Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/sysdev/fsl_gtm.c
10817 views
1
/*
2
* Freescale General-purpose Timers Module
3
*
4
* Copyright (c) Freescale Semicondutor, Inc. 2006.
5
* Shlomi Gridish <[email protected]>
6
* Jerry Huang <[email protected]>
7
* Copyright (c) MontaVista Software, Inc. 2008.
8
* Anton Vorontsov <[email protected]>
9
*
10
* This program is free software; you can redistribute it and/or modify it
11
* under the terms of the GNU General Public License as published by the
12
* Free Software Foundation; either version 2 of the License, or (at your
13
* option) any later version.
14
*/
15
16
#include <linux/kernel.h>
17
#include <linux/err.h>
18
#include <linux/errno.h>
19
#include <linux/list.h>
20
#include <linux/io.h>
21
#include <linux/of.h>
22
#include <linux/spinlock.h>
23
#include <linux/bitops.h>
24
#include <linux/slab.h>
25
#include <asm/fsl_gtm.h>
26
27
#define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1)
28
#define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0)
29
30
#define GTMDR_ICLK_MASK (3 << 1)
31
#define GTMDR_ICLK_ICAS (0 << 1)
32
#define GTMDR_ICLK_ICLK (1 << 1)
33
#define GTMDR_ICLK_SLGO (2 << 1)
34
#define GTMDR_FRR (1 << 3)
35
#define GTMDR_ORI (1 << 4)
36
#define GTMDR_SPS(x) ((x) << 8)
37
38
struct gtm_timers_regs {
39
u8 gtcfr1; /* Timer 1, Timer 2 global config register */
40
u8 res0[0x3];
41
u8 gtcfr2; /* Timer 3, timer 4 global config register */
42
u8 res1[0xB];
43
__be16 gtmdr1; /* Timer 1 mode register */
44
__be16 gtmdr2; /* Timer 2 mode register */
45
__be16 gtrfr1; /* Timer 1 reference register */
46
__be16 gtrfr2; /* Timer 2 reference register */
47
__be16 gtcpr1; /* Timer 1 capture register */
48
__be16 gtcpr2; /* Timer 2 capture register */
49
__be16 gtcnr1; /* Timer 1 counter */
50
__be16 gtcnr2; /* Timer 2 counter */
51
__be16 gtmdr3; /* Timer 3 mode register */
52
__be16 gtmdr4; /* Timer 4 mode register */
53
__be16 gtrfr3; /* Timer 3 reference register */
54
__be16 gtrfr4; /* Timer 4 reference register */
55
__be16 gtcpr3; /* Timer 3 capture register */
56
__be16 gtcpr4; /* Timer 4 capture register */
57
__be16 gtcnr3; /* Timer 3 counter */
58
__be16 gtcnr4; /* Timer 4 counter */
59
__be16 gtevr1; /* Timer 1 event register */
60
__be16 gtevr2; /* Timer 2 event register */
61
__be16 gtevr3; /* Timer 3 event register */
62
__be16 gtevr4; /* Timer 4 event register */
63
__be16 gtpsr1; /* Timer 1 prescale register */
64
__be16 gtpsr2; /* Timer 2 prescale register */
65
__be16 gtpsr3; /* Timer 3 prescale register */
66
__be16 gtpsr4; /* Timer 4 prescale register */
67
u8 res2[0x40];
68
} __attribute__ ((packed));
69
70
struct gtm {
71
unsigned int clock;
72
struct gtm_timers_regs __iomem *regs;
73
struct gtm_timer timers[4];
74
spinlock_t lock;
75
struct list_head list_node;
76
};
77
78
static LIST_HEAD(gtms);
79
80
/**
81
* gtm_get_timer - request GTM timer to use it with the rest of GTM API
82
* Context: non-IRQ
83
*
84
* This function reserves GTM timer for later use. It returns gtm_timer
85
* structure to use with the rest of GTM API, you should use timer->irq
86
* to manage timer interrupt.
87
*/
88
struct gtm_timer *gtm_get_timer16(void)
89
{
90
struct gtm *gtm = NULL;
91
int i;
92
93
list_for_each_entry(gtm, &gtms, list_node) {
94
spin_lock_irq(&gtm->lock);
95
96
for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
97
if (!gtm->timers[i].requested) {
98
gtm->timers[i].requested = true;
99
spin_unlock_irq(&gtm->lock);
100
return &gtm->timers[i];
101
}
102
}
103
104
spin_unlock_irq(&gtm->lock);
105
}
106
107
if (gtm)
108
return ERR_PTR(-EBUSY);
109
return ERR_PTR(-ENODEV);
110
}
111
EXPORT_SYMBOL(gtm_get_timer16);
112
113
/**
114
* gtm_get_specific_timer - request specific GTM timer
115
* @gtm: specific GTM, pass here GTM's device_node->data
116
* @timer: specific timer number, Timer1 is 0.
117
* Context: non-IRQ
118
*
119
* This function reserves GTM timer for later use. It returns gtm_timer
120
* structure to use with the rest of GTM API, you should use timer->irq
121
* to manage timer interrupt.
122
*/
123
struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
124
unsigned int timer)
125
{
126
struct gtm_timer *ret = ERR_PTR(-EBUSY);
127
128
if (timer > 3)
129
return ERR_PTR(-EINVAL);
130
131
spin_lock_irq(&gtm->lock);
132
133
if (gtm->timers[timer].requested)
134
goto out;
135
136
ret = &gtm->timers[timer];
137
ret->requested = true;
138
139
out:
140
spin_unlock_irq(&gtm->lock);
141
return ret;
142
}
143
EXPORT_SYMBOL(gtm_get_specific_timer16);
144
145
/**
146
* gtm_put_timer16 - release 16 bits GTM timer
147
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
148
* Context: any
149
*
150
* This function releases GTM timer so others may request it.
151
*/
152
void gtm_put_timer16(struct gtm_timer *tmr)
153
{
154
gtm_stop_timer16(tmr);
155
156
spin_lock_irq(&tmr->gtm->lock);
157
tmr->requested = false;
158
spin_unlock_irq(&tmr->gtm->lock);
159
}
160
EXPORT_SYMBOL(gtm_put_timer16);
161
162
/*
163
* This is back-end for the exported functions, it's used to reset single
164
* timer in reference mode.
165
*/
166
static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
167
int reference_value, bool free_run)
168
{
169
struct gtm *gtm = tmr->gtm;
170
int num = tmr - &gtm->timers[0];
171
unsigned int prescaler;
172
u8 iclk = GTMDR_ICLK_ICLK;
173
u8 psr;
174
u8 sps;
175
unsigned long flags;
176
int max_prescaler = 256 * 256 * 16;
177
178
/* CPM2 doesn't have primary prescaler */
179
if (!tmr->gtpsr)
180
max_prescaler /= 256;
181
182
prescaler = gtm->clock / frequency;
183
/*
184
* We have two 8 bit prescalers -- primary and secondary (psr, sps),
185
* plus "slow go" mode (clk / 16). So, total prescale value is
186
* 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
187
*/
188
if (prescaler > max_prescaler)
189
return -EINVAL;
190
191
if (prescaler > max_prescaler / 16) {
192
iclk = GTMDR_ICLK_SLGO;
193
prescaler /= 16;
194
}
195
196
if (prescaler <= 256) {
197
psr = 0;
198
sps = prescaler - 1;
199
} else {
200
psr = 256 - 1;
201
sps = prescaler / 256 - 1;
202
}
203
204
spin_lock_irqsave(&gtm->lock, flags);
205
206
/*
207
* Properly reset timers: stop, reset, set up prescalers, reference
208
* value and clear event register.
209
*/
210
clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
211
GTCFR_STP(num) | GTCFR_RST(num));
212
213
setbits8(tmr->gtcfr, GTCFR_STP(num));
214
215
if (tmr->gtpsr)
216
out_be16(tmr->gtpsr, psr);
217
clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
218
GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
219
out_be16(tmr->gtcnr, 0);
220
out_be16(tmr->gtrfr, reference_value);
221
out_be16(tmr->gtevr, 0xFFFF);
222
223
/* Let it be. */
224
clrbits8(tmr->gtcfr, GTCFR_STP(num));
225
226
spin_unlock_irqrestore(&gtm->lock, flags);
227
228
return 0;
229
}
230
231
/**
232
* gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
233
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
234
* @usec: timer interval in microseconds
235
* @reload: if set, the timer will reset upon expiry rather than
236
* continue running free.
237
* Context: any
238
*
239
* This function (re)sets the GTM timer so that it counts up to the requested
240
* interval value, and fires the interrupt when the value is reached. This
241
* function will reduce the precision of the timer as needed in order for the
242
* requested timeout to fit in a 16-bit register.
243
*/
244
int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
245
{
246
/* quite obvious, frequency which is enough for µSec precision */
247
int freq = 1000000;
248
unsigned int bit;
249
250
bit = fls_long(usec);
251
if (bit > 15) {
252
freq >>= bit - 15;
253
usec >>= bit - 15;
254
}
255
256
if (!freq)
257
return -EINVAL;
258
259
return gtm_set_ref_timer16(tmr, freq, usec, reload);
260
}
261
EXPORT_SYMBOL(gtm_set_timer16);
262
263
/**
264
* gtm_set_exact_utimer16 - (re)set 16 bits timer
265
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
266
* @usec: timer interval in microseconds
267
* @reload: if set, the timer will reset upon expiry rather than
268
* continue running free.
269
* Context: any
270
*
271
* This function (re)sets GTM timer so that it counts up to the requested
272
* interval value, and fires the interrupt when the value is reached. If reload
273
* flag was set, timer will also reset itself upon reference value, otherwise
274
* it continues to increment.
275
*
276
* The _exact_ bit in the function name states that this function will not
277
* crop precision of the "usec" argument, thus usec is limited to 16 bits
278
* (single timer width).
279
*/
280
int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
281
{
282
/* quite obvious, frequency which is enough for µSec precision */
283
const int freq = 1000000;
284
285
/*
286
* We can lower the frequency (and probably power consumption) by
287
* dividing both frequency and usec by 2 until there is no remainder.
288
* But we won't bother with this unless savings are measured, so just
289
* run the timer as is.
290
*/
291
292
return gtm_set_ref_timer16(tmr, freq, usec, reload);
293
}
294
EXPORT_SYMBOL(gtm_set_exact_timer16);
295
296
/**
297
* gtm_stop_timer16 - stop single timer
298
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
299
* Context: any
300
*
301
* This function simply stops the GTM timer.
302
*/
303
void gtm_stop_timer16(struct gtm_timer *tmr)
304
{
305
struct gtm *gtm = tmr->gtm;
306
int num = tmr - &gtm->timers[0];
307
unsigned long flags;
308
309
spin_lock_irqsave(&gtm->lock, flags);
310
311
setbits8(tmr->gtcfr, GTCFR_STP(num));
312
out_be16(tmr->gtevr, 0xFFFF);
313
314
spin_unlock_irqrestore(&gtm->lock, flags);
315
}
316
EXPORT_SYMBOL(gtm_stop_timer16);
317
318
/**
319
* gtm_ack_timer16 - acknowledge timer event (free-run timers only)
320
* @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
321
* @events: events mask to ack
322
* Context: any
323
*
324
* Thus function used to acknowledge timer interrupt event, use it inside the
325
* interrupt handler.
326
*/
327
void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
328
{
329
out_be16(tmr->gtevr, events);
330
}
331
EXPORT_SYMBOL(gtm_ack_timer16);
332
333
static void __init gtm_set_shortcuts(struct device_node *np,
334
struct gtm_timer *timers,
335
struct gtm_timers_regs __iomem *regs)
336
{
337
/*
338
* Yeah, I don't like this either, but timers' registers a bit messed,
339
* so we have to provide shortcuts to write timer independent code.
340
* Alternative option is to create gt*() accessors, but that will be
341
* even uglier and cryptic.
342
*/
343
timers[0].gtcfr = &regs->gtcfr1;
344
timers[0].gtmdr = &regs->gtmdr1;
345
timers[0].gtcnr = &regs->gtcnr1;
346
timers[0].gtrfr = &regs->gtrfr1;
347
timers[0].gtevr = &regs->gtevr1;
348
349
timers[1].gtcfr = &regs->gtcfr1;
350
timers[1].gtmdr = &regs->gtmdr2;
351
timers[1].gtcnr = &regs->gtcnr2;
352
timers[1].gtrfr = &regs->gtrfr2;
353
timers[1].gtevr = &regs->gtevr2;
354
355
timers[2].gtcfr = &regs->gtcfr2;
356
timers[2].gtmdr = &regs->gtmdr3;
357
timers[2].gtcnr = &regs->gtcnr3;
358
timers[2].gtrfr = &regs->gtrfr3;
359
timers[2].gtevr = &regs->gtevr3;
360
361
timers[3].gtcfr = &regs->gtcfr2;
362
timers[3].gtmdr = &regs->gtmdr4;
363
timers[3].gtcnr = &regs->gtcnr4;
364
timers[3].gtrfr = &regs->gtrfr4;
365
timers[3].gtevr = &regs->gtevr4;
366
367
/* CPM2 doesn't have primary prescaler */
368
if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
369
timers[0].gtpsr = &regs->gtpsr1;
370
timers[1].gtpsr = &regs->gtpsr2;
371
timers[2].gtpsr = &regs->gtpsr3;
372
timers[3].gtpsr = &regs->gtpsr4;
373
}
374
}
375
376
static int __init fsl_gtm_init(void)
377
{
378
struct device_node *np;
379
380
for_each_compatible_node(np, NULL, "fsl,gtm") {
381
int i;
382
struct gtm *gtm;
383
const u32 *clock;
384
int size;
385
386
gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
387
if (!gtm) {
388
pr_err("%s: unable to allocate memory\n",
389
np->full_name);
390
continue;
391
}
392
393
spin_lock_init(&gtm->lock);
394
395
clock = of_get_property(np, "clock-frequency", &size);
396
if (!clock || size != sizeof(*clock)) {
397
pr_err("%s: no clock-frequency\n", np->full_name);
398
goto err;
399
}
400
gtm->clock = *clock;
401
402
for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
403
int ret;
404
struct resource irq;
405
406
ret = of_irq_to_resource(np, i, &irq);
407
if (ret == NO_IRQ) {
408
pr_err("%s: not enough interrupts specified\n",
409
np->full_name);
410
goto err;
411
}
412
gtm->timers[i].irq = irq.start;
413
gtm->timers[i].gtm = gtm;
414
}
415
416
gtm->regs = of_iomap(np, 0);
417
if (!gtm->regs) {
418
pr_err("%s: unable to iomap registers\n",
419
np->full_name);
420
goto err;
421
}
422
423
gtm_set_shortcuts(np, gtm->timers, gtm->regs);
424
list_add(&gtm->list_node, &gtms);
425
426
/* We don't want to lose the node and its ->data */
427
np->data = gtm;
428
of_node_get(np);
429
430
continue;
431
err:
432
kfree(gtm);
433
}
434
return 0;
435
}
436
arch_initcall(fsl_gtm_init);
437
438