Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sh/kernel/process_64.c
10817 views
1
/*
2
* arch/sh/kernel/process_64.c
3
*
4
* This file handles the architecture-dependent parts of process handling..
5
*
6
* Copyright (C) 2000, 2001 Paolo Alberelli
7
* Copyright (C) 2003 - 2007 Paul Mundt
8
* Copyright (C) 2003, 2004 Richard Curnow
9
*
10
* Started from SH3/4 version:
11
* Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
12
*
13
* In turn started from i386 version:
14
* Copyright (C) 1995 Linus Torvalds
15
*
16
* This file is subject to the terms and conditions of the GNU General Public
17
* License. See the file "COPYING" in the main directory of this archive
18
* for more details.
19
*/
20
#include <linux/mm.h>
21
#include <linux/fs.h>
22
#include <linux/ptrace.h>
23
#include <linux/reboot.h>
24
#include <linux/slab.h>
25
#include <linux/init.h>
26
#include <linux/module.h>
27
#include <linux/io.h>
28
#include <asm/syscalls.h>
29
#include <asm/uaccess.h>
30
#include <asm/pgtable.h>
31
#include <asm/mmu_context.h>
32
#include <asm/fpu.h>
33
34
struct task_struct *last_task_used_math = NULL;
35
36
void show_regs(struct pt_regs *regs)
37
{
38
unsigned long long ah, al, bh, bl, ch, cl;
39
40
printk("\n");
41
42
ah = (regs->pc) >> 32;
43
al = (regs->pc) & 0xffffffff;
44
bh = (regs->regs[18]) >> 32;
45
bl = (regs->regs[18]) & 0xffffffff;
46
ch = (regs->regs[15]) >> 32;
47
cl = (regs->regs[15]) & 0xffffffff;
48
printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
49
ah, al, bh, bl, ch, cl);
50
51
ah = (regs->sr) >> 32;
52
al = (regs->sr) & 0xffffffff;
53
asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
54
asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
55
bh = (bh) >> 32;
56
bl = (bl) & 0xffffffff;
57
asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
58
asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
59
ch = (ch) >> 32;
60
cl = (cl) & 0xffffffff;
61
printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
62
ah, al, bh, bl, ch, cl);
63
64
ah = (regs->regs[0]) >> 32;
65
al = (regs->regs[0]) & 0xffffffff;
66
bh = (regs->regs[1]) >> 32;
67
bl = (regs->regs[1]) & 0xffffffff;
68
ch = (regs->regs[2]) >> 32;
69
cl = (regs->regs[2]) & 0xffffffff;
70
printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
71
ah, al, bh, bl, ch, cl);
72
73
ah = (regs->regs[3]) >> 32;
74
al = (regs->regs[3]) & 0xffffffff;
75
bh = (regs->regs[4]) >> 32;
76
bl = (regs->regs[4]) & 0xffffffff;
77
ch = (regs->regs[5]) >> 32;
78
cl = (regs->regs[5]) & 0xffffffff;
79
printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
80
ah, al, bh, bl, ch, cl);
81
82
ah = (regs->regs[6]) >> 32;
83
al = (regs->regs[6]) & 0xffffffff;
84
bh = (regs->regs[7]) >> 32;
85
bl = (regs->regs[7]) & 0xffffffff;
86
ch = (regs->regs[8]) >> 32;
87
cl = (regs->regs[8]) & 0xffffffff;
88
printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
89
ah, al, bh, bl, ch, cl);
90
91
ah = (regs->regs[9]) >> 32;
92
al = (regs->regs[9]) & 0xffffffff;
93
bh = (regs->regs[10]) >> 32;
94
bl = (regs->regs[10]) & 0xffffffff;
95
ch = (regs->regs[11]) >> 32;
96
cl = (regs->regs[11]) & 0xffffffff;
97
printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
98
ah, al, bh, bl, ch, cl);
99
100
ah = (regs->regs[12]) >> 32;
101
al = (regs->regs[12]) & 0xffffffff;
102
bh = (regs->regs[13]) >> 32;
103
bl = (regs->regs[13]) & 0xffffffff;
104
ch = (regs->regs[14]) >> 32;
105
cl = (regs->regs[14]) & 0xffffffff;
106
printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
107
ah, al, bh, bl, ch, cl);
108
109
ah = (regs->regs[16]) >> 32;
110
al = (regs->regs[16]) & 0xffffffff;
111
bh = (regs->regs[17]) >> 32;
112
bl = (regs->regs[17]) & 0xffffffff;
113
ch = (regs->regs[19]) >> 32;
114
cl = (regs->regs[19]) & 0xffffffff;
115
printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
116
ah, al, bh, bl, ch, cl);
117
118
ah = (regs->regs[20]) >> 32;
119
al = (regs->regs[20]) & 0xffffffff;
120
bh = (regs->regs[21]) >> 32;
121
bl = (regs->regs[21]) & 0xffffffff;
122
ch = (regs->regs[22]) >> 32;
123
cl = (regs->regs[22]) & 0xffffffff;
124
printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
125
ah, al, bh, bl, ch, cl);
126
127
ah = (regs->regs[23]) >> 32;
128
al = (regs->regs[23]) & 0xffffffff;
129
bh = (regs->regs[24]) >> 32;
130
bl = (regs->regs[24]) & 0xffffffff;
131
ch = (regs->regs[25]) >> 32;
132
cl = (regs->regs[25]) & 0xffffffff;
133
printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
134
ah, al, bh, bl, ch, cl);
135
136
ah = (regs->regs[26]) >> 32;
137
al = (regs->regs[26]) & 0xffffffff;
138
bh = (regs->regs[27]) >> 32;
139
bl = (regs->regs[27]) & 0xffffffff;
140
ch = (regs->regs[28]) >> 32;
141
cl = (regs->regs[28]) & 0xffffffff;
142
printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
143
ah, al, bh, bl, ch, cl);
144
145
ah = (regs->regs[29]) >> 32;
146
al = (regs->regs[29]) & 0xffffffff;
147
bh = (regs->regs[30]) >> 32;
148
bl = (regs->regs[30]) & 0xffffffff;
149
ch = (regs->regs[31]) >> 32;
150
cl = (regs->regs[31]) & 0xffffffff;
151
printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
152
ah, al, bh, bl, ch, cl);
153
154
ah = (regs->regs[32]) >> 32;
155
al = (regs->regs[32]) & 0xffffffff;
156
bh = (regs->regs[33]) >> 32;
157
bl = (regs->regs[33]) & 0xffffffff;
158
ch = (regs->regs[34]) >> 32;
159
cl = (regs->regs[34]) & 0xffffffff;
160
printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
161
ah, al, bh, bl, ch, cl);
162
163
ah = (regs->regs[35]) >> 32;
164
al = (regs->regs[35]) & 0xffffffff;
165
bh = (regs->regs[36]) >> 32;
166
bl = (regs->regs[36]) & 0xffffffff;
167
ch = (regs->regs[37]) >> 32;
168
cl = (regs->regs[37]) & 0xffffffff;
169
printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
170
ah, al, bh, bl, ch, cl);
171
172
ah = (regs->regs[38]) >> 32;
173
al = (regs->regs[38]) & 0xffffffff;
174
bh = (regs->regs[39]) >> 32;
175
bl = (regs->regs[39]) & 0xffffffff;
176
ch = (regs->regs[40]) >> 32;
177
cl = (regs->regs[40]) & 0xffffffff;
178
printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
179
ah, al, bh, bl, ch, cl);
180
181
ah = (regs->regs[41]) >> 32;
182
al = (regs->regs[41]) & 0xffffffff;
183
bh = (regs->regs[42]) >> 32;
184
bl = (regs->regs[42]) & 0xffffffff;
185
ch = (regs->regs[43]) >> 32;
186
cl = (regs->regs[43]) & 0xffffffff;
187
printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
188
ah, al, bh, bl, ch, cl);
189
190
ah = (regs->regs[44]) >> 32;
191
al = (regs->regs[44]) & 0xffffffff;
192
bh = (regs->regs[45]) >> 32;
193
bl = (regs->regs[45]) & 0xffffffff;
194
ch = (regs->regs[46]) >> 32;
195
cl = (regs->regs[46]) & 0xffffffff;
196
printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
197
ah, al, bh, bl, ch, cl);
198
199
ah = (regs->regs[47]) >> 32;
200
al = (regs->regs[47]) & 0xffffffff;
201
bh = (regs->regs[48]) >> 32;
202
bl = (regs->regs[48]) & 0xffffffff;
203
ch = (regs->regs[49]) >> 32;
204
cl = (regs->regs[49]) & 0xffffffff;
205
printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
206
ah, al, bh, bl, ch, cl);
207
208
ah = (regs->regs[50]) >> 32;
209
al = (regs->regs[50]) & 0xffffffff;
210
bh = (regs->regs[51]) >> 32;
211
bl = (regs->regs[51]) & 0xffffffff;
212
ch = (regs->regs[52]) >> 32;
213
cl = (regs->regs[52]) & 0xffffffff;
214
printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
215
ah, al, bh, bl, ch, cl);
216
217
ah = (regs->regs[53]) >> 32;
218
al = (regs->regs[53]) & 0xffffffff;
219
bh = (regs->regs[54]) >> 32;
220
bl = (regs->regs[54]) & 0xffffffff;
221
ch = (regs->regs[55]) >> 32;
222
cl = (regs->regs[55]) & 0xffffffff;
223
printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
224
ah, al, bh, bl, ch, cl);
225
226
ah = (regs->regs[56]) >> 32;
227
al = (regs->regs[56]) & 0xffffffff;
228
bh = (regs->regs[57]) >> 32;
229
bl = (regs->regs[57]) & 0xffffffff;
230
ch = (regs->regs[58]) >> 32;
231
cl = (regs->regs[58]) & 0xffffffff;
232
printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
233
ah, al, bh, bl, ch, cl);
234
235
ah = (regs->regs[59]) >> 32;
236
al = (regs->regs[59]) & 0xffffffff;
237
bh = (regs->regs[60]) >> 32;
238
bl = (regs->regs[60]) & 0xffffffff;
239
ch = (regs->regs[61]) >> 32;
240
cl = (regs->regs[61]) & 0xffffffff;
241
printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
242
ah, al, bh, bl, ch, cl);
243
244
ah = (regs->regs[62]) >> 32;
245
al = (regs->regs[62]) & 0xffffffff;
246
bh = (regs->tregs[0]) >> 32;
247
bl = (regs->tregs[0]) & 0xffffffff;
248
ch = (regs->tregs[1]) >> 32;
249
cl = (regs->tregs[1]) & 0xffffffff;
250
printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
251
ah, al, bh, bl, ch, cl);
252
253
ah = (regs->tregs[2]) >> 32;
254
al = (regs->tregs[2]) & 0xffffffff;
255
bh = (regs->tregs[3]) >> 32;
256
bl = (regs->tregs[3]) & 0xffffffff;
257
ch = (regs->tregs[4]) >> 32;
258
cl = (regs->tregs[4]) & 0xffffffff;
259
printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
260
ah, al, bh, bl, ch, cl);
261
262
ah = (regs->tregs[5]) >> 32;
263
al = (regs->tregs[5]) & 0xffffffff;
264
bh = (regs->tregs[6]) >> 32;
265
bl = (regs->tregs[6]) & 0xffffffff;
266
ch = (regs->tregs[7]) >> 32;
267
cl = (regs->tregs[7]) & 0xffffffff;
268
printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
269
ah, al, bh, bl, ch, cl);
270
271
/*
272
* If we're in kernel mode, dump the stack too..
273
*/
274
if (!user_mode(regs)) {
275
void show_stack(struct task_struct *tsk, unsigned long *sp);
276
unsigned long sp = regs->regs[15] & 0xffffffff;
277
struct task_struct *tsk = get_current();
278
279
tsk->thread.kregs = regs;
280
281
show_stack(tsk, (unsigned long *)sp);
282
}
283
}
284
285
/*
286
* Create a kernel thread
287
*/
288
ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
289
{
290
do_exit(fn(arg));
291
}
292
293
/*
294
* This is the mechanism for creating a new kernel thread.
295
*
296
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
297
* who haven't done an "execve()") should use this: it will work within
298
* a system call from a "real" process, but the process memory space will
299
* not be freed until both the parent and the child have exited.
300
*/
301
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
302
{
303
struct pt_regs regs;
304
305
memset(&regs, 0, sizeof(regs));
306
regs.regs[2] = (unsigned long)arg;
307
regs.regs[3] = (unsigned long)fn;
308
309
regs.pc = (unsigned long)kernel_thread_helper;
310
regs.sr = (1 << 30);
311
312
/* Ok, create the new process.. */
313
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
314
&regs, 0, NULL, NULL);
315
}
316
EXPORT_SYMBOL(kernel_thread);
317
318
/*
319
* Free current thread data structures etc..
320
*/
321
void exit_thread(void)
322
{
323
/*
324
* See arch/sparc/kernel/process.c for the precedent for doing
325
* this -- RPC.
326
*
327
* The SH-5 FPU save/restore approach relies on
328
* last_task_used_math pointing to a live task_struct. When
329
* another task tries to use the FPU for the 1st time, the FPUDIS
330
* trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the
331
* existing FPU state to the FP regs field within
332
* last_task_used_math before re-loading the new task's FPU state
333
* (or initialising it if the FPU has been used before). So if
334
* last_task_used_math is stale, and its page has already been
335
* re-allocated for another use, the consequences are rather
336
* grim. Unless we null it here, there is no other path through
337
* which it would get safely nulled.
338
*/
339
#ifdef CONFIG_SH_FPU
340
if (last_task_used_math == current) {
341
last_task_used_math = NULL;
342
}
343
#endif
344
}
345
346
void flush_thread(void)
347
{
348
349
/* Called by fs/exec.c (setup_new_exec) to remove traces of a
350
* previously running executable. */
351
#ifdef CONFIG_SH_FPU
352
if (last_task_used_math == current) {
353
last_task_used_math = NULL;
354
}
355
/* Force FPU state to be reinitialised after exec */
356
clear_used_math();
357
#endif
358
359
/* if we are a kernel thread, about to change to user thread,
360
* update kreg
361
*/
362
if(current->thread.kregs==&fake_swapper_regs) {
363
current->thread.kregs =
364
((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
365
current->thread.uregs = current->thread.kregs;
366
}
367
}
368
369
void release_thread(struct task_struct *dead_task)
370
{
371
/* do nothing */
372
}
373
374
/* Fill in the fpu structure for a core dump.. */
375
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
376
{
377
#ifdef CONFIG_SH_FPU
378
int fpvalid;
379
struct task_struct *tsk = current;
380
381
fpvalid = !!tsk_used_math(tsk);
382
if (fpvalid) {
383
if (current == last_task_used_math) {
384
enable_fpu();
385
save_fpu(tsk);
386
disable_fpu();
387
last_task_used_math = 0;
388
regs->sr |= SR_FD;
389
}
390
391
memcpy(fpu, &tsk->thread.xstate->hardfpu, sizeof(*fpu));
392
}
393
394
return fpvalid;
395
#else
396
return 0; /* Task didn't use the fpu at all. */
397
#endif
398
}
399
EXPORT_SYMBOL(dump_fpu);
400
401
asmlinkage void ret_from_fork(void);
402
403
int copy_thread(unsigned long clone_flags, unsigned long usp,
404
unsigned long unused,
405
struct task_struct *p, struct pt_regs *regs)
406
{
407
struct pt_regs *childregs;
408
409
#ifdef CONFIG_SH_FPU
410
if(last_task_used_math == current) {
411
enable_fpu();
412
save_fpu(current);
413
disable_fpu();
414
last_task_used_math = NULL;
415
regs->sr |= SR_FD;
416
}
417
#endif
418
/* Copy from sh version */
419
childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
420
421
*childregs = *regs;
422
423
/*
424
* Sign extend the edited stack.
425
* Note that thread.pc and thread.pc will stay
426
* 32-bit wide and context switch must take care
427
* of NEFF sign extension.
428
*/
429
if (user_mode(regs)) {
430
childregs->regs[15] = neff_sign_extend(usp);
431
p->thread.uregs = childregs;
432
} else {
433
childregs->regs[15] =
434
neff_sign_extend((unsigned long)task_stack_page(p) +
435
THREAD_SIZE);
436
}
437
438
childregs->regs[9] = 0; /* Set return value for child */
439
childregs->sr |= SR_FD; /* Invalidate FPU flag */
440
441
p->thread.sp = (unsigned long) childregs;
442
p->thread.pc = (unsigned long) ret_from_fork;
443
444
return 0;
445
}
446
447
asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
448
unsigned long r4, unsigned long r5,
449
unsigned long r6, unsigned long r7,
450
struct pt_regs *pregs)
451
{
452
return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
453
}
454
455
asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
456
unsigned long r4, unsigned long r5,
457
unsigned long r6, unsigned long r7,
458
struct pt_regs *pregs)
459
{
460
if (!newsp)
461
newsp = pregs->regs[15];
462
return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
463
}
464
465
/*
466
* This is trivial, and on the face of it looks like it
467
* could equally well be done in user mode.
468
*
469
* Not so, for quite unobvious reasons - register pressure.
470
* In user mode vfork() cannot have a stack frame, and if
471
* done by calling the "clone()" system call directly, you
472
* do not have enough call-clobbered registers to hold all
473
* the information you need.
474
*/
475
asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
476
unsigned long r4, unsigned long r5,
477
unsigned long r6, unsigned long r7,
478
struct pt_regs *pregs)
479
{
480
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
481
}
482
483
/*
484
* sys_execve() executes a new program.
485
*/
486
asmlinkage int sys_execve(const char *ufilename, char **uargv,
487
char **uenvp, unsigned long r5,
488
unsigned long r6, unsigned long r7,
489
struct pt_regs *pregs)
490
{
491
int error;
492
char *filename;
493
494
filename = getname((char __user *)ufilename);
495
error = PTR_ERR(filename);
496
if (IS_ERR(filename))
497
goto out;
498
499
error = do_execve(filename,
500
(const char __user *const __user *)uargv,
501
(const char __user *const __user *)uenvp,
502
pregs);
503
putname(filename);
504
out:
505
return error;
506
}
507
508
#ifdef CONFIG_FRAME_POINTER
509
static int in_sh64_switch_to(unsigned long pc)
510
{
511
extern char __sh64_switch_to_end;
512
/* For a sleeping task, the PC is somewhere in the middle of the function,
513
so we don't have to worry about masking the LSB off */
514
return (pc >= (unsigned long) sh64_switch_to) &&
515
(pc < (unsigned long) &__sh64_switch_to_end);
516
}
517
#endif
518
519
unsigned long get_wchan(struct task_struct *p)
520
{
521
unsigned long pc;
522
523
if (!p || p == current || p->state == TASK_RUNNING)
524
return 0;
525
526
/*
527
* The same comment as on the Alpha applies here, too ...
528
*/
529
pc = thread_saved_pc(p);
530
531
#ifdef CONFIG_FRAME_POINTER
532
if (in_sh64_switch_to(pc)) {
533
unsigned long schedule_fp;
534
unsigned long sh64_switch_to_fp;
535
unsigned long schedule_caller_pc;
536
537
sh64_switch_to_fp = (long) p->thread.sp;
538
/* r14 is saved at offset 4 in the sh64_switch_to frame */
539
schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
540
541
/* and the caller of 'schedule' is (currently!) saved at offset 24
542
in the frame of schedule (from disasm) */
543
schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
544
return schedule_caller_pc;
545
}
546
#endif
547
return pc;
548
}
549
550