Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sparc/kernel/irq_64.c
10818 views
1
/* irq.c: UltraSparc IRQ handling/init/registry.
2
*
3
* Copyright (C) 1997, 2007, 2008 David S. Miller ([email protected])
4
* Copyright (C) 1998 Eddie C. Dost ([email protected])
5
* Copyright (C) 1998 Jakub Jelinek ([email protected])
6
*/
7
8
#include <linux/module.h>
9
#include <linux/sched.h>
10
#include <linux/linkage.h>
11
#include <linux/ptrace.h>
12
#include <linux/errno.h>
13
#include <linux/kernel_stat.h>
14
#include <linux/signal.h>
15
#include <linux/mm.h>
16
#include <linux/interrupt.h>
17
#include <linux/slab.h>
18
#include <linux/random.h>
19
#include <linux/init.h>
20
#include <linux/delay.h>
21
#include <linux/proc_fs.h>
22
#include <linux/seq_file.h>
23
#include <linux/ftrace.h>
24
#include <linux/irq.h>
25
#include <linux/kmemleak.h>
26
27
#include <asm/ptrace.h>
28
#include <asm/processor.h>
29
#include <asm/atomic.h>
30
#include <asm/system.h>
31
#include <asm/irq.h>
32
#include <asm/io.h>
33
#include <asm/iommu.h>
34
#include <asm/upa.h>
35
#include <asm/oplib.h>
36
#include <asm/prom.h>
37
#include <asm/timer.h>
38
#include <asm/smp.h>
39
#include <asm/starfire.h>
40
#include <asm/uaccess.h>
41
#include <asm/cache.h>
42
#include <asm/cpudata.h>
43
#include <asm/auxio.h>
44
#include <asm/head.h>
45
#include <asm/hypervisor.h>
46
#include <asm/cacheflush.h>
47
48
#include "entry.h"
49
#include "cpumap.h"
50
#include "kstack.h"
51
52
#define NUM_IVECS (IMAP_INR + 1)
53
54
struct ino_bucket *ivector_table;
55
unsigned long ivector_table_pa;
56
57
/* On several sun4u processors, it is illegal to mix bypass and
58
* non-bypass accesses. Therefore we access all INO buckets
59
* using bypass accesses only.
60
*/
61
static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
62
{
63
unsigned long ret;
64
65
__asm__ __volatile__("ldxa [%1] %2, %0"
66
: "=&r" (ret)
67
: "r" (bucket_pa +
68
offsetof(struct ino_bucket,
69
__irq_chain_pa)),
70
"i" (ASI_PHYS_USE_EC));
71
72
return ret;
73
}
74
75
static void bucket_clear_chain_pa(unsigned long bucket_pa)
76
{
77
__asm__ __volatile__("stxa %%g0, [%0] %1"
78
: /* no outputs */
79
: "r" (bucket_pa +
80
offsetof(struct ino_bucket,
81
__irq_chain_pa)),
82
"i" (ASI_PHYS_USE_EC));
83
}
84
85
static unsigned int bucket_get_irq(unsigned long bucket_pa)
86
{
87
unsigned int ret;
88
89
__asm__ __volatile__("lduwa [%1] %2, %0"
90
: "=&r" (ret)
91
: "r" (bucket_pa +
92
offsetof(struct ino_bucket,
93
__irq)),
94
"i" (ASI_PHYS_USE_EC));
95
96
return ret;
97
}
98
99
static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
100
{
101
__asm__ __volatile__("stwa %0, [%1] %2"
102
: /* no outputs */
103
: "r" (irq),
104
"r" (bucket_pa +
105
offsetof(struct ino_bucket,
106
__irq)),
107
"i" (ASI_PHYS_USE_EC));
108
}
109
110
#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
111
112
static struct {
113
unsigned int dev_handle;
114
unsigned int dev_ino;
115
unsigned int in_use;
116
} irq_table[NR_IRQS];
117
static DEFINE_SPINLOCK(irq_alloc_lock);
118
119
unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
120
{
121
unsigned long flags;
122
unsigned char ent;
123
124
BUILD_BUG_ON(NR_IRQS >= 256);
125
126
spin_lock_irqsave(&irq_alloc_lock, flags);
127
128
for (ent = 1; ent < NR_IRQS; ent++) {
129
if (!irq_table[ent].in_use)
130
break;
131
}
132
if (ent >= NR_IRQS) {
133
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
134
ent = 0;
135
} else {
136
irq_table[ent].dev_handle = dev_handle;
137
irq_table[ent].dev_ino = dev_ino;
138
irq_table[ent].in_use = 1;
139
}
140
141
spin_unlock_irqrestore(&irq_alloc_lock, flags);
142
143
return ent;
144
}
145
146
#ifdef CONFIG_PCI_MSI
147
void irq_free(unsigned int irq)
148
{
149
unsigned long flags;
150
151
if (irq >= NR_IRQS)
152
return;
153
154
spin_lock_irqsave(&irq_alloc_lock, flags);
155
156
irq_table[irq].in_use = 0;
157
158
spin_unlock_irqrestore(&irq_alloc_lock, flags);
159
}
160
#endif
161
162
/*
163
* /proc/interrupts printing:
164
*/
165
int arch_show_interrupts(struct seq_file *p, int prec)
166
{
167
int j;
168
169
seq_printf(p, "NMI: ");
170
for_each_online_cpu(j)
171
seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
172
seq_printf(p, " Non-maskable interrupts\n");
173
return 0;
174
}
175
176
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
177
{
178
unsigned int tid;
179
180
if (this_is_starfire) {
181
tid = starfire_translate(imap, cpuid);
182
tid <<= IMAP_TID_SHIFT;
183
tid &= IMAP_TID_UPA;
184
} else {
185
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
186
unsigned long ver;
187
188
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
189
if ((ver >> 32UL) == __JALAPENO_ID ||
190
(ver >> 32UL) == __SERRANO_ID) {
191
tid = cpuid << IMAP_TID_SHIFT;
192
tid &= IMAP_TID_JBUS;
193
} else {
194
unsigned int a = cpuid & 0x1f;
195
unsigned int n = (cpuid >> 5) & 0x1f;
196
197
tid = ((a << IMAP_AID_SHIFT) |
198
(n << IMAP_NID_SHIFT));
199
tid &= (IMAP_AID_SAFARI |
200
IMAP_NID_SAFARI);
201
}
202
} else {
203
tid = cpuid << IMAP_TID_SHIFT;
204
tid &= IMAP_TID_UPA;
205
}
206
}
207
208
return tid;
209
}
210
211
struct irq_handler_data {
212
unsigned long iclr;
213
unsigned long imap;
214
215
void (*pre_handler)(unsigned int, void *, void *);
216
void *arg1;
217
void *arg2;
218
};
219
220
#ifdef CONFIG_SMP
221
static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
222
{
223
cpumask_t mask;
224
int cpuid;
225
226
cpumask_copy(&mask, affinity);
227
if (cpumask_equal(&mask, cpu_online_mask)) {
228
cpuid = map_to_cpu(irq);
229
} else {
230
cpumask_t tmp;
231
232
cpumask_and(&tmp, cpu_online_mask, &mask);
233
cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
234
}
235
236
return cpuid;
237
}
238
#else
239
#define irq_choose_cpu(irq, affinity) \
240
real_hard_smp_processor_id()
241
#endif
242
243
static void sun4u_irq_enable(struct irq_data *data)
244
{
245
struct irq_handler_data *handler_data = data->handler_data;
246
247
if (likely(handler_data)) {
248
unsigned long cpuid, imap, val;
249
unsigned int tid;
250
251
cpuid = irq_choose_cpu(data->irq, data->affinity);
252
imap = handler_data->imap;
253
254
tid = sun4u_compute_tid(imap, cpuid);
255
256
val = upa_readq(imap);
257
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
258
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
259
val |= tid | IMAP_VALID;
260
upa_writeq(val, imap);
261
upa_writeq(ICLR_IDLE, handler_data->iclr);
262
}
263
}
264
265
static int sun4u_set_affinity(struct irq_data *data,
266
const struct cpumask *mask, bool force)
267
{
268
struct irq_handler_data *handler_data = data->handler_data;
269
270
if (likely(handler_data)) {
271
unsigned long cpuid, imap, val;
272
unsigned int tid;
273
274
cpuid = irq_choose_cpu(data->irq, mask);
275
imap = handler_data->imap;
276
277
tid = sun4u_compute_tid(imap, cpuid);
278
279
val = upa_readq(imap);
280
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
281
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
282
val |= tid | IMAP_VALID;
283
upa_writeq(val, imap);
284
upa_writeq(ICLR_IDLE, handler_data->iclr);
285
}
286
287
return 0;
288
}
289
290
/* Don't do anything. The desc->status check for IRQ_DISABLED in
291
* handler_irq() will skip the handler call and that will leave the
292
* interrupt in the sent state. The next ->enable() call will hit the
293
* ICLR register to reset the state machine.
294
*
295
* This scheme is necessary, instead of clearing the Valid bit in the
296
* IMAP register, to handle the case of IMAP registers being shared by
297
* multiple INOs (and thus ICLR registers). Since we use a different
298
* virtual IRQ for each shared IMAP instance, the generic code thinks
299
* there is only one user so it prematurely calls ->disable() on
300
* free_irq().
301
*
302
* We have to provide an explicit ->disable() method instead of using
303
* NULL to get the default. The reason is that if the generic code
304
* sees that, it also hooks up a default ->shutdown method which
305
* invokes ->mask() which we do not want. See irq_chip_set_defaults().
306
*/
307
static void sun4u_irq_disable(struct irq_data *data)
308
{
309
}
310
311
static void sun4u_irq_eoi(struct irq_data *data)
312
{
313
struct irq_handler_data *handler_data = data->handler_data;
314
315
if (likely(handler_data))
316
upa_writeq(ICLR_IDLE, handler_data->iclr);
317
}
318
319
static void sun4v_irq_enable(struct irq_data *data)
320
{
321
unsigned int ino = irq_table[data->irq].dev_ino;
322
unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
323
int err;
324
325
err = sun4v_intr_settarget(ino, cpuid);
326
if (err != HV_EOK)
327
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
328
"err(%d)\n", ino, cpuid, err);
329
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
330
if (err != HV_EOK)
331
printk(KERN_ERR "sun4v_intr_setstate(%x): "
332
"err(%d)\n", ino, err);
333
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
334
if (err != HV_EOK)
335
printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
336
ino, err);
337
}
338
339
static int sun4v_set_affinity(struct irq_data *data,
340
const struct cpumask *mask, bool force)
341
{
342
unsigned int ino = irq_table[data->irq].dev_ino;
343
unsigned long cpuid = irq_choose_cpu(data->irq, mask);
344
int err;
345
346
err = sun4v_intr_settarget(ino, cpuid);
347
if (err != HV_EOK)
348
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
349
"err(%d)\n", ino, cpuid, err);
350
351
return 0;
352
}
353
354
static void sun4v_irq_disable(struct irq_data *data)
355
{
356
unsigned int ino = irq_table[data->irq].dev_ino;
357
int err;
358
359
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
360
if (err != HV_EOK)
361
printk(KERN_ERR "sun4v_intr_setenabled(%x): "
362
"err(%d)\n", ino, err);
363
}
364
365
static void sun4v_irq_eoi(struct irq_data *data)
366
{
367
unsigned int ino = irq_table[data->irq].dev_ino;
368
int err;
369
370
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
371
if (err != HV_EOK)
372
printk(KERN_ERR "sun4v_intr_setstate(%x): "
373
"err(%d)\n", ino, err);
374
}
375
376
static void sun4v_virq_enable(struct irq_data *data)
377
{
378
unsigned long cpuid, dev_handle, dev_ino;
379
int err;
380
381
cpuid = irq_choose_cpu(data->irq, data->affinity);
382
383
dev_handle = irq_table[data->irq].dev_handle;
384
dev_ino = irq_table[data->irq].dev_ino;
385
386
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
387
if (err != HV_EOK)
388
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
389
"err(%d)\n",
390
dev_handle, dev_ino, cpuid, err);
391
err = sun4v_vintr_set_state(dev_handle, dev_ino,
392
HV_INTR_STATE_IDLE);
393
if (err != HV_EOK)
394
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
395
"HV_INTR_STATE_IDLE): err(%d)\n",
396
dev_handle, dev_ino, err);
397
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
398
HV_INTR_ENABLED);
399
if (err != HV_EOK)
400
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
401
"HV_INTR_ENABLED): err(%d)\n",
402
dev_handle, dev_ino, err);
403
}
404
405
static int sun4v_virt_set_affinity(struct irq_data *data,
406
const struct cpumask *mask, bool force)
407
{
408
unsigned long cpuid, dev_handle, dev_ino;
409
int err;
410
411
cpuid = irq_choose_cpu(data->irq, mask);
412
413
dev_handle = irq_table[data->irq].dev_handle;
414
dev_ino = irq_table[data->irq].dev_ino;
415
416
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
417
if (err != HV_EOK)
418
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
419
"err(%d)\n",
420
dev_handle, dev_ino, cpuid, err);
421
422
return 0;
423
}
424
425
static void sun4v_virq_disable(struct irq_data *data)
426
{
427
unsigned long dev_handle, dev_ino;
428
int err;
429
430
dev_handle = irq_table[data->irq].dev_handle;
431
dev_ino = irq_table[data->irq].dev_ino;
432
433
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
434
HV_INTR_DISABLED);
435
if (err != HV_EOK)
436
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
437
"HV_INTR_DISABLED): err(%d)\n",
438
dev_handle, dev_ino, err);
439
}
440
441
static void sun4v_virq_eoi(struct irq_data *data)
442
{
443
unsigned long dev_handle, dev_ino;
444
int err;
445
446
dev_handle = irq_table[data->irq].dev_handle;
447
dev_ino = irq_table[data->irq].dev_ino;
448
449
err = sun4v_vintr_set_state(dev_handle, dev_ino,
450
HV_INTR_STATE_IDLE);
451
if (err != HV_EOK)
452
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
453
"HV_INTR_STATE_IDLE): err(%d)\n",
454
dev_handle, dev_ino, err);
455
}
456
457
static struct irq_chip sun4u_irq = {
458
.name = "sun4u",
459
.irq_enable = sun4u_irq_enable,
460
.irq_disable = sun4u_irq_disable,
461
.irq_eoi = sun4u_irq_eoi,
462
.irq_set_affinity = sun4u_set_affinity,
463
.flags = IRQCHIP_EOI_IF_HANDLED,
464
};
465
466
static struct irq_chip sun4v_irq = {
467
.name = "sun4v",
468
.irq_enable = sun4v_irq_enable,
469
.irq_disable = sun4v_irq_disable,
470
.irq_eoi = sun4v_irq_eoi,
471
.irq_set_affinity = sun4v_set_affinity,
472
.flags = IRQCHIP_EOI_IF_HANDLED,
473
};
474
475
static struct irq_chip sun4v_virq = {
476
.name = "vsun4v",
477
.irq_enable = sun4v_virq_enable,
478
.irq_disable = sun4v_virq_disable,
479
.irq_eoi = sun4v_virq_eoi,
480
.irq_set_affinity = sun4v_virt_set_affinity,
481
.flags = IRQCHIP_EOI_IF_HANDLED,
482
};
483
484
static void pre_flow_handler(struct irq_data *d)
485
{
486
struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
487
unsigned int ino = irq_table[d->irq].dev_ino;
488
489
handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
490
}
491
492
void irq_install_pre_handler(int irq,
493
void (*func)(unsigned int, void *, void *),
494
void *arg1, void *arg2)
495
{
496
struct irq_handler_data *handler_data = irq_get_handler_data(irq);
497
498
handler_data->pre_handler = func;
499
handler_data->arg1 = arg1;
500
handler_data->arg2 = arg2;
501
502
__irq_set_preflow_handler(irq, pre_flow_handler);
503
}
504
505
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
506
{
507
struct ino_bucket *bucket;
508
struct irq_handler_data *handler_data;
509
unsigned int irq;
510
int ino;
511
512
BUG_ON(tlb_type == hypervisor);
513
514
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
515
bucket = &ivector_table[ino];
516
irq = bucket_get_irq(__pa(bucket));
517
if (!irq) {
518
irq = irq_alloc(0, ino);
519
bucket_set_irq(__pa(bucket), irq);
520
irq_set_chip_and_handler_name(irq, &sun4u_irq,
521
handle_fasteoi_irq, "IVEC");
522
}
523
524
handler_data = irq_get_handler_data(irq);
525
if (unlikely(handler_data))
526
goto out;
527
528
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
529
if (unlikely(!handler_data)) {
530
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
531
prom_halt();
532
}
533
irq_set_handler_data(irq, handler_data);
534
535
handler_data->imap = imap;
536
handler_data->iclr = iclr;
537
538
out:
539
return irq;
540
}
541
542
static unsigned int sun4v_build_common(unsigned long sysino,
543
struct irq_chip *chip)
544
{
545
struct ino_bucket *bucket;
546
struct irq_handler_data *handler_data;
547
unsigned int irq;
548
549
BUG_ON(tlb_type != hypervisor);
550
551
bucket = &ivector_table[sysino];
552
irq = bucket_get_irq(__pa(bucket));
553
if (!irq) {
554
irq = irq_alloc(0, sysino);
555
bucket_set_irq(__pa(bucket), irq);
556
irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
557
"IVEC");
558
}
559
560
handler_data = irq_get_handler_data(irq);
561
if (unlikely(handler_data))
562
goto out;
563
564
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
565
if (unlikely(!handler_data)) {
566
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
567
prom_halt();
568
}
569
irq_set_handler_data(irq, handler_data);
570
571
/* Catch accidental accesses to these things. IMAP/ICLR handling
572
* is done by hypervisor calls on sun4v platforms, not by direct
573
* register accesses.
574
*/
575
handler_data->imap = ~0UL;
576
handler_data->iclr = ~0UL;
577
578
out:
579
return irq;
580
}
581
582
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
583
{
584
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
585
586
return sun4v_build_common(sysino, &sun4v_irq);
587
}
588
589
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
590
{
591
struct irq_handler_data *handler_data;
592
unsigned long hv_err, cookie;
593
struct ino_bucket *bucket;
594
unsigned int irq;
595
596
bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
597
if (unlikely(!bucket))
598
return 0;
599
600
/* The only reference we store to the IRQ bucket is
601
* by physical address which kmemleak can't see, tell
602
* it that this object explicitly is not a leak and
603
* should be scanned.
604
*/
605
kmemleak_not_leak(bucket);
606
607
__flush_dcache_range((unsigned long) bucket,
608
((unsigned long) bucket +
609
sizeof(struct ino_bucket)));
610
611
irq = irq_alloc(devhandle, devino);
612
bucket_set_irq(__pa(bucket), irq);
613
614
irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
615
"IVEC");
616
617
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
618
if (unlikely(!handler_data))
619
return 0;
620
621
/* In order to make the LDC channel startup sequence easier,
622
* especially wrt. locking, we do not let request_irq() enable
623
* the interrupt.
624
*/
625
irq_set_status_flags(irq, IRQ_NOAUTOEN);
626
irq_set_handler_data(irq, handler_data);
627
628
/* Catch accidental accesses to these things. IMAP/ICLR handling
629
* is done by hypervisor calls on sun4v platforms, not by direct
630
* register accesses.
631
*/
632
handler_data->imap = ~0UL;
633
handler_data->iclr = ~0UL;
634
635
cookie = ~__pa(bucket);
636
hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
637
if (hv_err) {
638
prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
639
"err=%lu\n", devhandle, devino, hv_err);
640
prom_halt();
641
}
642
643
return irq;
644
}
645
646
void ack_bad_irq(unsigned int irq)
647
{
648
unsigned int ino = irq_table[irq].dev_ino;
649
650
if (!ino)
651
ino = 0xdeadbeef;
652
653
printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
654
ino, irq);
655
}
656
657
void *hardirq_stack[NR_CPUS];
658
void *softirq_stack[NR_CPUS];
659
660
void __irq_entry handler_irq(int pil, struct pt_regs *regs)
661
{
662
unsigned long pstate, bucket_pa;
663
struct pt_regs *old_regs;
664
void *orig_sp;
665
666
clear_softint(1 << pil);
667
668
old_regs = set_irq_regs(regs);
669
irq_enter();
670
671
/* Grab an atomic snapshot of the pending IVECs. */
672
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
673
"wrpr %0, %3, %%pstate\n\t"
674
"ldx [%2], %1\n\t"
675
"stx %%g0, [%2]\n\t"
676
"wrpr %0, 0x0, %%pstate\n\t"
677
: "=&r" (pstate), "=&r" (bucket_pa)
678
: "r" (irq_work_pa(smp_processor_id())),
679
"i" (PSTATE_IE)
680
: "memory");
681
682
orig_sp = set_hardirq_stack();
683
684
while (bucket_pa) {
685
unsigned long next_pa;
686
unsigned int irq;
687
688
next_pa = bucket_get_chain_pa(bucket_pa);
689
irq = bucket_get_irq(bucket_pa);
690
bucket_clear_chain_pa(bucket_pa);
691
692
generic_handle_irq(irq);
693
694
bucket_pa = next_pa;
695
}
696
697
restore_hardirq_stack(orig_sp);
698
699
irq_exit();
700
set_irq_regs(old_regs);
701
}
702
703
void do_softirq(void)
704
{
705
unsigned long flags;
706
707
if (in_interrupt())
708
return;
709
710
local_irq_save(flags);
711
712
if (local_softirq_pending()) {
713
void *orig_sp, *sp = softirq_stack[smp_processor_id()];
714
715
sp += THREAD_SIZE - 192 - STACK_BIAS;
716
717
__asm__ __volatile__("mov %%sp, %0\n\t"
718
"mov %1, %%sp"
719
: "=&r" (orig_sp)
720
: "r" (sp));
721
__do_softirq();
722
__asm__ __volatile__("mov %0, %%sp"
723
: : "r" (orig_sp));
724
}
725
726
local_irq_restore(flags);
727
}
728
729
#ifdef CONFIG_HOTPLUG_CPU
730
void fixup_irqs(void)
731
{
732
unsigned int irq;
733
734
for (irq = 0; irq < NR_IRQS; irq++) {
735
struct irq_desc *desc = irq_to_desc(irq);
736
struct irq_data *data = irq_desc_get_irq_data(desc);
737
unsigned long flags;
738
739
raw_spin_lock_irqsave(&desc->lock, flags);
740
if (desc->action && !irqd_is_per_cpu(data)) {
741
if (data->chip->irq_set_affinity)
742
data->chip->irq_set_affinity(data,
743
data->affinity,
744
false);
745
}
746
raw_spin_unlock_irqrestore(&desc->lock, flags);
747
}
748
749
tick_ops->disable_irq();
750
}
751
#endif
752
753
struct sun5_timer {
754
u64 count0;
755
u64 limit0;
756
u64 count1;
757
u64 limit1;
758
};
759
760
static struct sun5_timer *prom_timers;
761
static u64 prom_limit0, prom_limit1;
762
763
static void map_prom_timers(void)
764
{
765
struct device_node *dp;
766
const unsigned int *addr;
767
768
/* PROM timer node hangs out in the top level of device siblings... */
769
dp = of_find_node_by_path("/");
770
dp = dp->child;
771
while (dp) {
772
if (!strcmp(dp->name, "counter-timer"))
773
break;
774
dp = dp->sibling;
775
}
776
777
/* Assume if node is not present, PROM uses different tick mechanism
778
* which we should not care about.
779
*/
780
if (!dp) {
781
prom_timers = (struct sun5_timer *) 0;
782
return;
783
}
784
785
/* If PROM is really using this, it must be mapped by him. */
786
addr = of_get_property(dp, "address", NULL);
787
if (!addr) {
788
prom_printf("PROM does not have timer mapped, trying to continue.\n");
789
prom_timers = (struct sun5_timer *) 0;
790
return;
791
}
792
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
793
}
794
795
static void kill_prom_timer(void)
796
{
797
if (!prom_timers)
798
return;
799
800
/* Save them away for later. */
801
prom_limit0 = prom_timers->limit0;
802
prom_limit1 = prom_timers->limit1;
803
804
/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
805
* We turn both off here just to be paranoid.
806
*/
807
prom_timers->limit0 = 0;
808
prom_timers->limit1 = 0;
809
810
/* Wheee, eat the interrupt packet too... */
811
__asm__ __volatile__(
812
" mov 0x40, %%g2\n"
813
" ldxa [%%g0] %0, %%g1\n"
814
" ldxa [%%g2] %1, %%g1\n"
815
" stxa %%g0, [%%g0] %0\n"
816
" membar #Sync\n"
817
: /* no outputs */
818
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
819
: "g1", "g2");
820
}
821
822
void notrace init_irqwork_curcpu(void)
823
{
824
int cpu = hard_smp_processor_id();
825
826
trap_block[cpu].irq_worklist_pa = 0UL;
827
}
828
829
/* Please be very careful with register_one_mondo() and
830
* sun4v_register_mondo_queues().
831
*
832
* On SMP this gets invoked from the CPU trampoline before
833
* the cpu has fully taken over the trap table from OBP,
834
* and it's kernel stack + %g6 thread register state is
835
* not fully cooked yet.
836
*
837
* Therefore you cannot make any OBP calls, not even prom_printf,
838
* from these two routines.
839
*/
840
static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
841
{
842
unsigned long num_entries = (qmask + 1) / 64;
843
unsigned long status;
844
845
status = sun4v_cpu_qconf(type, paddr, num_entries);
846
if (status != HV_EOK) {
847
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
848
"err %lu\n", type, paddr, num_entries, status);
849
prom_halt();
850
}
851
}
852
853
void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
854
{
855
struct trap_per_cpu *tb = &trap_block[this_cpu];
856
857
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
858
tb->cpu_mondo_qmask);
859
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
860
tb->dev_mondo_qmask);
861
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
862
tb->resum_qmask);
863
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
864
tb->nonresum_qmask);
865
}
866
867
/* Each queue region must be a power of 2 multiple of 64 bytes in
868
* size. The base real address must be aligned to the size of the
869
* region. Thus, an 8KB queue must be 8KB aligned, for example.
870
*/
871
static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
872
{
873
unsigned long size = PAGE_ALIGN(qmask + 1);
874
unsigned long order = get_order(size);
875
unsigned long p;
876
877
p = __get_free_pages(GFP_KERNEL, order);
878
if (!p) {
879
prom_printf("SUN4V: Error, cannot allocate queue.\n");
880
prom_halt();
881
}
882
883
*pa_ptr = __pa(p);
884
}
885
886
static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
887
{
888
#ifdef CONFIG_SMP
889
unsigned long page;
890
891
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
892
893
page = get_zeroed_page(GFP_KERNEL);
894
if (!page) {
895
prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
896
prom_halt();
897
}
898
899
tb->cpu_mondo_block_pa = __pa(page);
900
tb->cpu_list_pa = __pa(page + 64);
901
#endif
902
}
903
904
/* Allocate mondo and error queues for all possible cpus. */
905
static void __init sun4v_init_mondo_queues(void)
906
{
907
int cpu;
908
909
for_each_possible_cpu(cpu) {
910
struct trap_per_cpu *tb = &trap_block[cpu];
911
912
alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
913
alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
914
alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
915
alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
916
alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
917
alloc_one_queue(&tb->nonresum_kernel_buf_pa,
918
tb->nonresum_qmask);
919
}
920
}
921
922
static void __init init_send_mondo_info(void)
923
{
924
int cpu;
925
926
for_each_possible_cpu(cpu) {
927
struct trap_per_cpu *tb = &trap_block[cpu];
928
929
init_cpu_send_mondo_info(tb);
930
}
931
}
932
933
static struct irqaction timer_irq_action = {
934
.name = "timer",
935
};
936
937
/* Only invoked on boot processor. */
938
void __init init_IRQ(void)
939
{
940
unsigned long size;
941
942
map_prom_timers();
943
kill_prom_timer();
944
945
size = sizeof(struct ino_bucket) * NUM_IVECS;
946
ivector_table = kzalloc(size, GFP_KERNEL);
947
if (!ivector_table) {
948
prom_printf("Fatal error, cannot allocate ivector_table\n");
949
prom_halt();
950
}
951
__flush_dcache_range((unsigned long) ivector_table,
952
((unsigned long) ivector_table) + size);
953
954
ivector_table_pa = __pa(ivector_table);
955
956
if (tlb_type == hypervisor)
957
sun4v_init_mondo_queues();
958
959
init_send_mondo_info();
960
961
if (tlb_type == hypervisor) {
962
/* Load up the boot cpu's entries. */
963
sun4v_register_mondo_queues(hard_smp_processor_id());
964
}
965
966
/* We need to clear any IRQ's pending in the soft interrupt
967
* registers, a spurious one could be left around from the
968
* PROM timer which we just disabled.
969
*/
970
clear_softint(get_softint());
971
972
/* Now that ivector table is initialized, it is safe
973
* to receive IRQ vector traps. We will normally take
974
* one or two right now, in case some device PROM used
975
* to boot us wants to speak to us. We just ignore them.
976
*/
977
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
978
"or %%g1, %0, %%g1\n\t"
979
"wrpr %%g1, 0x0, %%pstate"
980
: /* No outputs */
981
: "i" (PSTATE_IE)
982
: "g1");
983
984
irq_to_desc(0)->action = &timer_irq_action;
985
}
986
987