Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sparc/kernel/kprobes.c
10817 views
1
/* arch/sparc64/kernel/kprobes.c
2
*
3
* Copyright (C) 2004 David S. Miller <[email protected]>
4
*/
5
6
#include <linux/kernel.h>
7
#include <linux/kprobes.h>
8
#include <linux/module.h>
9
#include <linux/kdebug.h>
10
#include <linux/slab.h>
11
#include <asm/signal.h>
12
#include <asm/cacheflush.h>
13
#include <asm/uaccess.h>
14
15
/* We do not have hardware single-stepping on sparc64.
16
* So we implement software single-stepping with breakpoint
17
* traps. The top-level scheme is similar to that used
18
* in the x86 kprobes implementation.
19
*
20
* In the kprobe->ainsn.insn[] array we store the original
21
* instruction at index zero and a break instruction at
22
* index one.
23
*
24
* When we hit a kprobe we:
25
* - Run the pre-handler
26
* - Remember "regs->tnpc" and interrupt level stored in
27
* "regs->tstate" so we can restore them later
28
* - Disable PIL interrupts
29
* - Set regs->tpc to point to kprobe->ainsn.insn[0]
30
* - Set regs->tnpc to point to kprobe->ainsn.insn[1]
31
* - Mark that we are actively in a kprobe
32
*
33
* At this point we wait for the second breakpoint at
34
* kprobe->ainsn.insn[1] to hit. When it does we:
35
* - Run the post-handler
36
* - Set regs->tpc to "remembered" regs->tnpc stored above,
37
* restore the PIL interrupt level in "regs->tstate" as well
38
* - Make any adjustments necessary to regs->tnpc in order
39
* to handle relative branches correctly. See below.
40
* - Mark that we are no longer actively in a kprobe.
41
*/
42
43
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
44
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45
46
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
47
48
int __kprobes arch_prepare_kprobe(struct kprobe *p)
49
{
50
if ((unsigned long) p->addr & 0x3UL)
51
return -EILSEQ;
52
53
p->ainsn.insn[0] = *p->addr;
54
flushi(&p->ainsn.insn[0]);
55
56
p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
57
flushi(&p->ainsn.insn[1]);
58
59
p->opcode = *p->addr;
60
return 0;
61
}
62
63
void __kprobes arch_arm_kprobe(struct kprobe *p)
64
{
65
*p->addr = BREAKPOINT_INSTRUCTION;
66
flushi(p->addr);
67
}
68
69
void __kprobes arch_disarm_kprobe(struct kprobe *p)
70
{
71
*p->addr = p->opcode;
72
flushi(p->addr);
73
}
74
75
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
76
{
77
kcb->prev_kprobe.kp = kprobe_running();
78
kcb->prev_kprobe.status = kcb->kprobe_status;
79
kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
80
kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
81
}
82
83
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
84
{
85
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
86
kcb->kprobe_status = kcb->prev_kprobe.status;
87
kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
88
kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
89
}
90
91
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
92
struct kprobe_ctlblk *kcb)
93
{
94
__get_cpu_var(current_kprobe) = p;
95
kcb->kprobe_orig_tnpc = regs->tnpc;
96
kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
97
}
98
99
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
100
struct kprobe_ctlblk *kcb)
101
{
102
regs->tstate |= TSTATE_PIL;
103
104
/*single step inline, if it a breakpoint instruction*/
105
if (p->opcode == BREAKPOINT_INSTRUCTION) {
106
regs->tpc = (unsigned long) p->addr;
107
regs->tnpc = kcb->kprobe_orig_tnpc;
108
} else {
109
regs->tpc = (unsigned long) &p->ainsn.insn[0];
110
regs->tnpc = (unsigned long) &p->ainsn.insn[1];
111
}
112
}
113
114
static int __kprobes kprobe_handler(struct pt_regs *regs)
115
{
116
struct kprobe *p;
117
void *addr = (void *) regs->tpc;
118
int ret = 0;
119
struct kprobe_ctlblk *kcb;
120
121
/*
122
* We don't want to be preempted for the entire
123
* duration of kprobe processing
124
*/
125
preempt_disable();
126
kcb = get_kprobe_ctlblk();
127
128
if (kprobe_running()) {
129
p = get_kprobe(addr);
130
if (p) {
131
if (kcb->kprobe_status == KPROBE_HIT_SS) {
132
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
133
kcb->kprobe_orig_tstate_pil);
134
goto no_kprobe;
135
}
136
/* We have reentered the kprobe_handler(), since
137
* another probe was hit while within the handler.
138
* We here save the original kprobes variables and
139
* just single step on the instruction of the new probe
140
* without calling any user handlers.
141
*/
142
save_previous_kprobe(kcb);
143
set_current_kprobe(p, regs, kcb);
144
kprobes_inc_nmissed_count(p);
145
kcb->kprobe_status = KPROBE_REENTER;
146
prepare_singlestep(p, regs, kcb);
147
return 1;
148
} else {
149
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
150
/* The breakpoint instruction was removed by
151
* another cpu right after we hit, no further
152
* handling of this interrupt is appropriate
153
*/
154
ret = 1;
155
goto no_kprobe;
156
}
157
p = __get_cpu_var(current_kprobe);
158
if (p->break_handler && p->break_handler(p, regs))
159
goto ss_probe;
160
}
161
goto no_kprobe;
162
}
163
164
p = get_kprobe(addr);
165
if (!p) {
166
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
167
/*
168
* The breakpoint instruction was removed right
169
* after we hit it. Another cpu has removed
170
* either a probepoint or a debugger breakpoint
171
* at this address. In either case, no further
172
* handling of this interrupt is appropriate.
173
*/
174
ret = 1;
175
}
176
/* Not one of ours: let kernel handle it */
177
goto no_kprobe;
178
}
179
180
set_current_kprobe(p, regs, kcb);
181
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
182
if (p->pre_handler && p->pre_handler(p, regs))
183
return 1;
184
185
ss_probe:
186
prepare_singlestep(p, regs, kcb);
187
kcb->kprobe_status = KPROBE_HIT_SS;
188
return 1;
189
190
no_kprobe:
191
preempt_enable_no_resched();
192
return ret;
193
}
194
195
/* If INSN is a relative control transfer instruction,
196
* return the corrected branch destination value.
197
*
198
* regs->tpc and regs->tnpc still hold the values of the
199
* program counters at the time of trap due to the execution
200
* of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
201
*
202
*/
203
static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
204
struct pt_regs *regs)
205
{
206
unsigned long real_pc = (unsigned long) p->addr;
207
208
/* Branch not taken, no mods necessary. */
209
if (regs->tnpc == regs->tpc + 0x4UL)
210
return real_pc + 0x8UL;
211
212
/* The three cases are call, branch w/prediction,
213
* and traditional branch.
214
*/
215
if ((insn & 0xc0000000) == 0x40000000 ||
216
(insn & 0xc1c00000) == 0x00400000 ||
217
(insn & 0xc1c00000) == 0x00800000) {
218
unsigned long ainsn_addr;
219
220
ainsn_addr = (unsigned long) &p->ainsn.insn[0];
221
222
/* The instruction did all the work for us
223
* already, just apply the offset to the correct
224
* instruction location.
225
*/
226
return (real_pc + (regs->tnpc - ainsn_addr));
227
}
228
229
/* It is jmpl or some other absolute PC modification instruction,
230
* leave NPC as-is.
231
*/
232
return regs->tnpc;
233
}
234
235
/* If INSN is an instruction which writes it's PC location
236
* into a destination register, fix that up.
237
*/
238
static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
239
unsigned long real_pc)
240
{
241
unsigned long *slot = NULL;
242
243
/* Simplest case is 'call', which always uses %o7 */
244
if ((insn & 0xc0000000) == 0x40000000) {
245
slot = &regs->u_regs[UREG_I7];
246
}
247
248
/* 'jmpl' encodes the register inside of the opcode */
249
if ((insn & 0xc1f80000) == 0x81c00000) {
250
unsigned long rd = ((insn >> 25) & 0x1f);
251
252
if (rd <= 15) {
253
slot = &regs->u_regs[rd];
254
} else {
255
/* Hard case, it goes onto the stack. */
256
flushw_all();
257
258
rd -= 16;
259
slot = (unsigned long *)
260
(regs->u_regs[UREG_FP] + STACK_BIAS);
261
slot += rd;
262
}
263
}
264
if (slot != NULL)
265
*slot = real_pc;
266
}
267
268
/*
269
* Called after single-stepping. p->addr is the address of the
270
* instruction which has been replaced by the breakpoint
271
* instruction. To avoid the SMP problems that can occur when we
272
* temporarily put back the original opcode to single-step, we
273
* single-stepped a copy of the instruction. The address of this
274
* copy is &p->ainsn.insn[0].
275
*
276
* This function prepares to return from the post-single-step
277
* breakpoint trap.
278
*/
279
static void __kprobes resume_execution(struct kprobe *p,
280
struct pt_regs *regs, struct kprobe_ctlblk *kcb)
281
{
282
u32 insn = p->ainsn.insn[0];
283
284
regs->tnpc = relbranch_fixup(insn, p, regs);
285
286
/* This assignment must occur after relbranch_fixup() */
287
regs->tpc = kcb->kprobe_orig_tnpc;
288
289
retpc_fixup(regs, insn, (unsigned long) p->addr);
290
291
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
292
kcb->kprobe_orig_tstate_pil);
293
}
294
295
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
296
{
297
struct kprobe *cur = kprobe_running();
298
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
299
300
if (!cur)
301
return 0;
302
303
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
304
kcb->kprobe_status = KPROBE_HIT_SSDONE;
305
cur->post_handler(cur, regs, 0);
306
}
307
308
resume_execution(cur, regs, kcb);
309
310
/*Restore back the original saved kprobes variables and continue. */
311
if (kcb->kprobe_status == KPROBE_REENTER) {
312
restore_previous_kprobe(kcb);
313
goto out;
314
}
315
reset_current_kprobe();
316
out:
317
preempt_enable_no_resched();
318
319
return 1;
320
}
321
322
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
323
{
324
struct kprobe *cur = kprobe_running();
325
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
326
const struct exception_table_entry *entry;
327
328
switch(kcb->kprobe_status) {
329
case KPROBE_HIT_SS:
330
case KPROBE_REENTER:
331
/*
332
* We are here because the instruction being single
333
* stepped caused a page fault. We reset the current
334
* kprobe and the tpc points back to the probe address
335
* and allow the page fault handler to continue as a
336
* normal page fault.
337
*/
338
regs->tpc = (unsigned long)cur->addr;
339
regs->tnpc = kcb->kprobe_orig_tnpc;
340
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
341
kcb->kprobe_orig_tstate_pil);
342
if (kcb->kprobe_status == KPROBE_REENTER)
343
restore_previous_kprobe(kcb);
344
else
345
reset_current_kprobe();
346
preempt_enable_no_resched();
347
break;
348
case KPROBE_HIT_ACTIVE:
349
case KPROBE_HIT_SSDONE:
350
/*
351
* We increment the nmissed count for accounting,
352
* we can also use npre/npostfault count for accouting
353
* these specific fault cases.
354
*/
355
kprobes_inc_nmissed_count(cur);
356
357
/*
358
* We come here because instructions in the pre/post
359
* handler caused the page_fault, this could happen
360
* if handler tries to access user space by
361
* copy_from_user(), get_user() etc. Let the
362
* user-specified handler try to fix it first.
363
*/
364
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
365
return 1;
366
367
/*
368
* In case the user-specified fault handler returned
369
* zero, try to fix up.
370
*/
371
372
entry = search_exception_tables(regs->tpc);
373
if (entry) {
374
regs->tpc = entry->fixup;
375
regs->tnpc = regs->tpc + 4;
376
return 1;
377
}
378
379
/*
380
* fixup_exception() could not handle it,
381
* Let do_page_fault() fix it.
382
*/
383
break;
384
default:
385
break;
386
}
387
388
return 0;
389
}
390
391
/*
392
* Wrapper routine to for handling exceptions.
393
*/
394
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
395
unsigned long val, void *data)
396
{
397
struct die_args *args = (struct die_args *)data;
398
int ret = NOTIFY_DONE;
399
400
if (args->regs && user_mode(args->regs))
401
return ret;
402
403
switch (val) {
404
case DIE_DEBUG:
405
if (kprobe_handler(args->regs))
406
ret = NOTIFY_STOP;
407
break;
408
case DIE_DEBUG_2:
409
if (post_kprobe_handler(args->regs))
410
ret = NOTIFY_STOP;
411
break;
412
default:
413
break;
414
}
415
return ret;
416
}
417
418
asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
419
struct pt_regs *regs)
420
{
421
BUG_ON(trap_level != 0x170 && trap_level != 0x171);
422
423
if (user_mode(regs)) {
424
local_irq_enable();
425
bad_trap(regs, trap_level);
426
return;
427
}
428
429
/* trap_level == 0x170 --> ta 0x70
430
* trap_level == 0x171 --> ta 0x71
431
*/
432
if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
433
(trap_level == 0x170) ? "debug" : "debug_2",
434
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
435
bad_trap(regs, trap_level);
436
}
437
438
/* Jprobes support. */
439
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
440
{
441
struct jprobe *jp = container_of(p, struct jprobe, kp);
442
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443
444
memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
445
446
regs->tpc = (unsigned long) jp->entry;
447
regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
448
regs->tstate |= TSTATE_PIL;
449
450
return 1;
451
}
452
453
void __kprobes jprobe_return(void)
454
{
455
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456
register unsigned long orig_fp asm("g1");
457
458
orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
459
__asm__ __volatile__("\n"
460
"1: cmp %%sp, %0\n\t"
461
"blu,a,pt %%xcc, 1b\n\t"
462
" restore\n\t"
463
".globl jprobe_return_trap_instruction\n"
464
"jprobe_return_trap_instruction:\n\t"
465
"ta 0x70"
466
: /* no outputs */
467
: "r" (orig_fp));
468
}
469
470
extern void jprobe_return_trap_instruction(void);
471
472
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
473
{
474
u32 *addr = (u32 *) regs->tpc;
475
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476
477
if (addr == (u32 *) jprobe_return_trap_instruction) {
478
memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
479
preempt_enable_no_resched();
480
return 1;
481
}
482
return 0;
483
}
484
485
/* The value stored in the return address register is actually 2
486
* instructions before where the callee will return to.
487
* Sequences usually look something like this
488
*
489
* call some_function <--- return register points here
490
* nop <--- call delay slot
491
* whatever <--- where callee returns to
492
*
493
* To keep trampoline_probe_handler logic simpler, we normalize the
494
* value kept in ri->ret_addr so we don't need to keep adjusting it
495
* back and forth.
496
*/
497
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
498
struct pt_regs *regs)
499
{
500
ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
501
502
/* Replace the return addr with trampoline addr */
503
regs->u_regs[UREG_RETPC] =
504
((unsigned long)kretprobe_trampoline) - 8;
505
}
506
507
/*
508
* Called when the probe at kretprobe trampoline is hit
509
*/
510
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
511
{
512
struct kretprobe_instance *ri = NULL;
513
struct hlist_head *head, empty_rp;
514
struct hlist_node *node, *tmp;
515
unsigned long flags, orig_ret_address = 0;
516
unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
517
518
INIT_HLIST_HEAD(&empty_rp);
519
kretprobe_hash_lock(current, &head, &flags);
520
521
/*
522
* It is possible to have multiple instances associated with a given
523
* task either because an multiple functions in the call path
524
* have a return probe installed on them, and/or more than one return
525
* return probe was registered for a target function.
526
*
527
* We can handle this because:
528
* - instances are always inserted at the head of the list
529
* - when multiple return probes are registered for the same
530
* function, the first instance's ret_addr will point to the
531
* real return address, and all the rest will point to
532
* kretprobe_trampoline
533
*/
534
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
535
if (ri->task != current)
536
/* another task is sharing our hash bucket */
537
continue;
538
539
if (ri->rp && ri->rp->handler)
540
ri->rp->handler(ri, regs);
541
542
orig_ret_address = (unsigned long)ri->ret_addr;
543
recycle_rp_inst(ri, &empty_rp);
544
545
if (orig_ret_address != trampoline_address)
546
/*
547
* This is the real return address. Any other
548
* instances associated with this task are for
549
* other calls deeper on the call stack
550
*/
551
break;
552
}
553
554
kretprobe_assert(ri, orig_ret_address, trampoline_address);
555
regs->tpc = orig_ret_address;
556
regs->tnpc = orig_ret_address + 4;
557
558
reset_current_kprobe();
559
kretprobe_hash_unlock(current, &flags);
560
preempt_enable_no_resched();
561
562
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
563
hlist_del(&ri->hlist);
564
kfree(ri);
565
}
566
/*
567
* By returning a non-zero value, we are telling
568
* kprobe_handler() that we don't want the post_handler
569
* to run (and have re-enabled preemption)
570
*/
571
return 1;
572
}
573
574
void kretprobe_trampoline_holder(void)
575
{
576
asm volatile(".global kretprobe_trampoline\n"
577
"kretprobe_trampoline:\n"
578
"\tnop\n"
579
"\tnop\n");
580
}
581
static struct kprobe trampoline_p = {
582
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
583
.pre_handler = trampoline_probe_handler
584
};
585
586
int __init arch_init_kprobes(void)
587
{
588
return register_kprobe(&trampoline_p);
589
}
590
591
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
592
{
593
if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
594
return 1;
595
596
return 0;
597
}
598
599