Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sparc/math-emu/math_32.c
10817 views
1
/*
2
* arch/sparc/math-emu/math.c
3
*
4
* Copyright (C) 1998 Peter Maydell ([email protected])
5
* Copyright (C) 1997, 1999 Jakub Jelinek ([email protected])
6
* Copyright (C) 1999 David S. Miller ([email protected])
7
*
8
* This is a good place to start if you're trying to understand the
9
* emulation code, because it's pretty simple. What we do is
10
* essentially analyse the instruction to work out what the operation
11
* is and which registers are involved. We then execute the appropriate
12
* FXXXX function. [The floating point queue introduces a minor wrinkle;
13
* see below...]
14
* The fxxxxx.c files each emulate a single insn. They look relatively
15
* simple because the complexity is hidden away in an unholy tangle
16
* of preprocessor macros.
17
*
18
* The first layer of macros is single.h, double.h, quad.h. Generally
19
* these files define macros for working with floating point numbers
20
* of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
21
* for instance. These macros are usually defined as calls to more
22
* generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
23
* of machine words required to store the given IEEE format is passed
24
* as a parameter. [double.h and co check the number of bits in a word
25
* and define FP_ADD_D & co appropriately].
26
* The generic macros are defined in op-common.h. This is where all
27
* the grotty stuff like handling NaNs is coded. To handle the possible
28
* word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
29
* where wc is the 'number of machine words' parameter (here 2).
30
* These are defined in the third layer of macros: op-1.h, op-2.h
31
* and op-4.h. These handle operations on floating point numbers composed
32
* of 1,2 and 4 machine words respectively. [For example, on sparc64
33
* doubles are one machine word so macros in double.h eventually use
34
* constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
35
* soft-fp.h is on the same level as op-common.h, and defines some
36
* macros which are independent of both word size and FP format.
37
* Finally, sfp-machine.h is the machine dependent part of the
38
* code: it defines the word size and what type a word is. It also
39
* defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
40
* provide several possible flavours of multiply algorithm, most
41
* of which require that you supply some form of asm or C primitive to
42
* do the actual multiply. (such asm primitives should be defined
43
* in sfp-machine.h too). udivmodti4.c is the same sort of thing.
44
*
45
* There may be some errors here because I'm working from a
46
* SPARC architecture manual V9, and what I really want is V8...
47
* Also, the insns which can generate exceptions seem to be a
48
* greater subset of the FPops than for V9 (for example, FCMPED
49
* has to be emulated on V8). So I think I'm going to have
50
* to emulate them all just to be on the safe side...
51
*
52
* Emulation routines originate from soft-fp package, which is
53
* part of glibc and has appropriate copyrights in it (allegedly).
54
*
55
* NB: on sparc int == long == 4 bytes, long long == 8 bytes.
56
* Most bits of the kernel seem to go for long rather than int,
57
* so we follow that practice...
58
*/
59
60
/* TODO:
61
* fpsave() saves the FP queue but fpload() doesn't reload it.
62
* Therefore when we context switch or change FPU ownership
63
* we have to check to see if the queue had anything in it and
64
* emulate it if it did. This is going to be a pain.
65
*/
66
67
#include <linux/types.h>
68
#include <linux/sched.h>
69
#include <linux/mm.h>
70
#include <linux/perf_event.h>
71
#include <asm/uaccess.h>
72
73
#include "sfp-util_32.h"
74
#include <math-emu/soft-fp.h>
75
#include <math-emu/single.h>
76
#include <math-emu/double.h>
77
#include <math-emu/quad.h>
78
79
#define FLOATFUNC(x) extern int x(void *,void *,void *)
80
81
/* The Vn labels indicate what version of the SPARC architecture gas thinks
82
* each insn is. This is from the binutils source :->
83
*/
84
/* quadword instructions */
85
#define FSQRTQ 0x02b /* v8 */
86
#define FADDQ 0x043 /* v8 */
87
#define FSUBQ 0x047 /* v8 */
88
#define FMULQ 0x04b /* v8 */
89
#define FDIVQ 0x04f /* v8 */
90
#define FDMULQ 0x06e /* v8 */
91
#define FQTOS 0x0c7 /* v8 */
92
#define FQTOD 0x0cb /* v8 */
93
#define FITOQ 0x0cc /* v8 */
94
#define FSTOQ 0x0cd /* v8 */
95
#define FDTOQ 0x0ce /* v8 */
96
#define FQTOI 0x0d3 /* v8 */
97
#define FCMPQ 0x053 /* v8 */
98
#define FCMPEQ 0x057 /* v8 */
99
/* single/double instructions (subnormal): should all work */
100
#define FSQRTS 0x029 /* v7 */
101
#define FSQRTD 0x02a /* v7 */
102
#define FADDS 0x041 /* v6 */
103
#define FADDD 0x042 /* v6 */
104
#define FSUBS 0x045 /* v6 */
105
#define FSUBD 0x046 /* v6 */
106
#define FMULS 0x049 /* v6 */
107
#define FMULD 0x04a /* v6 */
108
#define FDIVS 0x04d /* v6 */
109
#define FDIVD 0x04e /* v6 */
110
#define FSMULD 0x069 /* v6 */
111
#define FDTOS 0x0c6 /* v6 */
112
#define FSTOD 0x0c9 /* v6 */
113
#define FSTOI 0x0d1 /* v6 */
114
#define FDTOI 0x0d2 /* v6 */
115
#define FABSS 0x009 /* v6 */
116
#define FCMPS 0x051 /* v6 */
117
#define FCMPES 0x055 /* v6 */
118
#define FCMPD 0x052 /* v6 */
119
#define FCMPED 0x056 /* v6 */
120
#define FMOVS 0x001 /* v6 */
121
#define FNEGS 0x005 /* v6 */
122
#define FITOS 0x0c4 /* v6 */
123
#define FITOD 0x0c8 /* v6 */
124
125
#define FSR_TEM_SHIFT 23UL
126
#define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
127
#define FSR_AEXC_SHIFT 5UL
128
#define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
129
#define FSR_CEXC_SHIFT 0UL
130
#define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
131
132
static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
133
134
/* Unlike the Sparc64 version (which has a struct fpustate), we
135
* pass the taskstruct corresponding to the task which currently owns the
136
* FPU. This is partly because we don't have the fpustate struct and
137
* partly because the task owning the FPU isn't always current (as is
138
* the case for the Sparc64 port). This is probably SMP-related...
139
* This function returns 1 if all queued insns were emulated successfully.
140
* The test for unimplemented FPop in kernel mode has been moved into
141
* kernel/traps.c for simplicity.
142
*/
143
int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
144
{
145
/* regs->pc isn't necessarily the PC at which the offending insn is sitting.
146
* The FPU maintains a queue of FPops which cause traps.
147
* When it hits an instruction that requires that the trapped op succeeded
148
* (usually because it reads a reg. that the trapped op wrote) then it
149
* causes this exception. We need to emulate all the insns on the queue
150
* and then allow the op to proceed.
151
* This code should also handle the case where the trap was precise,
152
* in which case the queue length is zero and regs->pc points at the
153
* single FPop to be emulated. (this case is untested, though :->)
154
* You'll need this case if you want to be able to emulate all FPops
155
* because the FPU either doesn't exist or has been software-disabled.
156
* [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
157
* might sound because the Ultra does funky things with a superscalar
158
* architecture.]
159
*/
160
161
/* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
162
163
int i;
164
int retcode = 0; /* assume all succeed */
165
unsigned long insn;
166
167
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
168
169
#ifdef DEBUG_MATHEMU
170
printk("In do_mathemu()... pc is %08lx\n", regs->pc);
171
printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
172
for (i = 0; i < fpt->thread.fpqdepth; i++)
173
printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
174
(unsigned long)fpt->thread.fpqueue[i].insn_addr);
175
#endif
176
177
if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */
178
#ifdef DEBUG_MATHEMU
179
printk("precise trap at %08lx\n", regs->pc);
180
#endif
181
if (!get_user(insn, (u32 __user *) regs->pc)) {
182
retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
183
if (retcode) {
184
/* in this case we need to fix up PC & nPC */
185
regs->pc = regs->npc;
186
regs->npc += 4;
187
}
188
}
189
return retcode;
190
}
191
192
/* Normal case: need to empty the queue... */
193
for (i = 0; i < fpt->thread.fpqdepth; i++) {
194
retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
195
if (!retcode) /* insn failed, no point doing any more */
196
break;
197
}
198
/* Now empty the queue and clear the queue_not_empty flag */
199
if (retcode)
200
fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
201
else
202
fpt->thread.fsr &= ~0x3000;
203
fpt->thread.fpqdepth = 0;
204
205
return retcode;
206
}
207
208
/* All routines returning an exception to raise should detect
209
* such exceptions _before_ rounding to be consistent with
210
* the behavior of the hardware in the implemented cases
211
* (and thus with the recommendations in the V9 architecture
212
* manual).
213
*
214
* We return 0 if a SIGFPE should be sent, 1 otherwise.
215
*/
216
static inline int record_exception(unsigned long *pfsr, int eflag)
217
{
218
unsigned long fsr = *pfsr;
219
int would_trap;
220
221
/* Determine if this exception would have generated a trap. */
222
would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
223
224
/* If trapping, we only want to signal one bit. */
225
if (would_trap != 0) {
226
eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
227
if ((eflag & (eflag - 1)) != 0) {
228
if (eflag & FP_EX_INVALID)
229
eflag = FP_EX_INVALID;
230
else if (eflag & FP_EX_OVERFLOW)
231
eflag = FP_EX_OVERFLOW;
232
else if (eflag & FP_EX_UNDERFLOW)
233
eflag = FP_EX_UNDERFLOW;
234
else if (eflag & FP_EX_DIVZERO)
235
eflag = FP_EX_DIVZERO;
236
else if (eflag & FP_EX_INEXACT)
237
eflag = FP_EX_INEXACT;
238
}
239
}
240
241
/* Set CEXC, here is the rule:
242
*
243
* In general all FPU ops will set one and only one
244
* bit in the CEXC field, this is always the case
245
* when the IEEE exception trap is enabled in TEM.
246
*/
247
fsr &= ~(FSR_CEXC_MASK);
248
fsr |= ((long)eflag << FSR_CEXC_SHIFT);
249
250
/* Set the AEXC field, rule is:
251
*
252
* If a trap would not be generated, the
253
* CEXC just generated is OR'd into the
254
* existing value of AEXC.
255
*/
256
if (would_trap == 0)
257
fsr |= ((long)eflag << FSR_AEXC_SHIFT);
258
259
/* If trapping, indicate fault trap type IEEE. */
260
if (would_trap != 0)
261
fsr |= (1UL << 14);
262
263
*pfsr = fsr;
264
265
return (would_trap ? 0 : 1);
266
}
267
268
typedef union {
269
u32 s;
270
u64 d;
271
u64 q[2];
272
} *argp;
273
274
static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
275
{
276
/* Emulate the given insn, updating fsr and fregs appropriately. */
277
int type = 0;
278
/* r is rd, b is rs2 and a is rs1. The *u arg tells
279
whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
280
non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
281
#define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
282
int freg;
283
argp rs1 = NULL, rs2 = NULL, rd = NULL;
284
FP_DECL_EX;
285
FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
286
FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
287
FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
288
int IR;
289
long fsr;
290
291
#ifdef DEBUG_MATHEMU
292
printk("In do_mathemu(), emulating %08lx\n", insn);
293
#endif
294
295
if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
296
switch ((insn >> 5) & 0x1ff) {
297
case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
298
case FADDQ:
299
case FSUBQ:
300
case FMULQ:
301
case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
302
case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
303
case FQTOS: TYPE(3,1,1,3,1,0,0); break;
304
case FQTOD: TYPE(3,2,1,3,1,0,0); break;
305
case FITOQ: TYPE(3,3,1,1,0,0,0); break;
306
case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
307
case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
308
case FQTOI: TYPE(3,1,0,3,1,0,0); break;
309
case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
310
case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
311
case FADDD:
312
case FSUBD:
313
case FMULD:
314
case FDIVD: TYPE(2,2,1,2,1,2,1); break;
315
case FADDS:
316
case FSUBS:
317
case FMULS:
318
case FDIVS: TYPE(2,1,1,1,1,1,1); break;
319
case FSMULD: TYPE(2,2,1,1,1,1,1); break;
320
case FDTOS: TYPE(2,1,1,2,1,0,0); break;
321
case FSTOD: TYPE(2,2,1,1,1,0,0); break;
322
case FSTOI: TYPE(2,1,0,1,1,0,0); break;
323
case FDTOI: TYPE(2,1,0,2,1,0,0); break;
324
case FITOS: TYPE(2,1,1,1,0,0,0); break;
325
case FITOD: TYPE(2,2,1,1,0,0,0); break;
326
case FMOVS:
327
case FABSS:
328
case FNEGS: TYPE(2,1,0,1,0,0,0); break;
329
}
330
} else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
331
switch ((insn >> 5) & 0x1ff) {
332
case FCMPS: TYPE(3,0,0,1,1,1,1); break;
333
case FCMPES: TYPE(3,0,0,1,1,1,1); break;
334
case FCMPD: TYPE(3,0,0,2,1,2,1); break;
335
case FCMPED: TYPE(3,0,0,2,1,2,1); break;
336
case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
337
case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
338
}
339
}
340
341
if (!type) { /* oops, didn't recognise that FPop */
342
#ifdef DEBUG_MATHEMU
343
printk("attempt to emulate unrecognised FPop!\n");
344
#endif
345
return 0;
346
}
347
348
/* Decode the registers to be used */
349
freg = (*pfsr >> 14) & 0xf;
350
351
*pfsr &= ~0x1c000; /* clear the traptype bits */
352
353
freg = ((insn >> 14) & 0x1f);
354
switch (type & 0x3) { /* is rs1 single, double or quad? */
355
case 3:
356
if (freg & 3) { /* quadwords must have bits 4&5 of the */
357
/* encoded reg. number set to zero. */
358
*pfsr |= (6 << 14);
359
return 0; /* simulate invalid_fp_register exception */
360
}
361
/* fall through */
362
case 2:
363
if (freg & 1) { /* doublewords must have bit 5 zeroed */
364
*pfsr |= (6 << 14);
365
return 0;
366
}
367
}
368
rs1 = (argp)&fregs[freg];
369
switch (type & 0x7) {
370
case 7: FP_UNPACK_QP (QA, rs1); break;
371
case 6: FP_UNPACK_DP (DA, rs1); break;
372
case 5: FP_UNPACK_SP (SA, rs1); break;
373
}
374
freg = (insn & 0x1f);
375
switch ((type >> 3) & 0x3) { /* same again for rs2 */
376
case 3:
377
if (freg & 3) { /* quadwords must have bits 4&5 of the */
378
/* encoded reg. number set to zero. */
379
*pfsr |= (6 << 14);
380
return 0; /* simulate invalid_fp_register exception */
381
}
382
/* fall through */
383
case 2:
384
if (freg & 1) { /* doublewords must have bit 5 zeroed */
385
*pfsr |= (6 << 14);
386
return 0;
387
}
388
}
389
rs2 = (argp)&fregs[freg];
390
switch ((type >> 3) & 0x7) {
391
case 7: FP_UNPACK_QP (QB, rs2); break;
392
case 6: FP_UNPACK_DP (DB, rs2); break;
393
case 5: FP_UNPACK_SP (SB, rs2); break;
394
}
395
freg = ((insn >> 25) & 0x1f);
396
switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */
397
case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
398
if (freg) { /* V8 has only one set of condition codes, so */
399
/* anything but 0 in the rd field is an error */
400
*pfsr |= (6 << 14); /* (should probably flag as invalid opcode */
401
return 0; /* but SIGFPE will do :-> ) */
402
}
403
break;
404
case 3:
405
if (freg & 3) { /* quadwords must have bits 4&5 of the */
406
/* encoded reg. number set to zero. */
407
*pfsr |= (6 << 14);
408
return 0; /* simulate invalid_fp_register exception */
409
}
410
/* fall through */
411
case 2:
412
if (freg & 1) { /* doublewords must have bit 5 zeroed */
413
*pfsr |= (6 << 14);
414
return 0;
415
}
416
/* fall through */
417
case 1:
418
rd = (void *)&fregs[freg];
419
break;
420
}
421
#ifdef DEBUG_MATHEMU
422
printk("executing insn...\n");
423
#endif
424
/* do the Right Thing */
425
switch ((insn >> 5) & 0x1ff) {
426
/* + */
427
case FADDS: FP_ADD_S (SR, SA, SB); break;
428
case FADDD: FP_ADD_D (DR, DA, DB); break;
429
case FADDQ: FP_ADD_Q (QR, QA, QB); break;
430
/* - */
431
case FSUBS: FP_SUB_S (SR, SA, SB); break;
432
case FSUBD: FP_SUB_D (DR, DA, DB); break;
433
case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
434
/* * */
435
case FMULS: FP_MUL_S (SR, SA, SB); break;
436
case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
437
FP_CONV (D, S, 2, 1, DB, SB);
438
case FMULD: FP_MUL_D (DR, DA, DB); break;
439
case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
440
FP_CONV (Q, D, 4, 2, QB, DB);
441
case FMULQ: FP_MUL_Q (QR, QA, QB); break;
442
/* / */
443
case FDIVS: FP_DIV_S (SR, SA, SB); break;
444
case FDIVD: FP_DIV_D (DR, DA, DB); break;
445
case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
446
/* sqrt */
447
case FSQRTS: FP_SQRT_S (SR, SB); break;
448
case FSQRTD: FP_SQRT_D (DR, DB); break;
449
case FSQRTQ: FP_SQRT_Q (QR, QB); break;
450
/* mov */
451
case FMOVS: rd->s = rs2->s; break;
452
case FABSS: rd->s = rs2->s & 0x7fffffff; break;
453
case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
454
/* float to int */
455
case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
456
case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
457
case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
458
/* int to float */
459
case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
460
case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
461
case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
462
/* float to float */
463
case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
464
case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
465
case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
466
case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
467
case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
468
case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
469
/* comparison */
470
case FCMPS:
471
case FCMPES:
472
FP_CMP_S(IR, SB, SA, 3);
473
if (IR == 3 &&
474
(((insn >> 5) & 0x1ff) == FCMPES ||
475
FP_ISSIGNAN_S(SA) ||
476
FP_ISSIGNAN_S(SB)))
477
FP_SET_EXCEPTION (FP_EX_INVALID);
478
break;
479
case FCMPD:
480
case FCMPED:
481
FP_CMP_D(IR, DB, DA, 3);
482
if (IR == 3 &&
483
(((insn >> 5) & 0x1ff) == FCMPED ||
484
FP_ISSIGNAN_D(DA) ||
485
FP_ISSIGNAN_D(DB)))
486
FP_SET_EXCEPTION (FP_EX_INVALID);
487
break;
488
case FCMPQ:
489
case FCMPEQ:
490
FP_CMP_Q(IR, QB, QA, 3);
491
if (IR == 3 &&
492
(((insn >> 5) & 0x1ff) == FCMPEQ ||
493
FP_ISSIGNAN_Q(QA) ||
494
FP_ISSIGNAN_Q(QB)))
495
FP_SET_EXCEPTION (FP_EX_INVALID);
496
}
497
if (!FP_INHIBIT_RESULTS) {
498
switch ((type >> 6) & 0x7) {
499
case 0: fsr = *pfsr;
500
if (IR == -1) IR = 2;
501
/* fcc is always fcc0 */
502
fsr &= ~0xc00; fsr |= (IR << 10); break;
503
*pfsr = fsr;
504
break;
505
case 1: rd->s = IR; break;
506
case 5: FP_PACK_SP (rd, SR); break;
507
case 6: FP_PACK_DP (rd, DR); break;
508
case 7: FP_PACK_QP (rd, QR); break;
509
}
510
}
511
if (_fex == 0)
512
return 1; /* success! */
513
return record_exception(pfsr, _fex);
514
}
515
516