Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sh/kernel/kprobes.c
10817 views
1
/*
2
* Kernel probes (kprobes) for SuperH
3
*
4
* Copyright (C) 2007 Chris Smith <[email protected]>
5
* Copyright (C) 2006 Lineo Solutions, Inc.
6
*
7
* This file is subject to the terms and conditions of the GNU General Public
8
* License. See the file "COPYING" in the main directory of this archive
9
* for more details.
10
*/
11
#include <linux/kprobes.h>
12
#include <linux/module.h>
13
#include <linux/ptrace.h>
14
#include <linux/preempt.h>
15
#include <linux/kdebug.h>
16
#include <linux/slab.h>
17
#include <asm/cacheflush.h>
18
#include <asm/uaccess.h>
19
20
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22
23
static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
24
static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
25
static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
26
27
#define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
28
#define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
29
#define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
30
#define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
31
#define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
32
#define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
33
34
#define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
35
#define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
36
37
#define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
38
#define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
39
40
#define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
41
#define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
42
43
int __kprobes arch_prepare_kprobe(struct kprobe *p)
44
{
45
kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
46
47
if (OPCODE_RTE(opcode))
48
return -EFAULT; /* Bad breakpoint */
49
50
p->opcode = opcode;
51
52
return 0;
53
}
54
55
void __kprobes arch_copy_kprobe(struct kprobe *p)
56
{
57
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
58
p->opcode = *p->addr;
59
}
60
61
void __kprobes arch_arm_kprobe(struct kprobe *p)
62
{
63
*p->addr = BREAKPOINT_INSTRUCTION;
64
flush_icache_range((unsigned long)p->addr,
65
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
66
}
67
68
void __kprobes arch_disarm_kprobe(struct kprobe *p)
69
{
70
*p->addr = p->opcode;
71
flush_icache_range((unsigned long)p->addr,
72
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
73
}
74
75
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
76
{
77
if (*p->addr == BREAKPOINT_INSTRUCTION)
78
return 1;
79
80
return 0;
81
}
82
83
/**
84
* If an illegal slot instruction exception occurs for an address
85
* containing a kprobe, remove the probe.
86
*
87
* Returns 0 if the exception was handled successfully, 1 otherwise.
88
*/
89
int __kprobes kprobe_handle_illslot(unsigned long pc)
90
{
91
struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
92
93
if (p != NULL) {
94
printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
95
(unsigned int)pc + 2);
96
unregister_kprobe(p);
97
return 0;
98
}
99
100
return 1;
101
}
102
103
void __kprobes arch_remove_kprobe(struct kprobe *p)
104
{
105
struct kprobe *saved = &__get_cpu_var(saved_next_opcode);
106
107
if (saved->addr) {
108
arch_disarm_kprobe(p);
109
arch_disarm_kprobe(saved);
110
111
saved->addr = NULL;
112
saved->opcode = 0;
113
114
saved = &__get_cpu_var(saved_next_opcode2);
115
if (saved->addr) {
116
arch_disarm_kprobe(saved);
117
118
saved->addr = NULL;
119
saved->opcode = 0;
120
}
121
}
122
}
123
124
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
125
{
126
kcb->prev_kprobe.kp = kprobe_running();
127
kcb->prev_kprobe.status = kcb->kprobe_status;
128
}
129
130
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
131
{
132
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
133
kcb->kprobe_status = kcb->prev_kprobe.status;
134
}
135
136
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
137
struct kprobe_ctlblk *kcb)
138
{
139
__get_cpu_var(current_kprobe) = p;
140
}
141
142
/*
143
* Singlestep is implemented by disabling the current kprobe and setting one
144
* on the next instruction, following branches. Two probes are set if the
145
* branch is conditional.
146
*/
147
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
148
{
149
__get_cpu_var(saved_current_opcode).addr = (kprobe_opcode_t *)regs->pc;
150
151
if (p != NULL) {
152
struct kprobe *op1, *op2;
153
154
arch_disarm_kprobe(p);
155
156
op1 = &__get_cpu_var(saved_next_opcode);
157
op2 = &__get_cpu_var(saved_next_opcode2);
158
159
if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
160
unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
161
op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
162
} else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
163
unsigned long disp = (p->opcode & 0x0FFF);
164
op1->addr =
165
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
166
167
} else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
168
unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
169
op1->addr =
170
(kprobe_opcode_t *) (regs->pc + 4 +
171
regs->regs[reg_nr]);
172
173
} else if (OPCODE_RTS(p->opcode)) {
174
op1->addr = (kprobe_opcode_t *) regs->pr;
175
176
} else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
177
unsigned long disp = (p->opcode & 0x00FF);
178
/* case 1 */
179
op1->addr = p->addr + 1;
180
/* case 2 */
181
op2->addr =
182
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
183
op2->opcode = *(op2->addr);
184
arch_arm_kprobe(op2);
185
186
} else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
187
unsigned long disp = (p->opcode & 0x00FF);
188
/* case 1 */
189
op1->addr = p->addr + 2;
190
/* case 2 */
191
op2->addr =
192
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
193
op2->opcode = *(op2->addr);
194
arch_arm_kprobe(op2);
195
196
} else {
197
op1->addr = p->addr + 1;
198
}
199
200
op1->opcode = *(op1->addr);
201
arch_arm_kprobe(op1);
202
}
203
}
204
205
/* Called with kretprobe_lock held */
206
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
207
struct pt_regs *regs)
208
{
209
ri->ret_addr = (kprobe_opcode_t *) regs->pr;
210
211
/* Replace the return addr with trampoline addr */
212
regs->pr = (unsigned long)kretprobe_trampoline;
213
}
214
215
static int __kprobes kprobe_handler(struct pt_regs *regs)
216
{
217
struct kprobe *p;
218
int ret = 0;
219
kprobe_opcode_t *addr = NULL;
220
struct kprobe_ctlblk *kcb;
221
222
/*
223
* We don't want to be preempted for the entire
224
* duration of kprobe processing
225
*/
226
preempt_disable();
227
kcb = get_kprobe_ctlblk();
228
229
addr = (kprobe_opcode_t *) (regs->pc);
230
231
/* Check we're not actually recursing */
232
if (kprobe_running()) {
233
p = get_kprobe(addr);
234
if (p) {
235
if (kcb->kprobe_status == KPROBE_HIT_SS &&
236
*p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
237
goto no_kprobe;
238
}
239
/* We have reentered the kprobe_handler(), since
240
* another probe was hit while within the handler.
241
* We here save the original kprobes variables and
242
* just single step on the instruction of the new probe
243
* without calling any user handlers.
244
*/
245
save_previous_kprobe(kcb);
246
set_current_kprobe(p, regs, kcb);
247
kprobes_inc_nmissed_count(p);
248
prepare_singlestep(p, regs);
249
kcb->kprobe_status = KPROBE_REENTER;
250
return 1;
251
} else {
252
p = __get_cpu_var(current_kprobe);
253
if (p->break_handler && p->break_handler(p, regs)) {
254
goto ss_probe;
255
}
256
}
257
goto no_kprobe;
258
}
259
260
p = get_kprobe(addr);
261
if (!p) {
262
/* Not one of ours: let kernel handle it */
263
if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
264
/*
265
* The breakpoint instruction was removed right
266
* after we hit it. Another cpu has removed
267
* either a probepoint or a debugger breakpoint
268
* at this address. In either case, no further
269
* handling of this interrupt is appropriate.
270
*/
271
ret = 1;
272
}
273
274
goto no_kprobe;
275
}
276
277
set_current_kprobe(p, regs, kcb);
278
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
279
280
if (p->pre_handler && p->pre_handler(p, regs))
281
/* handler has already set things up, so skip ss setup */
282
return 1;
283
284
ss_probe:
285
prepare_singlestep(p, regs);
286
kcb->kprobe_status = KPROBE_HIT_SS;
287
return 1;
288
289
no_kprobe:
290
preempt_enable_no_resched();
291
return ret;
292
}
293
294
/*
295
* For function-return probes, init_kprobes() establishes a probepoint
296
* here. When a retprobed function returns, this probe is hit and
297
* trampoline_probe_handler() runs, calling the kretprobe's handler.
298
*/
299
static void __used kretprobe_trampoline_holder(void)
300
{
301
asm volatile (".globl kretprobe_trampoline\n"
302
"kretprobe_trampoline:\n\t"
303
"nop\n");
304
}
305
306
/*
307
* Called when we hit the probe point at kretprobe_trampoline
308
*/
309
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
310
{
311
struct kretprobe_instance *ri = NULL;
312
struct hlist_head *head, empty_rp;
313
struct hlist_node *node, *tmp;
314
unsigned long flags, orig_ret_address = 0;
315
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
316
317
INIT_HLIST_HEAD(&empty_rp);
318
kretprobe_hash_lock(current, &head, &flags);
319
320
/*
321
* It is possible to have multiple instances associated with a given
322
* task either because an multiple functions in the call path
323
* have a return probe installed on them, and/or more then one return
324
* return probe was registered for a target function.
325
*
326
* We can handle this because:
327
* - instances are always inserted at the head of the list
328
* - when multiple return probes are registered for the same
329
* function, the first instance's ret_addr will point to the
330
* real return address, and all the rest will point to
331
* kretprobe_trampoline
332
*/
333
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
334
if (ri->task != current)
335
/* another task is sharing our hash bucket */
336
continue;
337
338
if (ri->rp && ri->rp->handler) {
339
__get_cpu_var(current_kprobe) = &ri->rp->kp;
340
ri->rp->handler(ri, regs);
341
__get_cpu_var(current_kprobe) = NULL;
342
}
343
344
orig_ret_address = (unsigned long)ri->ret_addr;
345
recycle_rp_inst(ri, &empty_rp);
346
347
if (orig_ret_address != trampoline_address)
348
/*
349
* This is the real return address. Any other
350
* instances associated with this task are for
351
* other calls deeper on the call stack
352
*/
353
break;
354
}
355
356
kretprobe_assert(ri, orig_ret_address, trampoline_address);
357
358
regs->pc = orig_ret_address;
359
kretprobe_hash_unlock(current, &flags);
360
361
preempt_enable_no_resched();
362
363
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
364
hlist_del(&ri->hlist);
365
kfree(ri);
366
}
367
368
return orig_ret_address;
369
}
370
371
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
372
{
373
struct kprobe *cur = kprobe_running();
374
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
375
kprobe_opcode_t *addr = NULL;
376
struct kprobe *p = NULL;
377
378
if (!cur)
379
return 0;
380
381
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
382
kcb->kprobe_status = KPROBE_HIT_SSDONE;
383
cur->post_handler(cur, regs, 0);
384
}
385
386
p = &__get_cpu_var(saved_next_opcode);
387
if (p->addr) {
388
arch_disarm_kprobe(p);
389
p->addr = NULL;
390
p->opcode = 0;
391
392
addr = __get_cpu_var(saved_current_opcode).addr;
393
__get_cpu_var(saved_current_opcode).addr = NULL;
394
395
p = get_kprobe(addr);
396
arch_arm_kprobe(p);
397
398
p = &__get_cpu_var(saved_next_opcode2);
399
if (p->addr) {
400
arch_disarm_kprobe(p);
401
p->addr = NULL;
402
p->opcode = 0;
403
}
404
}
405
406
/* Restore back the original saved kprobes variables and continue. */
407
if (kcb->kprobe_status == KPROBE_REENTER) {
408
restore_previous_kprobe(kcb);
409
goto out;
410
}
411
412
reset_current_kprobe();
413
414
out:
415
preempt_enable_no_resched();
416
417
return 1;
418
}
419
420
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
421
{
422
struct kprobe *cur = kprobe_running();
423
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
424
const struct exception_table_entry *entry;
425
426
switch (kcb->kprobe_status) {
427
case KPROBE_HIT_SS:
428
case KPROBE_REENTER:
429
/*
430
* We are here because the instruction being single
431
* stepped caused a page fault. We reset the current
432
* kprobe, point the pc back to the probe address
433
* and allow the page fault handler to continue as a
434
* normal page fault.
435
*/
436
regs->pc = (unsigned long)cur->addr;
437
if (kcb->kprobe_status == KPROBE_REENTER)
438
restore_previous_kprobe(kcb);
439
else
440
reset_current_kprobe();
441
preempt_enable_no_resched();
442
break;
443
case KPROBE_HIT_ACTIVE:
444
case KPROBE_HIT_SSDONE:
445
/*
446
* We increment the nmissed count for accounting,
447
* we can also use npre/npostfault count for accounting
448
* these specific fault cases.
449
*/
450
kprobes_inc_nmissed_count(cur);
451
452
/*
453
* We come here because instructions in the pre/post
454
* handler caused the page_fault, this could happen
455
* if handler tries to access user space by
456
* copy_from_user(), get_user() etc. Let the
457
* user-specified handler try to fix it first.
458
*/
459
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
460
return 1;
461
462
/*
463
* In case the user-specified fault handler returned
464
* zero, try to fix up.
465
*/
466
if ((entry = search_exception_tables(regs->pc)) != NULL) {
467
regs->pc = entry->fixup;
468
return 1;
469
}
470
471
/*
472
* fixup_exception() could not handle it,
473
* Let do_page_fault() fix it.
474
*/
475
break;
476
default:
477
break;
478
}
479
480
return 0;
481
}
482
483
/*
484
* Wrapper routine to for handling exceptions.
485
*/
486
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
487
unsigned long val, void *data)
488
{
489
struct kprobe *p = NULL;
490
struct die_args *args = (struct die_args *)data;
491
int ret = NOTIFY_DONE;
492
kprobe_opcode_t *addr = NULL;
493
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
494
495
addr = (kprobe_opcode_t *) (args->regs->pc);
496
if (val == DIE_TRAP) {
497
if (!kprobe_running()) {
498
if (kprobe_handler(args->regs)) {
499
ret = NOTIFY_STOP;
500
} else {
501
/* Not a kprobe trap */
502
ret = NOTIFY_DONE;
503
}
504
} else {
505
p = get_kprobe(addr);
506
if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
507
(kcb->kprobe_status == KPROBE_REENTER)) {
508
if (post_kprobe_handler(args->regs))
509
ret = NOTIFY_STOP;
510
} else {
511
if (kprobe_handler(args->regs)) {
512
ret = NOTIFY_STOP;
513
} else {
514
p = __get_cpu_var(current_kprobe);
515
if (p->break_handler &&
516
p->break_handler(p, args->regs))
517
ret = NOTIFY_STOP;
518
}
519
}
520
}
521
}
522
523
return ret;
524
}
525
526
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
527
{
528
struct jprobe *jp = container_of(p, struct jprobe, kp);
529
unsigned long addr;
530
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
531
532
kcb->jprobe_saved_regs = *regs;
533
kcb->jprobe_saved_r15 = regs->regs[15];
534
addr = kcb->jprobe_saved_r15;
535
536
/*
537
* TBD: As Linus pointed out, gcc assumes that the callee
538
* owns the argument space and could overwrite it, e.g.
539
* tailcall optimization. So, to be absolutely safe
540
* we also save and restore enough stack bytes to cover
541
* the argument area.
542
*/
543
memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
544
MIN_STACK_SIZE(addr));
545
546
regs->pc = (unsigned long)(jp->entry);
547
548
return 1;
549
}
550
551
void __kprobes jprobe_return(void)
552
{
553
asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t");
554
}
555
556
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
557
{
558
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
559
unsigned long stack_addr = kcb->jprobe_saved_r15;
560
u8 *addr = (u8 *)regs->pc;
561
562
if ((addr >= (u8 *)jprobe_return) &&
563
(addr <= (u8 *)jprobe_return_end)) {
564
*regs = kcb->jprobe_saved_regs;
565
566
memcpy((kprobe_opcode_t *)stack_addr, kcb->jprobes_stack,
567
MIN_STACK_SIZE(stack_addr));
568
569
kcb->kprobe_status = KPROBE_HIT_SS;
570
preempt_enable_no_resched();
571
return 1;
572
}
573
574
return 0;
575
}
576
577
static struct kprobe trampoline_p = {
578
.addr = (kprobe_opcode_t *)&kretprobe_trampoline,
579
.pre_handler = trampoline_probe_handler
580
};
581
582
int __init arch_init_kprobes(void)
583
{
584
return register_kprobe(&trampoline_p);
585
}
586
587