15
* along with this program; if not, write to the Free Software
16
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17
*/
18
19
/* Change Activity:
20
* 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21
* End Change Activity
22
*/
23
24
#include <linux/errno.h>
25
#include <linux/threads.h>
26
#include <linux/kernel_stat.h>
27
#include <linux/signal.h>
28
#include <linux/sched.h>
29
#include <linux/ioport.h>
30
#include <linux/interrupt.h>
31
#include <linux/timex.h>
32
#include <linux/init.h>
33
#include <linux/delay.h>
34
#include <linux/irq.h>
35
#include <linux/random.h>
36
#include <linux/sysrq.h>
37
#include <linux/bitops.h>
38
39
#include <asm/uaccess.h>
40
#include <asm/system.h>
41
#include <asm/io.h>
42
#include <asm/pgtable.h>
43
#include <asm/irq.h>
44
#include <asm/cache.h>
45
#include <asm/prom.h>
46
#include <asm/ptrace.h>
47
#include <asm/machdep.h>
48
#include <asm/rtas.h>
49
#include <asm/udbg.h>
50
#include <asm/firmware.h>
51
52
#include "pseries.h"
53
54
static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
55
static DEFINE_SPINLOCK(ras_log_buf_lock);
56
57
static char global_mce_data_buf[RTAS_ERROR_LOG_MAX];
58
static DEFINE_PER_CPU(__u64, mce_data_buf);
59
60
static int ras_get_sensor_state_token;
61
static int ras_check_exception_token;
62
63
#define EPOW_SENSOR_TOKEN 9
64
#define EPOW_SENSOR_INDEX 0
65
66
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
67
static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
68
69
70
/*
71
* Initialize handlers for the set of interrupts caused by hardware errors
72
* and power system events.
73
*/
74
static int __init init_ras_IRQ(void)
75
{
76
struct device_node *np;
77
78
ras_get_sensor_state_token = rtas_token("get-sensor-state");
79
ras_check_exception_token = rtas_token("check-exception");
80
81
/* Internal Errors */
82
np = of_find_node_by_path("/event-sources/internal-errors");
83
if (np != NULL) {
84
request_event_sources_irqs(np, ras_error_interrupt,
85
"RAS_ERROR");
86
of_node_put(np);
87
}
88
89
/* EPOW Events */
90
np = of_find_node_by_path("/event-sources/epow-events");
91
if (np != NULL) {
92
request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
93
of_node_put(np);
94
}
95
96
return 0;
97
}
98
__initcall(init_ras_IRQ);
99
100
/*
101
* Handle power subsystem events (EPOW).
102
*
103
* Presently we just log the event has occurred. This should be fixed
104
* to examine the type of power failure and take appropriate action where
105
* the time horizon permits something useful to be done.
106
*/
107
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
108
{
109
int status = 0xdeadbeef;
110
int state = 0;
111
int critical;
112
113
status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
114
EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
115
116
if (state > 3)
117
critical = 1; /* Time Critical */
118
else
119
critical = 0;
120
121
spin_lock(&ras_log_buf_lock);
122
123
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
124
RTAS_VECTOR_EXTERNAL_INTERRUPT,
125
virq_to_hw(irq),
126
RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
127
critical, __pa(&ras_log_buf),
128
rtas_get_error_log_max());
129
130
udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
131
*((unsigned long *)&ras_log_buf), status, state);
132
printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
133
*((unsigned long *)&ras_log_buf), status, state);
134
135
/* format and print the extended information */
136
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
137
138
spin_unlock(&ras_log_buf_lock);
139
return IRQ_HANDLED;
140
}
141
142
/*
143
* Handle hardware error interrupts.
144
*
145
* RTAS check-exception is called to collect data on the exception. If
146
* the error is deemed recoverable, we log a warning and return.
147
* For nonrecoverable errors, an error is logged and we stop all processing
148
* as quickly as possible in order to prevent propagation of the failure.
149
*/
150
static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
151
{
152
struct rtas_error_log *rtas_elog;
153
int status = 0xdeadbeef;
154
int fatal;
155
156
spin_lock(&ras_log_buf_lock);
157
158
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
159
RTAS_VECTOR_EXTERNAL_INTERRUPT,
160
virq_to_hw(irq),
161
RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
162
__pa(&ras_log_buf),
163
rtas_get_error_log_max());
164
165
rtas_elog = (struct rtas_error_log *)ras_log_buf;
166
167
if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
168
fatal = 1;
169
else
170
fatal = 0;
171
172
/* format and print the extended information */
173
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
174
175
if (fatal) {
176
udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
177
*((unsigned long *)&ras_log_buf), status);
178
printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
179
*((unsigned long *)&ras_log_buf), status);
180
181
#ifndef DEBUG_RTAS_POWER_OFF
182
/* Don't actually power off when debugging so we can test
183
* without actually failing while injecting errors.
184
* Error data will not be logged to syslog.
185
*/
186
ppc_md.power_off();
187
#endif
188
} else {
189
udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
190
*((unsigned long *)&ras_log_buf), status);
191
printk(KERN_WARNING
192
"Warning: Recoverable hardware error <0x%lx 0x%x>\n",
193
*((unsigned long *)&ras_log_buf), status);
194
}
195
196
spin_unlock(&ras_log_buf_lock);
197
return IRQ_HANDLED;
198
}
199
200
/*
201
* Some versions of FWNMI place the buffer inside the 4kB page starting at
202
* 0x7000. Other versions place it inside the rtas buffer. We check both.
203
*/
204
#define VALID_FWNMI_BUFFER(A) \
205
((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
206
(((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
207
208
/*
209
* Get the error information for errors coming through the
210
* FWNMI vectors. The pt_regs' r3 will be updated to reflect
211
* the actual r3 if possible, and a ptr to the error log entry
212
* will be returned if found.
213
*
214
* If the RTAS error is not of the extended type, then we put it in a per
215
* cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
216
*
217
* The global_mce_data_buf does not have any locks or protection around it,
218
* if a second machine check comes in, or a system reset is done
219
* before we have logged the error, then we will get corruption in the
220
* error log. This is preferable over holding off on calling
221
* ibm,nmi-interlock which would result in us checkstopping if a
222
* second machine check did come in.
223
*/
224
static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
225
{
226
unsigned long *savep;
227
struct rtas_error_log *h, *errhdr = NULL;
228
229
if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
230
printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
231
return NULL;
232
}
233
234
savep = __va(regs->gpr[3]);
235
regs->gpr[3] = savep[0]; /* restore original r3 */
236
237
/* If it isn't an extended log we can use the per cpu 64bit buffer */
238
h = (struct rtas_error_log *)&savep[1];
239
if (!h->extended) {
240
memcpy(&__get_cpu_var(mce_data_buf), h, sizeof(__u64));
241
errhdr = (struct rtas_error_log *)&__get_cpu_var(mce_data_buf);
242
} else {
243
int len;
244
245
len = max_t(int, 8+h->extended_log_length, RTAS_ERROR_LOG_MAX);
246
memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
247
memcpy(global_mce_data_buf, h, len);
248
errhdr = (struct rtas_error_log *)global_mce_data_buf;
249
}
250
251
return errhdr;
252
}
253
254
/* Call this when done with the data returned by FWNMI_get_errinfo.
255
* It will release the saved data area for other CPUs in the
256
* partition to receive FWNMI errors.
257
*/
258
static void fwnmi_release_errinfo(void)
259
{
260
int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
261
if (ret != 0)
262
printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
263
}
264
265
int pSeries_system_reset_exception(struct pt_regs *regs)
266
{
267
if (fwnmi_active) {
268
struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
269
if (errhdr) {
270
/* XXX Should look at FWNMI information */
271
}
272
fwnmi_release_errinfo();
273
}
274
return 0; /* need to perform reset */
275
}
276
277
/*
278
* See if we can recover from a machine check exception.
279
* This is only called on power4 (or above) and only via
280
* the Firmware Non-Maskable Interrupts (fwnmi) handler
281
* which provides the error analysis for us.
282
*
283
* Return 1 if corrected (or delivered a signal).
284
* Return 0 if there is nothing we can do.
285
*/
286
static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
287
{
288
int recovered = 0;
289
290
if (!(regs->msr & MSR_RI)) {
291
/* If MSR_RI isn't set, we cannot recover */
292
recovered = 0;
293
294
} else if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
295
/* Platform corrected itself */
296
recovered = 1;
297
298
} else if (err->disposition == RTAS_DISP_LIMITED_RECOVERY) {
299
/* Platform corrected itself but could be degraded */
300
printk(KERN_ERR "MCE: limited recovery, system may "
301
"be degraded\n");
302
recovered = 1;
303
304
} else if (user_mode(regs) && !is_global_init(current) &&
305
err->severity == RTAS_SEVERITY_ERROR_SYNC) {
306
307
/*
308
* If we received a synchronous error when in userspace
309
* kill the task. Firmware may report details of the fail
310
* asynchronously, so we can't rely on the target and type
311
* fields being valid here.
312
*/
313
printk(KERN_ERR "MCE: uncorrectable error, killing task "
314
"%s:%d\n", current->comm, current->pid);
315
316
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
317
recovered = 1;
318
}
319
320
log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
321
322
return recovered;
323
}
324
325
/*
326
* Handle a machine check.
327
*
328
* Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
329
* should be present. If so the handler which called us tells us if the
330
* error was recovered (never true if RI=0).
331
*
332
* On hardware prior to Power 4 these exceptions were asynchronous which
333
* means we can't tell exactly where it occurred and so we can't recover.
334
*/
335
int pSeries_machine_check_exception(struct pt_regs *regs)
336
{
337
struct rtas_error_log *errp;
338
339
if (fwnmi_active) {
340
errp = fwnmi_get_errinfo(regs);
341
fwnmi_release_errinfo();
342
if (errp && recover_mce(regs, errp))
343
return 1;
344
}
345
346
return 0;
347
}
348
349