Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sh/kernel/perf_event.c
10817 views
1
/*
2
* Performance event support framework for SuperH hardware counters.
3
*
4
* Copyright (C) 2009 Paul Mundt
5
*
6
* Heavily based on the x86 and PowerPC implementations.
7
*
8
* x86:
9
* Copyright (C) 2008 Thomas Gleixner <[email protected]>
10
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11
* Copyright (C) 2009 Jaswinder Singh Rajput
12
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <[email protected]>
14
* Copyright (C) 2009 Intel Corporation, <[email protected]>
15
*
16
* ppc:
17
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
18
*
19
* This file is subject to the terms and conditions of the GNU General Public
20
* License. See the file "COPYING" in the main directory of this archive
21
* for more details.
22
*/
23
#include <linux/kernel.h>
24
#include <linux/init.h>
25
#include <linux/io.h>
26
#include <linux/irq.h>
27
#include <linux/perf_event.h>
28
#include <asm/processor.h>
29
30
struct cpu_hw_events {
31
struct perf_event *events[MAX_HWEVENTS];
32
unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
33
unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
34
};
35
36
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
37
38
static struct sh_pmu *sh_pmu __read_mostly;
39
40
/* Number of perf_events counting hardware events */
41
static atomic_t num_events;
42
/* Used to avoid races in calling reserve/release_pmc_hardware */
43
static DEFINE_MUTEX(pmc_reserve_mutex);
44
45
/*
46
* Stub these out for now, do something more profound later.
47
*/
48
int reserve_pmc_hardware(void)
49
{
50
return 0;
51
}
52
53
void release_pmc_hardware(void)
54
{
55
}
56
57
static inline int sh_pmu_initialized(void)
58
{
59
return !!sh_pmu;
60
}
61
62
const char *perf_pmu_name(void)
63
{
64
if (!sh_pmu)
65
return NULL;
66
67
return sh_pmu->name;
68
}
69
EXPORT_SYMBOL_GPL(perf_pmu_name);
70
71
int perf_num_counters(void)
72
{
73
if (!sh_pmu)
74
return 0;
75
76
return sh_pmu->num_events;
77
}
78
EXPORT_SYMBOL_GPL(perf_num_counters);
79
80
/*
81
* Release the PMU if this is the last perf_event.
82
*/
83
static void hw_perf_event_destroy(struct perf_event *event)
84
{
85
if (!atomic_add_unless(&num_events, -1, 1)) {
86
mutex_lock(&pmc_reserve_mutex);
87
if (atomic_dec_return(&num_events) == 0)
88
release_pmc_hardware();
89
mutex_unlock(&pmc_reserve_mutex);
90
}
91
}
92
93
static int hw_perf_cache_event(int config, int *evp)
94
{
95
unsigned long type, op, result;
96
int ev;
97
98
if (!sh_pmu->cache_events)
99
return -EINVAL;
100
101
/* unpack config */
102
type = config & 0xff;
103
op = (config >> 8) & 0xff;
104
result = (config >> 16) & 0xff;
105
106
if (type >= PERF_COUNT_HW_CACHE_MAX ||
107
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
108
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
109
return -EINVAL;
110
111
ev = (*sh_pmu->cache_events)[type][op][result];
112
if (ev == 0)
113
return -EOPNOTSUPP;
114
if (ev == -1)
115
return -EINVAL;
116
*evp = ev;
117
return 0;
118
}
119
120
static int __hw_perf_event_init(struct perf_event *event)
121
{
122
struct perf_event_attr *attr = &event->attr;
123
struct hw_perf_event *hwc = &event->hw;
124
int config = -1;
125
int err;
126
127
if (!sh_pmu_initialized())
128
return -ENODEV;
129
130
/*
131
* All of the on-chip counters are "limited", in that they have
132
* no interrupts, and are therefore unable to do sampling without
133
* further work and timer assistance.
134
*/
135
if (hwc->sample_period)
136
return -EINVAL;
137
138
/*
139
* See if we need to reserve the counter.
140
*
141
* If no events are currently in use, then we have to take a
142
* mutex to ensure that we don't race with another task doing
143
* reserve_pmc_hardware or release_pmc_hardware.
144
*/
145
err = 0;
146
if (!atomic_inc_not_zero(&num_events)) {
147
mutex_lock(&pmc_reserve_mutex);
148
if (atomic_read(&num_events) == 0 &&
149
reserve_pmc_hardware())
150
err = -EBUSY;
151
else
152
atomic_inc(&num_events);
153
mutex_unlock(&pmc_reserve_mutex);
154
}
155
156
if (err)
157
return err;
158
159
event->destroy = hw_perf_event_destroy;
160
161
switch (attr->type) {
162
case PERF_TYPE_RAW:
163
config = attr->config & sh_pmu->raw_event_mask;
164
break;
165
case PERF_TYPE_HW_CACHE:
166
err = hw_perf_cache_event(attr->config, &config);
167
if (err)
168
return err;
169
break;
170
case PERF_TYPE_HARDWARE:
171
if (attr->config >= sh_pmu->max_events)
172
return -EINVAL;
173
174
config = sh_pmu->event_map(attr->config);
175
break;
176
}
177
178
if (config == -1)
179
return -EINVAL;
180
181
hwc->config |= config;
182
183
return 0;
184
}
185
186
static void sh_perf_event_update(struct perf_event *event,
187
struct hw_perf_event *hwc, int idx)
188
{
189
u64 prev_raw_count, new_raw_count;
190
s64 delta;
191
int shift = 0;
192
193
/*
194
* Depending on the counter configuration, they may or may not
195
* be chained, in which case the previous counter value can be
196
* updated underneath us if the lower-half overflows.
197
*
198
* Our tactic to handle this is to first atomically read and
199
* exchange a new raw count - then add that new-prev delta
200
* count to the generic counter atomically.
201
*
202
* As there is no interrupt associated with the overflow events,
203
* this is the simplest approach for maintaining consistency.
204
*/
205
again:
206
prev_raw_count = local64_read(&hwc->prev_count);
207
new_raw_count = sh_pmu->read(idx);
208
209
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
210
new_raw_count) != prev_raw_count)
211
goto again;
212
213
/*
214
* Now we have the new raw value and have updated the prev
215
* timestamp already. We can now calculate the elapsed delta
216
* (counter-)time and add that to the generic counter.
217
*
218
* Careful, not all hw sign-extends above the physical width
219
* of the count.
220
*/
221
delta = (new_raw_count << shift) - (prev_raw_count << shift);
222
delta >>= shift;
223
224
local64_add(delta, &event->count);
225
}
226
227
static void sh_pmu_stop(struct perf_event *event, int flags)
228
{
229
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
230
struct hw_perf_event *hwc = &event->hw;
231
int idx = hwc->idx;
232
233
if (!(event->hw.state & PERF_HES_STOPPED)) {
234
sh_pmu->disable(hwc, idx);
235
cpuc->events[idx] = NULL;
236
event->hw.state |= PERF_HES_STOPPED;
237
}
238
239
if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
240
sh_perf_event_update(event, &event->hw, idx);
241
event->hw.state |= PERF_HES_UPTODATE;
242
}
243
}
244
245
static void sh_pmu_start(struct perf_event *event, int flags)
246
{
247
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
248
struct hw_perf_event *hwc = &event->hw;
249
int idx = hwc->idx;
250
251
if (WARN_ON_ONCE(idx == -1))
252
return;
253
254
if (flags & PERF_EF_RELOAD)
255
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
256
257
cpuc->events[idx] = event;
258
event->hw.state = 0;
259
sh_pmu->enable(hwc, idx);
260
}
261
262
static void sh_pmu_del(struct perf_event *event, int flags)
263
{
264
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
265
266
sh_pmu_stop(event, PERF_EF_UPDATE);
267
__clear_bit(event->hw.idx, cpuc->used_mask);
268
269
perf_event_update_userpage(event);
270
}
271
272
static int sh_pmu_add(struct perf_event *event, int flags)
273
{
274
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
275
struct hw_perf_event *hwc = &event->hw;
276
int idx = hwc->idx;
277
int ret = -EAGAIN;
278
279
perf_pmu_disable(event->pmu);
280
281
if (__test_and_set_bit(idx, cpuc->used_mask)) {
282
idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
283
if (idx == sh_pmu->num_events)
284
goto out;
285
286
__set_bit(idx, cpuc->used_mask);
287
hwc->idx = idx;
288
}
289
290
sh_pmu->disable(hwc, idx);
291
292
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
293
if (flags & PERF_EF_START)
294
sh_pmu_start(event, PERF_EF_RELOAD);
295
296
perf_event_update_userpage(event);
297
ret = 0;
298
out:
299
perf_pmu_enable(event->pmu);
300
return ret;
301
}
302
303
static void sh_pmu_read(struct perf_event *event)
304
{
305
sh_perf_event_update(event, &event->hw, event->hw.idx);
306
}
307
308
static int sh_pmu_event_init(struct perf_event *event)
309
{
310
int err;
311
312
switch (event->attr.type) {
313
case PERF_TYPE_RAW:
314
case PERF_TYPE_HW_CACHE:
315
case PERF_TYPE_HARDWARE:
316
err = __hw_perf_event_init(event);
317
break;
318
319
default:
320
return -ENOENT;
321
}
322
323
if (unlikely(err)) {
324
if (event->destroy)
325
event->destroy(event);
326
}
327
328
return err;
329
}
330
331
static void sh_pmu_enable(struct pmu *pmu)
332
{
333
if (!sh_pmu_initialized())
334
return;
335
336
sh_pmu->enable_all();
337
}
338
339
static void sh_pmu_disable(struct pmu *pmu)
340
{
341
if (!sh_pmu_initialized())
342
return;
343
344
sh_pmu->disable_all();
345
}
346
347
static struct pmu pmu = {
348
.pmu_enable = sh_pmu_enable,
349
.pmu_disable = sh_pmu_disable,
350
.event_init = sh_pmu_event_init,
351
.add = sh_pmu_add,
352
.del = sh_pmu_del,
353
.start = sh_pmu_start,
354
.stop = sh_pmu_stop,
355
.read = sh_pmu_read,
356
};
357
358
static void sh_pmu_setup(int cpu)
359
{
360
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
361
362
memset(cpuhw, 0, sizeof(struct cpu_hw_events));
363
}
364
365
static int __cpuinit
366
sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
367
{
368
unsigned int cpu = (long)hcpu;
369
370
switch (action & ~CPU_TASKS_FROZEN) {
371
case CPU_UP_PREPARE:
372
sh_pmu_setup(cpu);
373
break;
374
375
default:
376
break;
377
}
378
379
return NOTIFY_OK;
380
}
381
382
int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
383
{
384
if (sh_pmu)
385
return -EBUSY;
386
sh_pmu = _pmu;
387
388
pr_info("Performance Events: %s support registered\n", _pmu->name);
389
390
WARN_ON(_pmu->num_events > MAX_HWEVENTS);
391
392
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
393
perf_cpu_notifier(sh_pmu_notifier);
394
return 0;
395
}
396
397