Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sparc/kernel/ioport.c
10820 views
1
/*
2
* ioport.c: Simple io mapping allocator.
3
*
4
* Copyright (C) 1995 David S. Miller ([email protected])
5
* Copyright (C) 1995 Miguel de Icaza ([email protected])
6
*
7
* 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
8
*
9
* 2000/01/29
10
* <rth> zait: as long as pci_alloc_consistent produces something addressable,
11
* things are ok.
12
* <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
13
* pointer into the big page mapping
14
* <rth> zait: so what?
15
* <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
16
* <zaitcev> Hmm
17
* <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
18
* So far so good.
19
* <zaitcev> Now, driver calls pci_free_consistent(with result of
20
* remap_it_my_way()).
21
* <zaitcev> How do you find the address to pass to free_pages()?
22
* <rth> zait: walk the page tables? It's only two or three level after all.
23
* <rth> zait: you have to walk them anyway to remove the mapping.
24
* <zaitcev> Hmm
25
* <zaitcev> Sounds reasonable
26
*/
27
28
#include <linux/module.h>
29
#include <linux/sched.h>
30
#include <linux/kernel.h>
31
#include <linux/errno.h>
32
#include <linux/types.h>
33
#include <linux/ioport.h>
34
#include <linux/mm.h>
35
#include <linux/slab.h>
36
#include <linux/pci.h> /* struct pci_dev */
37
#include <linux/proc_fs.h>
38
#include <linux/seq_file.h>
39
#include <linux/scatterlist.h>
40
#include <linux/of_device.h>
41
42
#include <asm/io.h>
43
#include <asm/vaddrs.h>
44
#include <asm/oplib.h>
45
#include <asm/prom.h>
46
#include <asm/page.h>
47
#include <asm/pgalloc.h>
48
#include <asm/dma.h>
49
#include <asm/iommu.h>
50
#include <asm/io-unit.h>
51
#include <asm/leon.h>
52
53
/* This function must make sure that caches and memory are coherent after DMA
54
* On LEON systems without cache snooping it flushes the entire D-CACHE.
55
*/
56
#ifndef CONFIG_SPARC_LEON
57
static inline void dma_make_coherent(unsigned long pa, unsigned long len)
58
{
59
}
60
#else
61
static inline void dma_make_coherent(unsigned long pa, unsigned long len)
62
{
63
if (!sparc_leon3_snooping_enabled())
64
leon_flush_dcache_all();
65
}
66
#endif
67
68
static struct resource *_sparc_find_resource(struct resource *r,
69
unsigned long);
70
71
static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
72
static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
73
unsigned long size, char *name);
74
static void _sparc_free_io(struct resource *res);
75
76
static void register_proc_sparc_ioport(void);
77
78
/* This points to the next to use virtual memory for DVMA mappings */
79
static struct resource _sparc_dvma = {
80
.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
81
};
82
/* This points to the start of I/O mappings, cluable from outside. */
83
/*ext*/ struct resource sparc_iomap = {
84
.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
85
};
86
87
/*
88
* Our mini-allocator...
89
* Boy this is gross! We need it because we must map I/O for
90
* timers and interrupt controller before the kmalloc is available.
91
*/
92
93
#define XNMLN 15
94
#define XNRES 10 /* SS-10 uses 8 */
95
96
struct xresource {
97
struct resource xres; /* Must be first */
98
int xflag; /* 1 == used */
99
char xname[XNMLN+1];
100
};
101
102
static struct xresource xresv[XNRES];
103
104
static struct xresource *xres_alloc(void) {
105
struct xresource *xrp;
106
int n;
107
108
xrp = xresv;
109
for (n = 0; n < XNRES; n++) {
110
if (xrp->xflag == 0) {
111
xrp->xflag = 1;
112
return xrp;
113
}
114
xrp++;
115
}
116
return NULL;
117
}
118
119
static void xres_free(struct xresource *xrp) {
120
xrp->xflag = 0;
121
}
122
123
/*
124
* These are typically used in PCI drivers
125
* which are trying to be cross-platform.
126
*
127
* Bus type is always zero on IIep.
128
*/
129
void __iomem *ioremap(unsigned long offset, unsigned long size)
130
{
131
char name[14];
132
133
sprintf(name, "phys_%08x", (u32)offset);
134
return _sparc_alloc_io(0, offset, size, name);
135
}
136
EXPORT_SYMBOL(ioremap);
137
138
/*
139
* Comlimentary to ioremap().
140
*/
141
void iounmap(volatile void __iomem *virtual)
142
{
143
unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
144
struct resource *res;
145
146
if ((res = _sparc_find_resource(&sparc_iomap, vaddr)) == NULL) {
147
printk("free_io/iounmap: cannot free %lx\n", vaddr);
148
return;
149
}
150
_sparc_free_io(res);
151
152
if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
153
xres_free((struct xresource *)res);
154
} else {
155
kfree(res);
156
}
157
}
158
EXPORT_SYMBOL(iounmap);
159
160
void __iomem *of_ioremap(struct resource *res, unsigned long offset,
161
unsigned long size, char *name)
162
{
163
return _sparc_alloc_io(res->flags & 0xF,
164
res->start + offset,
165
size, name);
166
}
167
EXPORT_SYMBOL(of_ioremap);
168
169
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
170
{
171
iounmap(base);
172
}
173
EXPORT_SYMBOL(of_iounmap);
174
175
/*
176
* Meat of mapping
177
*/
178
static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
179
unsigned long size, char *name)
180
{
181
static int printed_full;
182
struct xresource *xres;
183
struct resource *res;
184
char *tack;
185
int tlen;
186
void __iomem *va; /* P3 diag */
187
188
if (name == NULL) name = "???";
189
190
if ((xres = xres_alloc()) != 0) {
191
tack = xres->xname;
192
res = &xres->xres;
193
} else {
194
if (!printed_full) {
195
printk("ioremap: done with statics, switching to malloc\n");
196
printed_full = 1;
197
}
198
tlen = strlen(name);
199
tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
200
if (tack == NULL) return NULL;
201
memset(tack, 0, sizeof(struct resource));
202
res = (struct resource *) tack;
203
tack += sizeof (struct resource);
204
}
205
206
strlcpy(tack, name, XNMLN+1);
207
res->name = tack;
208
209
va = _sparc_ioremap(res, busno, phys, size);
210
/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
211
return va;
212
}
213
214
/*
215
*/
216
static void __iomem *
217
_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
218
{
219
unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
220
221
if (allocate_resource(&sparc_iomap, res,
222
(offset + sz + PAGE_SIZE-1) & PAGE_MASK,
223
sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
224
/* Usually we cannot see printks in this case. */
225
prom_printf("alloc_io_res(%s): cannot occupy\n",
226
(res->name != NULL)? res->name: "???");
227
prom_halt();
228
}
229
230
pa &= PAGE_MASK;
231
sparc_mapiorange(bus, pa, res->start, res->end - res->start + 1);
232
233
return (void __iomem *)(unsigned long)(res->start + offset);
234
}
235
236
/*
237
* Comlimentary to _sparc_ioremap().
238
*/
239
static void _sparc_free_io(struct resource *res)
240
{
241
unsigned long plen;
242
243
plen = res->end - res->start + 1;
244
BUG_ON((plen & (PAGE_SIZE-1)) != 0);
245
sparc_unmapiorange(res->start, plen);
246
release_resource(res);
247
}
248
249
#ifdef CONFIG_SBUS
250
251
void sbus_set_sbus64(struct device *dev, int x)
252
{
253
printk("sbus_set_sbus64: unsupported\n");
254
}
255
EXPORT_SYMBOL(sbus_set_sbus64);
256
257
/*
258
* Allocate a chunk of memory suitable for DMA.
259
* Typically devices use them for control blocks.
260
* CPU may access them without any explicit flushing.
261
*/
262
static void *sbus_alloc_coherent(struct device *dev, size_t len,
263
dma_addr_t *dma_addrp, gfp_t gfp)
264
{
265
struct platform_device *op = to_platform_device(dev);
266
unsigned long len_total = PAGE_ALIGN(len);
267
unsigned long va;
268
struct resource *res;
269
int order;
270
271
/* XXX why are some lengths signed, others unsigned? */
272
if (len <= 0) {
273
return NULL;
274
}
275
/* XXX So what is maxphys for us and how do drivers know it? */
276
if (len > 256*1024) { /* __get_free_pages() limit */
277
return NULL;
278
}
279
280
order = get_order(len_total);
281
if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
282
goto err_nopages;
283
284
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
285
goto err_nomem;
286
287
if (allocate_resource(&_sparc_dvma, res, len_total,
288
_sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
289
printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
290
goto err_nova;
291
}
292
293
// XXX The mmu_map_dma_area does this for us below, see comments.
294
// sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
295
/*
296
* XXX That's where sdev would be used. Currently we load
297
* all iommu tables with the same translations.
298
*/
299
if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
300
goto err_noiommu;
301
302
res->name = op->dev.of_node->name;
303
304
return (void *)(unsigned long)res->start;
305
306
err_noiommu:
307
release_resource(res);
308
err_nova:
309
kfree(res);
310
err_nomem:
311
free_pages(va, order);
312
err_nopages:
313
return NULL;
314
}
315
316
static void sbus_free_coherent(struct device *dev, size_t n, void *p,
317
dma_addr_t ba)
318
{
319
struct resource *res;
320
struct page *pgv;
321
322
if ((res = _sparc_find_resource(&_sparc_dvma,
323
(unsigned long)p)) == NULL) {
324
printk("sbus_free_consistent: cannot free %p\n", p);
325
return;
326
}
327
328
if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
329
printk("sbus_free_consistent: unaligned va %p\n", p);
330
return;
331
}
332
333
n = PAGE_ALIGN(n);
334
if ((res->end-res->start)+1 != n) {
335
printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
336
(long)((res->end-res->start)+1), n);
337
return;
338
}
339
340
release_resource(res);
341
kfree(res);
342
343
pgv = virt_to_page(p);
344
mmu_unmap_dma_area(dev, ba, n);
345
346
__free_pages(pgv, get_order(n));
347
}
348
349
/*
350
* Map a chunk of memory so that devices can see it.
351
* CPU view of this memory may be inconsistent with
352
* a device view and explicit flushing is necessary.
353
*/
354
static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
355
unsigned long offset, size_t len,
356
enum dma_data_direction dir,
357
struct dma_attrs *attrs)
358
{
359
void *va = page_address(page) + offset;
360
361
/* XXX why are some lengths signed, others unsigned? */
362
if (len <= 0) {
363
return 0;
364
}
365
/* XXX So what is maxphys for us and how do drivers know it? */
366
if (len > 256*1024) { /* __get_free_pages() limit */
367
return 0;
368
}
369
return mmu_get_scsi_one(dev, va, len);
370
}
371
372
static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
373
enum dma_data_direction dir, struct dma_attrs *attrs)
374
{
375
mmu_release_scsi_one(dev, ba, n);
376
}
377
378
static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
379
enum dma_data_direction dir, struct dma_attrs *attrs)
380
{
381
mmu_get_scsi_sgl(dev, sg, n);
382
383
/*
384
* XXX sparc64 can return a partial length here. sun4c should do this
385
* but it currently panics if it can't fulfill the request - Anton
386
*/
387
return n;
388
}
389
390
static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
391
enum dma_data_direction dir, struct dma_attrs *attrs)
392
{
393
mmu_release_scsi_sgl(dev, sg, n);
394
}
395
396
static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
397
int n, enum dma_data_direction dir)
398
{
399
BUG();
400
}
401
402
static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
403
int n, enum dma_data_direction dir)
404
{
405
BUG();
406
}
407
408
struct dma_map_ops sbus_dma_ops = {
409
.alloc_coherent = sbus_alloc_coherent,
410
.free_coherent = sbus_free_coherent,
411
.map_page = sbus_map_page,
412
.unmap_page = sbus_unmap_page,
413
.map_sg = sbus_map_sg,
414
.unmap_sg = sbus_unmap_sg,
415
.sync_sg_for_cpu = sbus_sync_sg_for_cpu,
416
.sync_sg_for_device = sbus_sync_sg_for_device,
417
};
418
419
static int __init sparc_register_ioport(void)
420
{
421
register_proc_sparc_ioport();
422
423
return 0;
424
}
425
426
arch_initcall(sparc_register_ioport);
427
428
#endif /* CONFIG_SBUS */
429
430
431
/* LEON reuses PCI DMA ops */
432
#if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON)
433
434
/* Allocate and map kernel buffer using consistent mode DMA for a device.
435
* hwdev should be valid struct pci_dev pointer for PCI devices.
436
*/
437
static void *pci32_alloc_coherent(struct device *dev, size_t len,
438
dma_addr_t *pba, gfp_t gfp)
439
{
440
unsigned long len_total = PAGE_ALIGN(len);
441
void *va;
442
struct resource *res;
443
int order;
444
445
if (len == 0) {
446
return NULL;
447
}
448
if (len > 256*1024) { /* __get_free_pages() limit */
449
return NULL;
450
}
451
452
order = get_order(len_total);
453
va = (void *) __get_free_pages(GFP_KERNEL, order);
454
if (va == NULL) {
455
printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
456
goto err_nopages;
457
}
458
459
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
460
printk("pci_alloc_consistent: no core\n");
461
goto err_nomem;
462
}
463
464
if (allocate_resource(&_sparc_dvma, res, len_total,
465
_sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
466
printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
467
goto err_nova;
468
}
469
sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
470
471
*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
472
return (void *) res->start;
473
474
err_nova:
475
kfree(res);
476
err_nomem:
477
free_pages((unsigned long)va, order);
478
err_nopages:
479
return NULL;
480
}
481
482
/* Free and unmap a consistent DMA buffer.
483
* cpu_addr is what was returned from pci_alloc_consistent,
484
* size must be the same as what as passed into pci_alloc_consistent,
485
* and likewise dma_addr must be the same as what *dma_addrp was set to.
486
*
487
* References to the memory and mappings associated with cpu_addr/dma_addr
488
* past this call are illegal.
489
*/
490
static void pci32_free_coherent(struct device *dev, size_t n, void *p,
491
dma_addr_t ba)
492
{
493
struct resource *res;
494
495
if ((res = _sparc_find_resource(&_sparc_dvma,
496
(unsigned long)p)) == NULL) {
497
printk("pci_free_consistent: cannot free %p\n", p);
498
return;
499
}
500
501
if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
502
printk("pci_free_consistent: unaligned va %p\n", p);
503
return;
504
}
505
506
n = PAGE_ALIGN(n);
507
if ((res->end-res->start)+1 != n) {
508
printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
509
(long)((res->end-res->start)+1), (long)n);
510
return;
511
}
512
513
dma_make_coherent(ba, n);
514
sparc_unmapiorange((unsigned long)p, n);
515
516
release_resource(res);
517
kfree(res);
518
free_pages((unsigned long)phys_to_virt(ba), get_order(n));
519
}
520
521
/*
522
* Same as pci_map_single, but with pages.
523
*/
524
static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
525
unsigned long offset, size_t size,
526
enum dma_data_direction dir,
527
struct dma_attrs *attrs)
528
{
529
/* IIep is write-through, not flushing. */
530
return page_to_phys(page) + offset;
531
}
532
533
static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
534
enum dma_data_direction dir, struct dma_attrs *attrs)
535
{
536
if (dir != PCI_DMA_TODEVICE)
537
dma_make_coherent(ba, PAGE_ALIGN(size));
538
}
539
540
/* Map a set of buffers described by scatterlist in streaming
541
* mode for DMA. This is the scather-gather version of the
542
* above pci_map_single interface. Here the scatter gather list
543
* elements are each tagged with the appropriate dma address
544
* and length. They are obtained via sg_dma_{address,length}(SG).
545
*
546
* NOTE: An implementation may be able to use a smaller number of
547
* DMA address/length pairs than there are SG table elements.
548
* (for example via virtual mapping capabilities)
549
* The routine returns the number of addr/length pairs actually
550
* used, at most nents.
551
*
552
* Device ownership issues as mentioned above for pci_map_single are
553
* the same here.
554
*/
555
static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
556
int nents, enum dma_data_direction dir,
557
struct dma_attrs *attrs)
558
{
559
struct scatterlist *sg;
560
int n;
561
562
/* IIep is write-through, not flushing. */
563
for_each_sg(sgl, sg, nents, n) {
564
sg->dma_address = sg_phys(sg);
565
sg->dma_length = sg->length;
566
}
567
return nents;
568
}
569
570
/* Unmap a set of streaming mode DMA translations.
571
* Again, cpu read rules concerning calls here are the same as for
572
* pci_unmap_single() above.
573
*/
574
static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
575
int nents, enum dma_data_direction dir,
576
struct dma_attrs *attrs)
577
{
578
struct scatterlist *sg;
579
int n;
580
581
if (dir != PCI_DMA_TODEVICE) {
582
for_each_sg(sgl, sg, nents, n) {
583
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
584
}
585
}
586
}
587
588
/* Make physical memory consistent for a single
589
* streaming mode DMA translation before or after a transfer.
590
*
591
* If you perform a pci_map_single() but wish to interrogate the
592
* buffer using the cpu, yet do not wish to teardown the PCI dma
593
* mapping, you must call this function before doing so. At the
594
* next point you give the PCI dma address back to the card, you
595
* must first perform a pci_dma_sync_for_device, and then the
596
* device again owns the buffer.
597
*/
598
static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
599
size_t size, enum dma_data_direction dir)
600
{
601
if (dir != PCI_DMA_TODEVICE) {
602
dma_make_coherent(ba, PAGE_ALIGN(size));
603
}
604
}
605
606
static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
607
size_t size, enum dma_data_direction dir)
608
{
609
if (dir != PCI_DMA_TODEVICE) {
610
dma_make_coherent(ba, PAGE_ALIGN(size));
611
}
612
}
613
614
/* Make physical memory consistent for a set of streaming
615
* mode DMA translations after a transfer.
616
*
617
* The same as pci_dma_sync_single_* but for a scatter-gather list,
618
* same rules and usage.
619
*/
620
static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
621
int nents, enum dma_data_direction dir)
622
{
623
struct scatterlist *sg;
624
int n;
625
626
if (dir != PCI_DMA_TODEVICE) {
627
for_each_sg(sgl, sg, nents, n) {
628
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
629
}
630
}
631
}
632
633
static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
634
int nents, enum dma_data_direction dir)
635
{
636
struct scatterlist *sg;
637
int n;
638
639
if (dir != PCI_DMA_TODEVICE) {
640
for_each_sg(sgl, sg, nents, n) {
641
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
642
}
643
}
644
}
645
646
struct dma_map_ops pci32_dma_ops = {
647
.alloc_coherent = pci32_alloc_coherent,
648
.free_coherent = pci32_free_coherent,
649
.map_page = pci32_map_page,
650
.unmap_page = pci32_unmap_page,
651
.map_sg = pci32_map_sg,
652
.unmap_sg = pci32_unmap_sg,
653
.sync_single_for_cpu = pci32_sync_single_for_cpu,
654
.sync_single_for_device = pci32_sync_single_for_device,
655
.sync_sg_for_cpu = pci32_sync_sg_for_cpu,
656
.sync_sg_for_device = pci32_sync_sg_for_device,
657
};
658
EXPORT_SYMBOL(pci32_dma_ops);
659
660
#endif /* CONFIG_PCI || CONFIG_SPARC_LEON */
661
662
#ifdef CONFIG_SPARC_LEON
663
struct dma_map_ops *dma_ops = &pci32_dma_ops;
664
#elif defined(CONFIG_SBUS)
665
struct dma_map_ops *dma_ops = &sbus_dma_ops;
666
#endif
667
668
EXPORT_SYMBOL(dma_ops);
669
670
671
/*
672
* Return whether the given PCI device DMA address mask can be
673
* supported properly. For example, if your device can only drive the
674
* low 24-bits during PCI bus mastering, then you would pass
675
* 0x00ffffff as the mask to this function.
676
*/
677
int dma_supported(struct device *dev, u64 mask)
678
{
679
#ifdef CONFIG_PCI
680
if (dev->bus == &pci_bus_type)
681
return 1;
682
#endif
683
return 0;
684
}
685
EXPORT_SYMBOL(dma_supported);
686
687
#ifdef CONFIG_PROC_FS
688
689
static int sparc_io_proc_show(struct seq_file *m, void *v)
690
{
691
struct resource *root = m->private, *r;
692
const char *nm;
693
694
for (r = root->child; r != NULL; r = r->sibling) {
695
if ((nm = r->name) == 0) nm = "???";
696
seq_printf(m, "%016llx-%016llx: %s\n",
697
(unsigned long long)r->start,
698
(unsigned long long)r->end, nm);
699
}
700
701
return 0;
702
}
703
704
static int sparc_io_proc_open(struct inode *inode, struct file *file)
705
{
706
return single_open(file, sparc_io_proc_show, PDE(inode)->data);
707
}
708
709
static const struct file_operations sparc_io_proc_fops = {
710
.owner = THIS_MODULE,
711
.open = sparc_io_proc_open,
712
.read = seq_read,
713
.llseek = seq_lseek,
714
.release = single_release,
715
};
716
#endif /* CONFIG_PROC_FS */
717
718
/*
719
* This is a version of find_resource and it belongs to kernel/resource.c.
720
* Until we have agreement with Linus and Martin, it lingers here.
721
*
722
* XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
723
* This probably warrants some sort of hashing.
724
*/
725
static struct resource *_sparc_find_resource(struct resource *root,
726
unsigned long hit)
727
{
728
struct resource *tmp;
729
730
for (tmp = root->child; tmp != 0; tmp = tmp->sibling) {
731
if (tmp->start <= hit && tmp->end >= hit)
732
return tmp;
733
}
734
return NULL;
735
}
736
737
static void register_proc_sparc_ioport(void)
738
{
739
#ifdef CONFIG_PROC_FS
740
proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
741
proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
742
#endif
743
}
744
745