Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/s390/kernel/ptrace.c
10817 views
1
/*
2
* Ptrace user space interface.
3
*
4
* Copyright IBM Corp. 1999,2010
5
* Author(s): Denis Joseph Barrow
6
* Martin Schwidefsky ([email protected])
7
*/
8
9
#include <linux/kernel.h>
10
#include <linux/sched.h>
11
#include <linux/mm.h>
12
#include <linux/smp.h>
13
#include <linux/errno.h>
14
#include <linux/ptrace.h>
15
#include <linux/user.h>
16
#include <linux/security.h>
17
#include <linux/audit.h>
18
#include <linux/signal.h>
19
#include <linux/elf.h>
20
#include <linux/regset.h>
21
#include <linux/tracehook.h>
22
#include <linux/seccomp.h>
23
#include <trace/syscall.h>
24
#include <asm/compat.h>
25
#include <asm/segment.h>
26
#include <asm/page.h>
27
#include <asm/pgtable.h>
28
#include <asm/pgalloc.h>
29
#include <asm/system.h>
30
#include <asm/uaccess.h>
31
#include <asm/unistd.h>
32
#include "entry.h"
33
34
#ifdef CONFIG_COMPAT
35
#include "compat_ptrace.h"
36
#endif
37
38
#define CREATE_TRACE_POINTS
39
#include <trace/events/syscalls.h>
40
41
enum s390_regset {
42
REGSET_GENERAL,
43
REGSET_FP,
44
REGSET_LAST_BREAK,
45
REGSET_GENERAL_EXTENDED,
46
};
47
48
void update_per_regs(struct task_struct *task)
49
{
50
static const struct per_regs per_single_step = {
51
.control = PER_EVENT_IFETCH,
52
.start = 0,
53
.end = PSW_ADDR_INSN,
54
};
55
struct pt_regs *regs = task_pt_regs(task);
56
struct thread_struct *thread = &task->thread;
57
const struct per_regs *new;
58
struct per_regs old;
59
60
/* TIF_SINGLE_STEP overrides the user specified PER registers. */
61
new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
62
&per_single_step : &thread->per_user;
63
64
/* Take care of the PER enablement bit in the PSW. */
65
if (!(new->control & PER_EVENT_MASK)) {
66
regs->psw.mask &= ~PSW_MASK_PER;
67
return;
68
}
69
regs->psw.mask |= PSW_MASK_PER;
70
__ctl_store(old, 9, 11);
71
if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
72
__ctl_load(*new, 9, 11);
73
}
74
75
void user_enable_single_step(struct task_struct *task)
76
{
77
set_tsk_thread_flag(task, TIF_SINGLE_STEP);
78
if (task == current)
79
update_per_regs(task);
80
}
81
82
void user_disable_single_step(struct task_struct *task)
83
{
84
clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
85
if (task == current)
86
update_per_regs(task);
87
}
88
89
/*
90
* Called by kernel/ptrace.c when detaching..
91
*
92
* Clear all debugging related fields.
93
*/
94
void ptrace_disable(struct task_struct *task)
95
{
96
memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
97
memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
98
clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
99
clear_tsk_thread_flag(task, TIF_PER_TRAP);
100
}
101
102
#ifndef CONFIG_64BIT
103
# define __ADDR_MASK 3
104
#else
105
# define __ADDR_MASK 7
106
#endif
107
108
static inline unsigned long __peek_user_per(struct task_struct *child,
109
addr_t addr)
110
{
111
struct per_struct_kernel *dummy = NULL;
112
113
if (addr == (addr_t) &dummy->cr9)
114
/* Control bits of the active per set. */
115
return test_thread_flag(TIF_SINGLE_STEP) ?
116
PER_EVENT_IFETCH : child->thread.per_user.control;
117
else if (addr == (addr_t) &dummy->cr10)
118
/* Start address of the active per set. */
119
return test_thread_flag(TIF_SINGLE_STEP) ?
120
0 : child->thread.per_user.start;
121
else if (addr == (addr_t) &dummy->cr11)
122
/* End address of the active per set. */
123
return test_thread_flag(TIF_SINGLE_STEP) ?
124
PSW_ADDR_INSN : child->thread.per_user.end;
125
else if (addr == (addr_t) &dummy->bits)
126
/* Single-step bit. */
127
return test_thread_flag(TIF_SINGLE_STEP) ?
128
(1UL << (BITS_PER_LONG - 1)) : 0;
129
else if (addr == (addr_t) &dummy->starting_addr)
130
/* Start address of the user specified per set. */
131
return child->thread.per_user.start;
132
else if (addr == (addr_t) &dummy->ending_addr)
133
/* End address of the user specified per set. */
134
return child->thread.per_user.end;
135
else if (addr == (addr_t) &dummy->perc_atmid)
136
/* PER code, ATMID and AI of the last PER trap */
137
return (unsigned long)
138
child->thread.per_event.cause << (BITS_PER_LONG - 16);
139
else if (addr == (addr_t) &dummy->address)
140
/* Address of the last PER trap */
141
return child->thread.per_event.address;
142
else if (addr == (addr_t) &dummy->access_id)
143
/* Access id of the last PER trap */
144
return (unsigned long)
145
child->thread.per_event.paid << (BITS_PER_LONG - 8);
146
return 0;
147
}
148
149
/*
150
* Read the word at offset addr from the user area of a process. The
151
* trouble here is that the information is littered over different
152
* locations. The process registers are found on the kernel stack,
153
* the floating point stuff and the trace settings are stored in
154
* the task structure. In addition the different structures in
155
* struct user contain pad bytes that should be read as zeroes.
156
* Lovely...
157
*/
158
static unsigned long __peek_user(struct task_struct *child, addr_t addr)
159
{
160
struct user *dummy = NULL;
161
addr_t offset, tmp;
162
163
if (addr < (addr_t) &dummy->regs.acrs) {
164
/*
165
* psw and gprs are stored on the stack
166
*/
167
tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
168
if (addr == (addr_t) &dummy->regs.psw.mask)
169
/* Remove per bit from user psw. */
170
tmp &= ~PSW_MASK_PER;
171
172
} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
173
/*
174
* access registers are stored in the thread structure
175
*/
176
offset = addr - (addr_t) &dummy->regs.acrs;
177
#ifdef CONFIG_64BIT
178
/*
179
* Very special case: old & broken 64 bit gdb reading
180
* from acrs[15]. Result is a 64 bit value. Read the
181
* 32 bit acrs[15] value and shift it by 32. Sick...
182
*/
183
if (addr == (addr_t) &dummy->regs.acrs[15])
184
tmp = ((unsigned long) child->thread.acrs[15]) << 32;
185
else
186
#endif
187
tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
188
189
} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
190
/*
191
* orig_gpr2 is stored on the kernel stack
192
*/
193
tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
194
195
} else if (addr < (addr_t) &dummy->regs.fp_regs) {
196
/*
197
* prevent reads of padding hole between
198
* orig_gpr2 and fp_regs on s390.
199
*/
200
tmp = 0;
201
202
} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
203
/*
204
* floating point regs. are stored in the thread structure
205
*/
206
offset = addr - (addr_t) &dummy->regs.fp_regs;
207
tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
208
if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
209
tmp &= (unsigned long) FPC_VALID_MASK
210
<< (BITS_PER_LONG - 32);
211
212
} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
213
/*
214
* Handle access to the per_info structure.
215
*/
216
addr -= (addr_t) &dummy->regs.per_info;
217
tmp = __peek_user_per(child, addr);
218
219
} else
220
tmp = 0;
221
222
return tmp;
223
}
224
225
static int
226
peek_user(struct task_struct *child, addr_t addr, addr_t data)
227
{
228
addr_t tmp, mask;
229
230
/*
231
* Stupid gdb peeks/pokes the access registers in 64 bit with
232
* an alignment of 4. Programmers from hell...
233
*/
234
mask = __ADDR_MASK;
235
#ifdef CONFIG_64BIT
236
if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
237
addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
238
mask = 3;
239
#endif
240
if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
241
return -EIO;
242
243
tmp = __peek_user(child, addr);
244
return put_user(tmp, (addr_t __user *) data);
245
}
246
247
static inline void __poke_user_per(struct task_struct *child,
248
addr_t addr, addr_t data)
249
{
250
struct per_struct_kernel *dummy = NULL;
251
252
/*
253
* There are only three fields in the per_info struct that the
254
* debugger user can write to.
255
* 1) cr9: the debugger wants to set a new PER event mask
256
* 2) starting_addr: the debugger wants to set a new starting
257
* address to use with the PER event mask.
258
* 3) ending_addr: the debugger wants to set a new ending
259
* address to use with the PER event mask.
260
* The user specified PER event mask and the start and end
261
* addresses are used only if single stepping is not in effect.
262
* Writes to any other field in per_info are ignored.
263
*/
264
if (addr == (addr_t) &dummy->cr9)
265
/* PER event mask of the user specified per set. */
266
child->thread.per_user.control =
267
data & (PER_EVENT_MASK | PER_CONTROL_MASK);
268
else if (addr == (addr_t) &dummy->starting_addr)
269
/* Starting address of the user specified per set. */
270
child->thread.per_user.start = data;
271
else if (addr == (addr_t) &dummy->ending_addr)
272
/* Ending address of the user specified per set. */
273
child->thread.per_user.end = data;
274
}
275
276
/*
277
* Write a word to the user area of a process at location addr. This
278
* operation does have an additional problem compared to peek_user.
279
* Stores to the program status word and on the floating point
280
* control register needs to get checked for validity.
281
*/
282
static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
283
{
284
struct user *dummy = NULL;
285
addr_t offset;
286
287
if (addr < (addr_t) &dummy->regs.acrs) {
288
/*
289
* psw and gprs are stored on the stack
290
*/
291
if (addr == (addr_t) &dummy->regs.psw.mask &&
292
#ifdef CONFIG_COMPAT
293
data != PSW_MASK_MERGE(psw_user32_bits, data) &&
294
#endif
295
data != PSW_MASK_MERGE(psw_user_bits, data))
296
/* Invalid psw mask. */
297
return -EINVAL;
298
#ifndef CONFIG_64BIT
299
if (addr == (addr_t) &dummy->regs.psw.addr)
300
/* I'd like to reject addresses without the
301
high order bit but older gdb's rely on it */
302
data |= PSW_ADDR_AMODE;
303
#endif
304
*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
305
306
} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
307
/*
308
* access registers are stored in the thread structure
309
*/
310
offset = addr - (addr_t) &dummy->regs.acrs;
311
#ifdef CONFIG_64BIT
312
/*
313
* Very special case: old & broken 64 bit gdb writing
314
* to acrs[15] with a 64 bit value. Ignore the lower
315
* half of the value and write the upper 32 bit to
316
* acrs[15]. Sick...
317
*/
318
if (addr == (addr_t) &dummy->regs.acrs[15])
319
child->thread.acrs[15] = (unsigned int) (data >> 32);
320
else
321
#endif
322
*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
323
324
} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
325
/*
326
* orig_gpr2 is stored on the kernel stack
327
*/
328
task_pt_regs(child)->orig_gpr2 = data;
329
330
} else if (addr < (addr_t) &dummy->regs.fp_regs) {
331
/*
332
* prevent writes of padding hole between
333
* orig_gpr2 and fp_regs on s390.
334
*/
335
return 0;
336
337
} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
338
/*
339
* floating point regs. are stored in the thread structure
340
*/
341
if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
342
(data & ~((unsigned long) FPC_VALID_MASK
343
<< (BITS_PER_LONG - 32))) != 0)
344
return -EINVAL;
345
offset = addr - (addr_t) &dummy->regs.fp_regs;
346
*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
347
348
} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
349
/*
350
* Handle access to the per_info structure.
351
*/
352
addr -= (addr_t) &dummy->regs.per_info;
353
__poke_user_per(child, addr, data);
354
355
}
356
357
return 0;
358
}
359
360
static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
361
{
362
addr_t mask;
363
364
/*
365
* Stupid gdb peeks/pokes the access registers in 64 bit with
366
* an alignment of 4. Programmers from hell indeed...
367
*/
368
mask = __ADDR_MASK;
369
#ifdef CONFIG_64BIT
370
if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
371
addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
372
mask = 3;
373
#endif
374
if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
375
return -EIO;
376
377
return __poke_user(child, addr, data);
378
}
379
380
long arch_ptrace(struct task_struct *child, long request,
381
unsigned long addr, unsigned long data)
382
{
383
ptrace_area parea;
384
int copied, ret;
385
386
switch (request) {
387
case PTRACE_PEEKUSR:
388
/* read the word at location addr in the USER area. */
389
return peek_user(child, addr, data);
390
391
case PTRACE_POKEUSR:
392
/* write the word at location addr in the USER area */
393
return poke_user(child, addr, data);
394
395
case PTRACE_PEEKUSR_AREA:
396
case PTRACE_POKEUSR_AREA:
397
if (copy_from_user(&parea, (void __force __user *) addr,
398
sizeof(parea)))
399
return -EFAULT;
400
addr = parea.kernel_addr;
401
data = parea.process_addr;
402
copied = 0;
403
while (copied < parea.len) {
404
if (request == PTRACE_PEEKUSR_AREA)
405
ret = peek_user(child, addr, data);
406
else {
407
addr_t utmp;
408
if (get_user(utmp,
409
(addr_t __force __user *) data))
410
return -EFAULT;
411
ret = poke_user(child, addr, utmp);
412
}
413
if (ret)
414
return ret;
415
addr += sizeof(unsigned long);
416
data += sizeof(unsigned long);
417
copied += sizeof(unsigned long);
418
}
419
return 0;
420
case PTRACE_GET_LAST_BREAK:
421
put_user(task_thread_info(child)->last_break,
422
(unsigned long __user *) data);
423
return 0;
424
default:
425
/* Removing high order bit from addr (only for 31 bit). */
426
addr &= PSW_ADDR_INSN;
427
return ptrace_request(child, request, addr, data);
428
}
429
}
430
431
#ifdef CONFIG_COMPAT
432
/*
433
* Now the fun part starts... a 31 bit program running in the
434
* 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
435
* PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
436
* to handle, the difference to the 64 bit versions of the requests
437
* is that the access is done in multiples of 4 byte instead of
438
* 8 bytes (sizeof(unsigned long) on 31/64 bit).
439
* The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
440
* PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
441
* is a 31 bit program too, the content of struct user can be
442
* emulated. A 31 bit program peeking into the struct user of
443
* a 64 bit program is a no-no.
444
*/
445
446
/*
447
* Same as peek_user_per but for a 31 bit program.
448
*/
449
static inline __u32 __peek_user_per_compat(struct task_struct *child,
450
addr_t addr)
451
{
452
struct compat_per_struct_kernel *dummy32 = NULL;
453
454
if (addr == (addr_t) &dummy32->cr9)
455
/* Control bits of the active per set. */
456
return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
457
PER_EVENT_IFETCH : child->thread.per_user.control;
458
else if (addr == (addr_t) &dummy32->cr10)
459
/* Start address of the active per set. */
460
return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
461
0 : child->thread.per_user.start;
462
else if (addr == (addr_t) &dummy32->cr11)
463
/* End address of the active per set. */
464
return test_thread_flag(TIF_SINGLE_STEP) ?
465
PSW32_ADDR_INSN : child->thread.per_user.end;
466
else if (addr == (addr_t) &dummy32->bits)
467
/* Single-step bit. */
468
return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
469
0x80000000 : 0;
470
else if (addr == (addr_t) &dummy32->starting_addr)
471
/* Start address of the user specified per set. */
472
return (__u32) child->thread.per_user.start;
473
else if (addr == (addr_t) &dummy32->ending_addr)
474
/* End address of the user specified per set. */
475
return (__u32) child->thread.per_user.end;
476
else if (addr == (addr_t) &dummy32->perc_atmid)
477
/* PER code, ATMID and AI of the last PER trap */
478
return (__u32) child->thread.per_event.cause << 16;
479
else if (addr == (addr_t) &dummy32->address)
480
/* Address of the last PER trap */
481
return (__u32) child->thread.per_event.address;
482
else if (addr == (addr_t) &dummy32->access_id)
483
/* Access id of the last PER trap */
484
return (__u32) child->thread.per_event.paid << 24;
485
return 0;
486
}
487
488
/*
489
* Same as peek_user but for a 31 bit program.
490
*/
491
static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
492
{
493
struct compat_user *dummy32 = NULL;
494
addr_t offset;
495
__u32 tmp;
496
497
if (addr < (addr_t) &dummy32->regs.acrs) {
498
/*
499
* psw and gprs are stored on the stack
500
*/
501
if (addr == (addr_t) &dummy32->regs.psw.mask) {
502
/* Fake a 31 bit psw mask. */
503
tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
504
tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
505
} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
506
/* Fake a 31 bit psw address. */
507
tmp = (__u32) task_pt_regs(child)->psw.addr |
508
PSW32_ADDR_AMODE31;
509
} else {
510
/* gpr 0-15 */
511
tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
512
addr*2 + 4);
513
}
514
} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
515
/*
516
* access registers are stored in the thread structure
517
*/
518
offset = addr - (addr_t) &dummy32->regs.acrs;
519
tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
520
521
} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
522
/*
523
* orig_gpr2 is stored on the kernel stack
524
*/
525
tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
526
527
} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
528
/*
529
* prevent reads of padding hole between
530
* orig_gpr2 and fp_regs on s390.
531
*/
532
tmp = 0;
533
534
} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
535
/*
536
* floating point regs. are stored in the thread structure
537
*/
538
offset = addr - (addr_t) &dummy32->regs.fp_regs;
539
tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
540
541
} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
542
/*
543
* Handle access to the per_info structure.
544
*/
545
addr -= (addr_t) &dummy32->regs.per_info;
546
tmp = __peek_user_per_compat(child, addr);
547
548
} else
549
tmp = 0;
550
551
return tmp;
552
}
553
554
static int peek_user_compat(struct task_struct *child,
555
addr_t addr, addr_t data)
556
{
557
__u32 tmp;
558
559
if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
560
return -EIO;
561
562
tmp = __peek_user_compat(child, addr);
563
return put_user(tmp, (__u32 __user *) data);
564
}
565
566
/*
567
* Same as poke_user_per but for a 31 bit program.
568
*/
569
static inline void __poke_user_per_compat(struct task_struct *child,
570
addr_t addr, __u32 data)
571
{
572
struct compat_per_struct_kernel *dummy32 = NULL;
573
574
if (addr == (addr_t) &dummy32->cr9)
575
/* PER event mask of the user specified per set. */
576
child->thread.per_user.control =
577
data & (PER_EVENT_MASK | PER_CONTROL_MASK);
578
else if (addr == (addr_t) &dummy32->starting_addr)
579
/* Starting address of the user specified per set. */
580
child->thread.per_user.start = data;
581
else if (addr == (addr_t) &dummy32->ending_addr)
582
/* Ending address of the user specified per set. */
583
child->thread.per_user.end = data;
584
}
585
586
/*
587
* Same as poke_user but for a 31 bit program.
588
*/
589
static int __poke_user_compat(struct task_struct *child,
590
addr_t addr, addr_t data)
591
{
592
struct compat_user *dummy32 = NULL;
593
__u32 tmp = (__u32) data;
594
addr_t offset;
595
596
if (addr < (addr_t) &dummy32->regs.acrs) {
597
/*
598
* psw, gprs, acrs and orig_gpr2 are stored on the stack
599
*/
600
if (addr == (addr_t) &dummy32->regs.psw.mask) {
601
/* Build a 64 bit psw mask from 31 bit mask. */
602
if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
603
/* Invalid psw mask. */
604
return -EINVAL;
605
task_pt_regs(child)->psw.mask =
606
PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
607
} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
608
/* Build a 64 bit psw address from 31 bit address. */
609
task_pt_regs(child)->psw.addr =
610
(__u64) tmp & PSW32_ADDR_INSN;
611
} else {
612
/* gpr 0-15 */
613
*(__u32*)((addr_t) &task_pt_regs(child)->psw
614
+ addr*2 + 4) = tmp;
615
}
616
} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
617
/*
618
* access registers are stored in the thread structure
619
*/
620
offset = addr - (addr_t) &dummy32->regs.acrs;
621
*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
622
623
} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
624
/*
625
* orig_gpr2 is stored on the kernel stack
626
*/
627
*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
628
629
} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
630
/*
631
* prevent writess of padding hole between
632
* orig_gpr2 and fp_regs on s390.
633
*/
634
return 0;
635
636
} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
637
/*
638
* floating point regs. are stored in the thread structure
639
*/
640
if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
641
(tmp & ~FPC_VALID_MASK) != 0)
642
/* Invalid floating point control. */
643
return -EINVAL;
644
offset = addr - (addr_t) &dummy32->regs.fp_regs;
645
*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
646
647
} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
648
/*
649
* Handle access to the per_info structure.
650
*/
651
addr -= (addr_t) &dummy32->regs.per_info;
652
__poke_user_per_compat(child, addr, data);
653
}
654
655
return 0;
656
}
657
658
static int poke_user_compat(struct task_struct *child,
659
addr_t addr, addr_t data)
660
{
661
if (!is_compat_task() || (addr & 3) ||
662
addr > sizeof(struct compat_user) - 3)
663
return -EIO;
664
665
return __poke_user_compat(child, addr, data);
666
}
667
668
long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
669
compat_ulong_t caddr, compat_ulong_t cdata)
670
{
671
unsigned long addr = caddr;
672
unsigned long data = cdata;
673
compat_ptrace_area parea;
674
int copied, ret;
675
676
switch (request) {
677
case PTRACE_PEEKUSR:
678
/* read the word at location addr in the USER area. */
679
return peek_user_compat(child, addr, data);
680
681
case PTRACE_POKEUSR:
682
/* write the word at location addr in the USER area */
683
return poke_user_compat(child, addr, data);
684
685
case PTRACE_PEEKUSR_AREA:
686
case PTRACE_POKEUSR_AREA:
687
if (copy_from_user(&parea, (void __force __user *) addr,
688
sizeof(parea)))
689
return -EFAULT;
690
addr = parea.kernel_addr;
691
data = parea.process_addr;
692
copied = 0;
693
while (copied < parea.len) {
694
if (request == PTRACE_PEEKUSR_AREA)
695
ret = peek_user_compat(child, addr, data);
696
else {
697
__u32 utmp;
698
if (get_user(utmp,
699
(__u32 __force __user *) data))
700
return -EFAULT;
701
ret = poke_user_compat(child, addr, utmp);
702
}
703
if (ret)
704
return ret;
705
addr += sizeof(unsigned int);
706
data += sizeof(unsigned int);
707
copied += sizeof(unsigned int);
708
}
709
return 0;
710
case PTRACE_GET_LAST_BREAK:
711
put_user(task_thread_info(child)->last_break,
712
(unsigned int __user *) data);
713
return 0;
714
}
715
return compat_ptrace_request(child, request, addr, data);
716
}
717
#endif
718
719
asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
720
{
721
long ret = 0;
722
723
/* Do the secure computing check first. */
724
secure_computing(regs->gprs[2]);
725
726
/*
727
* The sysc_tracesys code in entry.S stored the system
728
* call number to gprs[2].
729
*/
730
if (test_thread_flag(TIF_SYSCALL_TRACE) &&
731
(tracehook_report_syscall_entry(regs) ||
732
regs->gprs[2] >= NR_syscalls)) {
733
/*
734
* Tracing decided this syscall should not happen or the
735
* debugger stored an invalid system call number. Skip
736
* the system call and the system call restart handling.
737
*/
738
regs->svcnr = 0;
739
ret = -1;
740
}
741
742
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
743
trace_sys_enter(regs, regs->gprs[2]);
744
745
if (unlikely(current->audit_context))
746
audit_syscall_entry(is_compat_task() ?
747
AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
748
regs->gprs[2], regs->orig_gpr2,
749
regs->gprs[3], regs->gprs[4],
750
regs->gprs[5]);
751
return ret ?: regs->gprs[2];
752
}
753
754
asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
755
{
756
if (unlikely(current->audit_context))
757
audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
758
regs->gprs[2]);
759
760
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
761
trace_sys_exit(regs, regs->gprs[2]);
762
763
if (test_thread_flag(TIF_SYSCALL_TRACE))
764
tracehook_report_syscall_exit(regs, 0);
765
}
766
767
/*
768
* user_regset definitions.
769
*/
770
771
static int s390_regs_get(struct task_struct *target,
772
const struct user_regset *regset,
773
unsigned int pos, unsigned int count,
774
void *kbuf, void __user *ubuf)
775
{
776
if (target == current)
777
save_access_regs(target->thread.acrs);
778
779
if (kbuf) {
780
unsigned long *k = kbuf;
781
while (count > 0) {
782
*k++ = __peek_user(target, pos);
783
count -= sizeof(*k);
784
pos += sizeof(*k);
785
}
786
} else {
787
unsigned long __user *u = ubuf;
788
while (count > 0) {
789
if (__put_user(__peek_user(target, pos), u++))
790
return -EFAULT;
791
count -= sizeof(*u);
792
pos += sizeof(*u);
793
}
794
}
795
return 0;
796
}
797
798
static int s390_regs_set(struct task_struct *target,
799
const struct user_regset *regset,
800
unsigned int pos, unsigned int count,
801
const void *kbuf, const void __user *ubuf)
802
{
803
int rc = 0;
804
805
if (target == current)
806
save_access_regs(target->thread.acrs);
807
808
if (kbuf) {
809
const unsigned long *k = kbuf;
810
while (count > 0 && !rc) {
811
rc = __poke_user(target, pos, *k++);
812
count -= sizeof(*k);
813
pos += sizeof(*k);
814
}
815
} else {
816
const unsigned long __user *u = ubuf;
817
while (count > 0 && !rc) {
818
unsigned long word;
819
rc = __get_user(word, u++);
820
if (rc)
821
break;
822
rc = __poke_user(target, pos, word);
823
count -= sizeof(*u);
824
pos += sizeof(*u);
825
}
826
}
827
828
if (rc == 0 && target == current)
829
restore_access_regs(target->thread.acrs);
830
831
return rc;
832
}
833
834
static int s390_fpregs_get(struct task_struct *target,
835
const struct user_regset *regset, unsigned int pos,
836
unsigned int count, void *kbuf, void __user *ubuf)
837
{
838
if (target == current)
839
save_fp_regs(&target->thread.fp_regs);
840
841
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
842
&target->thread.fp_regs, 0, -1);
843
}
844
845
static int s390_fpregs_set(struct task_struct *target,
846
const struct user_regset *regset, unsigned int pos,
847
unsigned int count, const void *kbuf,
848
const void __user *ubuf)
849
{
850
int rc = 0;
851
852
if (target == current)
853
save_fp_regs(&target->thread.fp_regs);
854
855
/* If setting FPC, must validate it first. */
856
if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
857
u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
858
rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
859
0, offsetof(s390_fp_regs, fprs));
860
if (rc)
861
return rc;
862
if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
863
return -EINVAL;
864
target->thread.fp_regs.fpc = fpc[0];
865
}
866
867
if (rc == 0 && count > 0)
868
rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
869
target->thread.fp_regs.fprs,
870
offsetof(s390_fp_regs, fprs), -1);
871
872
if (rc == 0 && target == current)
873
restore_fp_regs(&target->thread.fp_regs);
874
875
return rc;
876
}
877
878
#ifdef CONFIG_64BIT
879
880
static int s390_last_break_get(struct task_struct *target,
881
const struct user_regset *regset,
882
unsigned int pos, unsigned int count,
883
void *kbuf, void __user *ubuf)
884
{
885
if (count > 0) {
886
if (kbuf) {
887
unsigned long *k = kbuf;
888
*k = task_thread_info(target)->last_break;
889
} else {
890
unsigned long __user *u = ubuf;
891
if (__put_user(task_thread_info(target)->last_break, u))
892
return -EFAULT;
893
}
894
}
895
return 0;
896
}
897
898
#endif
899
900
static const struct user_regset s390_regsets[] = {
901
[REGSET_GENERAL] = {
902
.core_note_type = NT_PRSTATUS,
903
.n = sizeof(s390_regs) / sizeof(long),
904
.size = sizeof(long),
905
.align = sizeof(long),
906
.get = s390_regs_get,
907
.set = s390_regs_set,
908
},
909
[REGSET_FP] = {
910
.core_note_type = NT_PRFPREG,
911
.n = sizeof(s390_fp_regs) / sizeof(long),
912
.size = sizeof(long),
913
.align = sizeof(long),
914
.get = s390_fpregs_get,
915
.set = s390_fpregs_set,
916
},
917
#ifdef CONFIG_64BIT
918
[REGSET_LAST_BREAK] = {
919
.core_note_type = NT_S390_LAST_BREAK,
920
.n = 1,
921
.size = sizeof(long),
922
.align = sizeof(long),
923
.get = s390_last_break_get,
924
},
925
#endif
926
};
927
928
static const struct user_regset_view user_s390_view = {
929
.name = UTS_MACHINE,
930
.e_machine = EM_S390,
931
.regsets = s390_regsets,
932
.n = ARRAY_SIZE(s390_regsets)
933
};
934
935
#ifdef CONFIG_COMPAT
936
static int s390_compat_regs_get(struct task_struct *target,
937
const struct user_regset *regset,
938
unsigned int pos, unsigned int count,
939
void *kbuf, void __user *ubuf)
940
{
941
if (target == current)
942
save_access_regs(target->thread.acrs);
943
944
if (kbuf) {
945
compat_ulong_t *k = kbuf;
946
while (count > 0) {
947
*k++ = __peek_user_compat(target, pos);
948
count -= sizeof(*k);
949
pos += sizeof(*k);
950
}
951
} else {
952
compat_ulong_t __user *u = ubuf;
953
while (count > 0) {
954
if (__put_user(__peek_user_compat(target, pos), u++))
955
return -EFAULT;
956
count -= sizeof(*u);
957
pos += sizeof(*u);
958
}
959
}
960
return 0;
961
}
962
963
static int s390_compat_regs_set(struct task_struct *target,
964
const struct user_regset *regset,
965
unsigned int pos, unsigned int count,
966
const void *kbuf, const void __user *ubuf)
967
{
968
int rc = 0;
969
970
if (target == current)
971
save_access_regs(target->thread.acrs);
972
973
if (kbuf) {
974
const compat_ulong_t *k = kbuf;
975
while (count > 0 && !rc) {
976
rc = __poke_user_compat(target, pos, *k++);
977
count -= sizeof(*k);
978
pos += sizeof(*k);
979
}
980
} else {
981
const compat_ulong_t __user *u = ubuf;
982
while (count > 0 && !rc) {
983
compat_ulong_t word;
984
rc = __get_user(word, u++);
985
if (rc)
986
break;
987
rc = __poke_user_compat(target, pos, word);
988
count -= sizeof(*u);
989
pos += sizeof(*u);
990
}
991
}
992
993
if (rc == 0 && target == current)
994
restore_access_regs(target->thread.acrs);
995
996
return rc;
997
}
998
999
static int s390_compat_regs_high_get(struct task_struct *target,
1000
const struct user_regset *regset,
1001
unsigned int pos, unsigned int count,
1002
void *kbuf, void __user *ubuf)
1003
{
1004
compat_ulong_t *gprs_high;
1005
1006
gprs_high = (compat_ulong_t *)
1007
&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008
if (kbuf) {
1009
compat_ulong_t *k = kbuf;
1010
while (count > 0) {
1011
*k++ = *gprs_high;
1012
gprs_high += 2;
1013
count -= sizeof(*k);
1014
}
1015
} else {
1016
compat_ulong_t __user *u = ubuf;
1017
while (count > 0) {
1018
if (__put_user(*gprs_high, u++))
1019
return -EFAULT;
1020
gprs_high += 2;
1021
count -= sizeof(*u);
1022
}
1023
}
1024
return 0;
1025
}
1026
1027
static int s390_compat_regs_high_set(struct task_struct *target,
1028
const struct user_regset *regset,
1029
unsigned int pos, unsigned int count,
1030
const void *kbuf, const void __user *ubuf)
1031
{
1032
compat_ulong_t *gprs_high;
1033
int rc = 0;
1034
1035
gprs_high = (compat_ulong_t *)
1036
&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037
if (kbuf) {
1038
const compat_ulong_t *k = kbuf;
1039
while (count > 0) {
1040
*gprs_high = *k++;
1041
*gprs_high += 2;
1042
count -= sizeof(*k);
1043
}
1044
} else {
1045
const compat_ulong_t __user *u = ubuf;
1046
while (count > 0 && !rc) {
1047
unsigned long word;
1048
rc = __get_user(word, u++);
1049
if (rc)
1050
break;
1051
*gprs_high = word;
1052
*gprs_high += 2;
1053
count -= sizeof(*u);
1054
}
1055
}
1056
1057
return rc;
1058
}
1059
1060
static int s390_compat_last_break_get(struct task_struct *target,
1061
const struct user_regset *regset,
1062
unsigned int pos, unsigned int count,
1063
void *kbuf, void __user *ubuf)
1064
{
1065
compat_ulong_t last_break;
1066
1067
if (count > 0) {
1068
last_break = task_thread_info(target)->last_break;
1069
if (kbuf) {
1070
unsigned long *k = kbuf;
1071
*k = last_break;
1072
} else {
1073
unsigned long __user *u = ubuf;
1074
if (__put_user(last_break, u))
1075
return -EFAULT;
1076
}
1077
}
1078
return 0;
1079
}
1080
1081
static const struct user_regset s390_compat_regsets[] = {
1082
[REGSET_GENERAL] = {
1083
.core_note_type = NT_PRSTATUS,
1084
.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085
.size = sizeof(compat_long_t),
1086
.align = sizeof(compat_long_t),
1087
.get = s390_compat_regs_get,
1088
.set = s390_compat_regs_set,
1089
},
1090
[REGSET_FP] = {
1091
.core_note_type = NT_PRFPREG,
1092
.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093
.size = sizeof(compat_long_t),
1094
.align = sizeof(compat_long_t),
1095
.get = s390_fpregs_get,
1096
.set = s390_fpregs_set,
1097
},
1098
[REGSET_LAST_BREAK] = {
1099
.core_note_type = NT_S390_LAST_BREAK,
1100
.n = 1,
1101
.size = sizeof(long),
1102
.align = sizeof(long),
1103
.get = s390_compat_last_break_get,
1104
},
1105
[REGSET_GENERAL_EXTENDED] = {
1106
.core_note_type = NT_S390_HIGH_GPRS,
1107
.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108
.size = sizeof(compat_long_t),
1109
.align = sizeof(compat_long_t),
1110
.get = s390_compat_regs_high_get,
1111
.set = s390_compat_regs_high_set,
1112
},
1113
};
1114
1115
static const struct user_regset_view user_s390_compat_view = {
1116
.name = "s390",
1117
.e_machine = EM_S390,
1118
.regsets = s390_compat_regsets,
1119
.n = ARRAY_SIZE(s390_compat_regsets)
1120
};
1121
#endif
1122
1123
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124
{
1125
#ifdef CONFIG_COMPAT
1126
if (test_tsk_thread_flag(task, TIF_31BIT))
1127
return &user_s390_compat_view;
1128
#endif
1129
return &user_s390_view;
1130
}
1131
1132
static const char *gpr_names[NUM_GPRS] = {
1133
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1134
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135
};
1136
1137
unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138
{
1139
if (offset >= NUM_GPRS)
1140
return 0;
1141
return regs->gprs[offset];
1142
}
1143
1144
int regs_query_register_offset(const char *name)
1145
{
1146
unsigned long offset;
1147
1148
if (!name || *name != 'r')
1149
return -EINVAL;
1150
if (strict_strtoul(name + 1, 10, &offset))
1151
return -EINVAL;
1152
if (offset >= NUM_GPRS)
1153
return -EINVAL;
1154
return offset;
1155
}
1156
1157
const char *regs_query_register_name(unsigned int offset)
1158
{
1159
if (offset >= NUM_GPRS)
1160
return NULL;
1161
return gpr_names[offset];
1162
}
1163
1164
static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165
{
1166
unsigned long ksp = kernel_stack_pointer(regs);
1167
1168
return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169
}
1170
1171
/**
1172
* regs_get_kernel_stack_nth() - get Nth entry of the stack
1173
* @regs:pt_regs which contains kernel stack pointer.
1174
* @n:stack entry number.
1175
*
1176
* regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177
* is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178
* this returns 0.
1179
*/
1180
unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181
{
1182
unsigned long addr;
1183
1184
addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185
if (!regs_within_kernel_stack(regs, addr))
1186
return 0;
1187
return *(unsigned long *)addr;
1188
}
1189
1190