Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sh/mm/cache-sh5.c
10817 views
1
/*
2
* arch/sh/mm/cache-sh5.c
3
*
4
* Copyright (C) 2000, 2001 Paolo Alberelli
5
* Copyright (C) 2002 Benedict Gaster
6
* Copyright (C) 2003 Richard Curnow
7
* Copyright (C) 2003 - 2008 Paul Mundt
8
*
9
* This file is subject to the terms and conditions of the GNU General Public
10
* License. See the file "COPYING" in the main directory of this archive
11
* for more details.
12
*/
13
#include <linux/init.h>
14
#include <linux/mman.h>
15
#include <linux/mm.h>
16
#include <asm/tlb.h>
17
#include <asm/processor.h>
18
#include <asm/cache.h>
19
#include <asm/pgalloc.h>
20
#include <asm/uaccess.h>
21
#include <asm/mmu_context.h>
22
23
extern void __weak sh4__flush_region_init(void);
24
25
/* Wired TLB entry for the D-cache */
26
static unsigned long long dtlb_cache_slot;
27
28
/*
29
* The following group of functions deal with mapping and unmapping a
30
* temporary page into a DTLB slot that has been set aside for exclusive
31
* use.
32
*/
33
static inline void
34
sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid,
35
unsigned long paddr)
36
{
37
local_irq_disable();
38
sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
39
}
40
41
static inline void sh64_teardown_dtlb_cache_slot(void)
42
{
43
sh64_teardown_tlb_slot(dtlb_cache_slot);
44
local_irq_enable();
45
}
46
47
static inline void sh64_icache_inv_all(void)
48
{
49
unsigned long long addr, flag, data;
50
unsigned long flags;
51
52
addr = ICCR0;
53
flag = ICCR0_ICI;
54
data = 0;
55
56
/* Make this a critical section for safety (probably not strictly necessary.) */
57
local_irq_save(flags);
58
59
/* Without %1 it gets unexplicably wrong */
60
__asm__ __volatile__ (
61
"getcfg %3, 0, %0\n\t"
62
"or %0, %2, %0\n\t"
63
"putcfg %3, 0, %0\n\t"
64
"synci"
65
: "=&r" (data)
66
: "0" (data), "r" (flag), "r" (addr));
67
68
local_irq_restore(flags);
69
}
70
71
static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
72
{
73
/* Invalidate range of addresses [start,end] from the I-cache, where
74
* the addresses lie in the kernel superpage. */
75
76
unsigned long long ullend, addr, aligned_start;
77
aligned_start = (unsigned long long)(signed long long)(signed long) start;
78
addr = L1_CACHE_ALIGN(aligned_start);
79
ullend = (unsigned long long) (signed long long) (signed long) end;
80
81
while (addr <= ullend) {
82
__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
83
addr += L1_CACHE_BYTES;
84
}
85
}
86
87
static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
88
{
89
/* If we get called, we know that vma->vm_flags contains VM_EXEC.
90
Also, eaddr is page-aligned. */
91
unsigned int cpu = smp_processor_id();
92
unsigned long long addr, end_addr;
93
unsigned long flags = 0;
94
unsigned long running_asid, vma_asid;
95
addr = eaddr;
96
end_addr = addr + PAGE_SIZE;
97
98
/* Check whether we can use the current ASID for the I-cache
99
invalidation. For example, if we're called via
100
access_process_vm->flush_cache_page->here, (e.g. when reading from
101
/proc), 'running_asid' will be that of the reader, not of the
102
victim.
103
104
Also, note the risk that we might get pre-empted between the ASID
105
compare and blocking IRQs, and before we regain control, the
106
pid->ASID mapping changes. However, the whole cache will get
107
invalidated when the mapping is renewed, so the worst that can
108
happen is that the loop below ends up invalidating somebody else's
109
cache entries.
110
*/
111
112
running_asid = get_asid();
113
vma_asid = cpu_asid(cpu, vma->vm_mm);
114
if (running_asid != vma_asid) {
115
local_irq_save(flags);
116
switch_and_save_asid(vma_asid);
117
}
118
while (addr < end_addr) {
119
/* Worth unrolling a little */
120
__asm__ __volatile__("icbi %0, 0" : : "r" (addr));
121
__asm__ __volatile__("icbi %0, 32" : : "r" (addr));
122
__asm__ __volatile__("icbi %0, 64" : : "r" (addr));
123
__asm__ __volatile__("icbi %0, 96" : : "r" (addr));
124
addr += 128;
125
}
126
if (running_asid != vma_asid) {
127
switch_and_save_asid(running_asid);
128
local_irq_restore(flags);
129
}
130
}
131
132
static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
133
unsigned long start, unsigned long end)
134
{
135
/* Used for invalidating big chunks of I-cache, i.e. assume the range
136
is whole pages. If 'start' or 'end' is not page aligned, the code
137
is conservative and invalidates to the ends of the enclosing pages.
138
This is functionally OK, just a performance loss. */
139
140
/* See the comments below in sh64_dcache_purge_user_range() regarding
141
the choice of algorithm. However, for the I-cache option (2) isn't
142
available because there are no physical tags so aliases can't be
143
resolved. The icbi instruction has to be used through the user
144
mapping. Because icbi is cheaper than ocbp on a cache hit, it
145
would be cheaper to use the selective code for a large range than is
146
possible with the D-cache. Just assume 64 for now as a working
147
figure.
148
*/
149
int n_pages;
150
151
if (!mm)
152
return;
153
154
n_pages = ((end - start) >> PAGE_SHIFT);
155
if (n_pages >= 64) {
156
sh64_icache_inv_all();
157
} else {
158
unsigned long aligned_start;
159
unsigned long eaddr;
160
unsigned long after_last_page_start;
161
unsigned long mm_asid, current_asid;
162
unsigned long flags = 0;
163
164
mm_asid = cpu_asid(smp_processor_id(), mm);
165
current_asid = get_asid();
166
167
if (mm_asid != current_asid) {
168
/* Switch ASID and run the invalidate loop under cli */
169
local_irq_save(flags);
170
switch_and_save_asid(mm_asid);
171
}
172
173
aligned_start = start & PAGE_MASK;
174
after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
175
176
while (aligned_start < after_last_page_start) {
177
struct vm_area_struct *vma;
178
unsigned long vma_end;
179
vma = find_vma(mm, aligned_start);
180
if (!vma || (aligned_start <= vma->vm_end)) {
181
/* Avoid getting stuck in an error condition */
182
aligned_start += PAGE_SIZE;
183
continue;
184
}
185
vma_end = vma->vm_end;
186
if (vma->vm_flags & VM_EXEC) {
187
/* Executable */
188
eaddr = aligned_start;
189
while (eaddr < vma_end) {
190
sh64_icache_inv_user_page(vma, eaddr);
191
eaddr += PAGE_SIZE;
192
}
193
}
194
aligned_start = vma->vm_end; /* Skip to start of next region */
195
}
196
197
if (mm_asid != current_asid) {
198
switch_and_save_asid(current_asid);
199
local_irq_restore(flags);
200
}
201
}
202
}
203
204
static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
205
{
206
/* The icbi instruction never raises ITLBMISS. i.e. if there's not a
207
cache hit on the virtual tag the instruction ends there, without a
208
TLB lookup. */
209
210
unsigned long long aligned_start;
211
unsigned long long ull_end;
212
unsigned long long addr;
213
214
ull_end = end;
215
216
/* Just invalidate over the range using the natural addresses. TLB
217
miss handling will be OK (TBC). Since it's for the current process,
218
either we're already in the right ASID context, or the ASIDs have
219
been recycled since we were last active in which case we might just
220
invalidate another processes I-cache entries : no worries, just a
221
performance drop for him. */
222
aligned_start = L1_CACHE_ALIGN(start);
223
addr = aligned_start;
224
while (addr < ull_end) {
225
__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
226
__asm__ __volatile__ ("nop");
227
__asm__ __volatile__ ("nop");
228
addr += L1_CACHE_BYTES;
229
}
230
}
231
232
/* Buffer used as the target of alloco instructions to purge data from cache
233
sets by natural eviction. -- RPC */
234
#define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4))
235
static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
236
237
static void inline sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
238
{
239
/* Purge all ways in a particular block of sets, specified by the base
240
set number and number of sets. Can handle wrap-around, if that's
241
needed. */
242
243
int dummy_buffer_base_set;
244
unsigned long long eaddr, eaddr0, eaddr1;
245
int j;
246
int set_offset;
247
248
dummy_buffer_base_set = ((int)&dummy_alloco_area &
249
cpu_data->dcache.entry_mask) >>
250
cpu_data->dcache.entry_shift;
251
set_offset = sets_to_purge_base - dummy_buffer_base_set;
252
253
for (j = 0; j < n_sets; j++, set_offset++) {
254
set_offset &= (cpu_data->dcache.sets - 1);
255
eaddr0 = (unsigned long long)dummy_alloco_area +
256
(set_offset << cpu_data->dcache.entry_shift);
257
258
/*
259
* Do one alloco which hits the required set per cache
260
* way. For write-back mode, this will purge the #ways
261
* resident lines. There's little point unrolling this
262
* loop because the allocos stall more if they're too
263
* close together.
264
*/
265
eaddr1 = eaddr0 + cpu_data->dcache.way_size *
266
cpu_data->dcache.ways;
267
268
for (eaddr = eaddr0; eaddr < eaddr1;
269
eaddr += cpu_data->dcache.way_size) {
270
__asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr));
271
__asm__ __volatile__ ("synco"); /* TAKum03020 */
272
}
273
274
eaddr1 = eaddr0 + cpu_data->dcache.way_size *
275
cpu_data->dcache.ways;
276
277
for (eaddr = eaddr0; eaddr < eaddr1;
278
eaddr += cpu_data->dcache.way_size) {
279
/*
280
* Load from each address. Required because
281
* alloco is a NOP if the cache is write-through.
282
*/
283
if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
284
__raw_readb((unsigned long)eaddr);
285
}
286
}
287
288
/*
289
* Don't use OCBI to invalidate the lines. That costs cycles
290
* directly. If the dummy block is just left resident, it will
291
* naturally get evicted as required.
292
*/
293
}
294
295
/*
296
* Purge the entire contents of the dcache. The most efficient way to
297
* achieve this is to use alloco instructions on a region of unused
298
* memory equal in size to the cache, thereby causing the current
299
* contents to be discarded by natural eviction. The alternative, namely
300
* reading every tag, setting up a mapping for the corresponding page and
301
* doing an OCBP for the line, would be much more expensive.
302
*/
303
static void sh64_dcache_purge_all(void)
304
{
305
306
sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
307
}
308
309
310
/* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
311
anything else in the kernel */
312
#define MAGIC_PAGE0_START 0xffffffffec000000ULL
313
314
/* Purge the physical page 'paddr' from the cache. It's known that any
315
* cache lines requiring attention have the same page colour as the the
316
* address 'eaddr'.
317
*
318
* This relies on the fact that the D-cache matches on physical tags when
319
* no virtual tag matches. So we create an alias for the original page
320
* and purge through that. (Alternatively, we could have done this by
321
* switching ASID to match the original mapping and purged through that,
322
* but that involves ASID switching cost + probably a TLBMISS + refill
323
* anyway.)
324
*/
325
static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr,
326
unsigned long eaddr)
327
{
328
unsigned long long magic_page_start;
329
unsigned long long magic_eaddr, magic_eaddr_end;
330
331
magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
332
333
/* As long as the kernel is not pre-emptible, this doesn't need to be
334
under cli/sti. */
335
sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
336
337
magic_eaddr = magic_page_start;
338
magic_eaddr_end = magic_eaddr + PAGE_SIZE;
339
340
while (magic_eaddr < magic_eaddr_end) {
341
/* Little point in unrolling this loop - the OCBPs are blocking
342
and won't go any quicker (i.e. the loop overhead is parallel
343
to part of the OCBP execution.) */
344
__asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
345
magic_eaddr += L1_CACHE_BYTES;
346
}
347
348
sh64_teardown_dtlb_cache_slot();
349
}
350
351
/*
352
* Purge a page given its physical start address, by creating a temporary
353
* 1 page mapping and purging across that. Even if we know the virtual
354
* address (& vma or mm) of the page, the method here is more elegant
355
* because it avoids issues of coping with page faults on the purge
356
* instructions (i.e. no special-case code required in the critical path
357
* in the TLB miss handling).
358
*/
359
static void sh64_dcache_purge_phy_page(unsigned long paddr)
360
{
361
unsigned long long eaddr_start, eaddr, eaddr_end;
362
int i;
363
364
/* As long as the kernel is not pre-emptible, this doesn't need to be
365
under cli/sti. */
366
eaddr_start = MAGIC_PAGE0_START;
367
for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
368
sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
369
370
eaddr = eaddr_start;
371
eaddr_end = eaddr + PAGE_SIZE;
372
while (eaddr < eaddr_end) {
373
__asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
374
eaddr += L1_CACHE_BYTES;
375
}
376
377
sh64_teardown_dtlb_cache_slot();
378
eaddr_start += PAGE_SIZE;
379
}
380
}
381
382
static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
383
unsigned long addr, unsigned long end)
384
{
385
pgd_t *pgd;
386
pud_t *pud;
387
pmd_t *pmd;
388
pte_t *pte;
389
pte_t entry;
390
spinlock_t *ptl;
391
unsigned long paddr;
392
393
if (!mm)
394
return; /* No way to find physical address of page */
395
396
pgd = pgd_offset(mm, addr);
397
if (pgd_bad(*pgd))
398
return;
399
400
pud = pud_offset(pgd, addr);
401
if (pud_none(*pud) || pud_bad(*pud))
402
return;
403
404
pmd = pmd_offset(pud, addr);
405
if (pmd_none(*pmd) || pmd_bad(*pmd))
406
return;
407
408
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
409
do {
410
entry = *pte;
411
if (pte_none(entry) || !pte_present(entry))
412
continue;
413
paddr = pte_val(entry) & PAGE_MASK;
414
sh64_dcache_purge_coloured_phy_page(paddr, addr);
415
} while (pte++, addr += PAGE_SIZE, addr != end);
416
pte_unmap_unlock(pte - 1, ptl);
417
}
418
419
/*
420
* There are at least 5 choices for the implementation of this, with
421
* pros (+), cons(-), comments(*):
422
*
423
* 1. ocbp each line in the range through the original user's ASID
424
* + no lines spuriously evicted
425
* - tlbmiss handling (must either handle faults on demand => extra
426
* special-case code in tlbmiss critical path), or map the page in
427
* advance (=> flush_tlb_range in advance to avoid multiple hits)
428
* - ASID switching
429
* - expensive for large ranges
430
*
431
* 2. temporarily map each page in the range to a special effective
432
* address and ocbp through the temporary mapping; relies on the
433
* fact that SH-5 OCB* always do TLB lookup and match on ptags (they
434
* never look at the etags)
435
* + no spurious evictions
436
* - expensive for large ranges
437
* * surely cheaper than (1)
438
*
439
* 3. walk all the lines in the cache, check the tags, if a match
440
* occurs create a page mapping to ocbp the line through
441
* + no spurious evictions
442
* - tag inspection overhead
443
* - (especially for small ranges)
444
* - potential cost of setting up/tearing down page mapping for
445
* every line that matches the range
446
* * cost partly independent of range size
447
*
448
* 4. walk all the lines in the cache, check the tags, if a match
449
* occurs use 4 * alloco to purge the line (+3 other probably
450
* innocent victims) by natural eviction
451
* + no tlb mapping overheads
452
* - spurious evictions
453
* - tag inspection overhead
454
*
455
* 5. implement like flush_cache_all
456
* + no tag inspection overhead
457
* - spurious evictions
458
* - bad for small ranges
459
*
460
* (1) can be ruled out as more expensive than (2). (2) appears best
461
* for small ranges. The choice between (3), (4) and (5) for large
462
* ranges and the range size for the large/small boundary need
463
* benchmarking to determine.
464
*
465
* For now use approach (2) for small ranges and (5) for large ones.
466
*/
467
static void sh64_dcache_purge_user_range(struct mm_struct *mm,
468
unsigned long start, unsigned long end)
469
{
470
int n_pages = ((end - start) >> PAGE_SHIFT);
471
472
if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
473
sh64_dcache_purge_all();
474
} else {
475
/* Small range, covered by a single page table page */
476
start &= PAGE_MASK; /* should already be so */
477
end = PAGE_ALIGN(end); /* should already be so */
478
sh64_dcache_purge_user_pages(mm, start, end);
479
}
480
}
481
482
/*
483
* Invalidate the entire contents of both caches, after writing back to
484
* memory any dirty data from the D-cache.
485
*/
486
static void sh5_flush_cache_all(void *unused)
487
{
488
sh64_dcache_purge_all();
489
sh64_icache_inv_all();
490
}
491
492
/*
493
* Invalidate an entire user-address space from both caches, after
494
* writing back dirty data (e.g. for shared mmap etc).
495
*
496
* This could be coded selectively by inspecting all the tags then
497
* doing 4*alloco on any set containing a match (as for
498
* flush_cache_range), but fork/exit/execve (where this is called from)
499
* are expensive anyway.
500
*
501
* Have to do a purge here, despite the comments re I-cache below.
502
* There could be odd-coloured dirty data associated with the mm still
503
* in the cache - if this gets written out through natural eviction
504
* after the kernel has reused the page there will be chaos.
505
*
506
* The mm being torn down won't ever be active again, so any Icache
507
* lines tagged with its ASID won't be visible for the rest of the
508
* lifetime of this ASID cycle. Before the ASID gets reused, there
509
* will be a flush_cache_all. Hence we don't need to touch the
510
* I-cache. This is similar to the lack of action needed in
511
* flush_tlb_mm - see fault.c.
512
*/
513
static void sh5_flush_cache_mm(void *unused)
514
{
515
sh64_dcache_purge_all();
516
}
517
518
/*
519
* Invalidate (from both caches) the range [start,end) of virtual
520
* addresses from the user address space specified by mm, after writing
521
* back any dirty data.
522
*
523
* Note, 'end' is 1 byte beyond the end of the range to flush.
524
*/
525
static void sh5_flush_cache_range(void *args)
526
{
527
struct flusher_data *data = args;
528
struct vm_area_struct *vma;
529
unsigned long start, end;
530
531
vma = data->vma;
532
start = data->addr1;
533
end = data->addr2;
534
535
sh64_dcache_purge_user_range(vma->vm_mm, start, end);
536
sh64_icache_inv_user_page_range(vma->vm_mm, start, end);
537
}
538
539
/*
540
* Invalidate any entries in either cache for the vma within the user
541
* address space vma->vm_mm for the page starting at virtual address
542
* 'eaddr'. This seems to be used primarily in breaking COW. Note,
543
* the I-cache must be searched too in case the page in question is
544
* both writable and being executed from (e.g. stack trampolines.)
545
*
546
* Note, this is called with pte lock held.
547
*/
548
static void sh5_flush_cache_page(void *args)
549
{
550
struct flusher_data *data = args;
551
struct vm_area_struct *vma;
552
unsigned long eaddr, pfn;
553
554
vma = data->vma;
555
eaddr = data->addr1;
556
pfn = data->addr2;
557
558
sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
559
560
if (vma->vm_flags & VM_EXEC)
561
sh64_icache_inv_user_page(vma, eaddr);
562
}
563
564
static void sh5_flush_dcache_page(void *page)
565
{
566
sh64_dcache_purge_phy_page(page_to_phys((struct page *)page));
567
wmb();
568
}
569
570
/*
571
* Flush the range [start,end] of kernel virtual address space from
572
* the I-cache. The corresponding range must be purged from the
573
* D-cache also because the SH-5 doesn't have cache snooping between
574
* the caches. The addresses will be visible through the superpage
575
* mapping, therefore it's guaranteed that there no cache entries for
576
* the range in cache sets of the wrong colour.
577
*/
578
static void sh5_flush_icache_range(void *args)
579
{
580
struct flusher_data *data = args;
581
unsigned long start, end;
582
583
start = data->addr1;
584
end = data->addr2;
585
586
__flush_purge_region((void *)start, end);
587
wmb();
588
sh64_icache_inv_kernel_range(start, end);
589
}
590
591
/*
592
* For the address range [start,end), write back the data from the
593
* D-cache and invalidate the corresponding region of the I-cache for the
594
* current process. Used to flush signal trampolines on the stack to
595
* make them executable.
596
*/
597
static void sh5_flush_cache_sigtramp(void *vaddr)
598
{
599
unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES;
600
601
__flush_wback_region(vaddr, L1_CACHE_BYTES);
602
wmb();
603
sh64_icache_inv_current_user_range((unsigned long)vaddr, end);
604
}
605
606
void __init sh5_cache_init(void)
607
{
608
local_flush_cache_all = sh5_flush_cache_all;
609
local_flush_cache_mm = sh5_flush_cache_mm;
610
local_flush_cache_dup_mm = sh5_flush_cache_mm;
611
local_flush_cache_page = sh5_flush_cache_page;
612
local_flush_cache_range = sh5_flush_cache_range;
613
local_flush_dcache_page = sh5_flush_dcache_page;
614
local_flush_icache_range = sh5_flush_icache_range;
615
local_flush_cache_sigtramp = sh5_flush_cache_sigtramp;
616
617
/* Reserve a slot for dcache colouring in the DTLB */
618
dtlb_cache_slot = sh64_get_wired_dtlb_entry();
619
620
sh4__flush_region_init();
621
}
622
623