Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sparc/mm/fault_64.c
10818 views
1
/*
2
* arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
3
*
4
* Copyright (C) 1996, 2008 David S. Miller ([email protected])
5
* Copyright (C) 1997, 1999 Jakub Jelinek ([email protected])
6
*/
7
8
#include <asm/head.h>
9
10
#include <linux/string.h>
11
#include <linux/types.h>
12
#include <linux/sched.h>
13
#include <linux/ptrace.h>
14
#include <linux/mman.h>
15
#include <linux/signal.h>
16
#include <linux/mm.h>
17
#include <linux/module.h>
18
#include <linux/init.h>
19
#include <linux/perf_event.h>
20
#include <linux/interrupt.h>
21
#include <linux/kprobes.h>
22
#include <linux/kdebug.h>
23
#include <linux/percpu.h>
24
25
#include <asm/page.h>
26
#include <asm/pgtable.h>
27
#include <asm/openprom.h>
28
#include <asm/oplib.h>
29
#include <asm/uaccess.h>
30
#include <asm/asi.h>
31
#include <asm/lsu.h>
32
#include <asm/sections.h>
33
#include <asm/mmu_context.h>
34
35
int show_unhandled_signals = 1;
36
37
static inline __kprobes int notify_page_fault(struct pt_regs *regs)
38
{
39
int ret = 0;
40
41
/* kprobe_running() needs smp_processor_id() */
42
if (kprobes_built_in() && !user_mode(regs)) {
43
preempt_disable();
44
if (kprobe_running() && kprobe_fault_handler(regs, 0))
45
ret = 1;
46
preempt_enable();
47
}
48
return ret;
49
}
50
51
static void __kprobes unhandled_fault(unsigned long address,
52
struct task_struct *tsk,
53
struct pt_regs *regs)
54
{
55
if ((unsigned long) address < PAGE_SIZE) {
56
printk(KERN_ALERT "Unable to handle kernel NULL "
57
"pointer dereference\n");
58
} else {
59
printk(KERN_ALERT "Unable to handle kernel paging request "
60
"at virtual address %016lx\n", (unsigned long)address);
61
}
62
printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
63
(tsk->mm ?
64
CTX_HWBITS(tsk->mm->context) :
65
CTX_HWBITS(tsk->active_mm->context)));
66
printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
67
(tsk->mm ? (unsigned long) tsk->mm->pgd :
68
(unsigned long) tsk->active_mm->pgd));
69
die_if_kernel("Oops", regs);
70
}
71
72
static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
73
{
74
printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
75
regs->tpc);
76
printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
77
printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
78
printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
79
dump_stack();
80
unhandled_fault(regs->tpc, current, regs);
81
}
82
83
/*
84
* We now make sure that mmap_sem is held in all paths that call
85
* this. Additionally, to prevent kswapd from ripping ptes from
86
* under us, raise interrupts around the time that we look at the
87
* pte, kswapd will have to wait to get his smp ipi response from
88
* us. vmtruncate likewise. This saves us having to get pte lock.
89
*/
90
static unsigned int get_user_insn(unsigned long tpc)
91
{
92
pgd_t *pgdp = pgd_offset(current->mm, tpc);
93
pud_t *pudp;
94
pmd_t *pmdp;
95
pte_t *ptep, pte;
96
unsigned long pa;
97
u32 insn = 0;
98
unsigned long pstate;
99
100
if (pgd_none(*pgdp))
101
goto outret;
102
pudp = pud_offset(pgdp, tpc);
103
if (pud_none(*pudp))
104
goto outret;
105
pmdp = pmd_offset(pudp, tpc);
106
if (pmd_none(*pmdp))
107
goto outret;
108
109
/* This disables preemption for us as well. */
110
__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
111
__asm__ __volatile__("wrpr %0, %1, %%pstate"
112
: : "r" (pstate), "i" (PSTATE_IE));
113
ptep = pte_offset_map(pmdp, tpc);
114
pte = *ptep;
115
if (!pte_present(pte))
116
goto out;
117
118
pa = (pte_pfn(pte) << PAGE_SHIFT);
119
pa += (tpc & ~PAGE_MASK);
120
121
/* Use phys bypass so we don't pollute dtlb/dcache. */
122
__asm__ __volatile__("lduwa [%1] %2, %0"
123
: "=r" (insn)
124
: "r" (pa), "i" (ASI_PHYS_USE_EC));
125
126
out:
127
pte_unmap(ptep);
128
__asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
129
outret:
130
return insn;
131
}
132
133
static inline void
134
show_signal_msg(struct pt_regs *regs, int sig, int code,
135
unsigned long address, struct task_struct *tsk)
136
{
137
if (!unhandled_signal(tsk, sig))
138
return;
139
140
if (!printk_ratelimit())
141
return;
142
143
printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
144
task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
145
tsk->comm, task_pid_nr(tsk), address,
146
(void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
147
(void *)regs->u_regs[UREG_FP], code);
148
149
print_vma_addr(KERN_CONT " in ", regs->tpc);
150
151
printk(KERN_CONT "\n");
152
}
153
154
extern unsigned long compute_effective_address(struct pt_regs *, unsigned int, unsigned int);
155
156
static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
157
unsigned int insn, int fault_code)
158
{
159
unsigned long addr;
160
siginfo_t info;
161
162
info.si_code = code;
163
info.si_signo = sig;
164
info.si_errno = 0;
165
if (fault_code & FAULT_CODE_ITLB)
166
addr = regs->tpc;
167
else
168
addr = compute_effective_address(regs, insn, 0);
169
info.si_addr = (void __user *) addr;
170
info.si_trapno = 0;
171
172
if (unlikely(show_unhandled_signals))
173
show_signal_msg(regs, sig, code, addr, current);
174
175
force_sig_info(sig, &info, current);
176
}
177
178
extern int handle_ldf_stq(u32, struct pt_regs *);
179
extern int handle_ld_nf(u32, struct pt_regs *);
180
181
static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
182
{
183
if (!insn) {
184
if (!regs->tpc || (regs->tpc & 0x3))
185
return 0;
186
if (regs->tstate & TSTATE_PRIV) {
187
insn = *(unsigned int *) regs->tpc;
188
} else {
189
insn = get_user_insn(regs->tpc);
190
}
191
}
192
return insn;
193
}
194
195
static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
196
int fault_code, unsigned int insn,
197
unsigned long address)
198
{
199
unsigned char asi = ASI_P;
200
201
if ((!insn) && (regs->tstate & TSTATE_PRIV))
202
goto cannot_handle;
203
204
/* If user insn could be read (thus insn is zero), that
205
* is fine. We will just gun down the process with a signal
206
* in that case.
207
*/
208
209
if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
210
(insn & 0xc0800000) == 0xc0800000) {
211
if (insn & 0x2000)
212
asi = (regs->tstate >> 24);
213
else
214
asi = (insn >> 5);
215
if ((asi & 0xf2) == 0x82) {
216
if (insn & 0x1000000) {
217
handle_ldf_stq(insn, regs);
218
} else {
219
/* This was a non-faulting load. Just clear the
220
* destination register(s) and continue with the next
221
* instruction. -jj
222
*/
223
handle_ld_nf(insn, regs);
224
}
225
return;
226
}
227
}
228
229
/* Is this in ex_table? */
230
if (regs->tstate & TSTATE_PRIV) {
231
const struct exception_table_entry *entry;
232
233
entry = search_exception_tables(regs->tpc);
234
if (entry) {
235
regs->tpc = entry->fixup;
236
regs->tnpc = regs->tpc + 4;
237
return;
238
}
239
} else {
240
/* The si_code was set to make clear whether
241
* this was a SEGV_MAPERR or SEGV_ACCERR fault.
242
*/
243
do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code);
244
return;
245
}
246
247
cannot_handle:
248
unhandled_fault (address, current, regs);
249
}
250
251
static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
252
{
253
static int times;
254
255
if (times++ < 10)
256
printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
257
"64-bit TPC [%lx]\n",
258
current->comm, current->pid,
259
regs->tpc);
260
show_regs(regs);
261
}
262
263
static void noinline __kprobes bogus_32bit_fault_address(struct pt_regs *regs,
264
unsigned long addr)
265
{
266
static int times;
267
268
if (times++ < 10)
269
printk(KERN_ERR "FAULT[%s:%d]: 32-bit process "
270
"reports 64-bit fault address [%lx]\n",
271
current->comm, current->pid, addr);
272
show_regs(regs);
273
}
274
275
asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
276
{
277
struct mm_struct *mm = current->mm;
278
struct vm_area_struct *vma;
279
unsigned int insn = 0;
280
int si_code, fault_code, fault;
281
unsigned long address, mm_rss;
282
283
fault_code = get_thread_fault_code();
284
285
if (notify_page_fault(regs))
286
return;
287
288
si_code = SEGV_MAPERR;
289
address = current_thread_info()->fault_address;
290
291
if ((fault_code & FAULT_CODE_ITLB) &&
292
(fault_code & FAULT_CODE_DTLB))
293
BUG();
294
295
if (test_thread_flag(TIF_32BIT)) {
296
if (!(regs->tstate & TSTATE_PRIV)) {
297
if (unlikely((regs->tpc >> 32) != 0)) {
298
bogus_32bit_fault_tpc(regs);
299
goto intr_or_no_mm;
300
}
301
}
302
if (unlikely((address >> 32) != 0)) {
303
bogus_32bit_fault_address(regs, address);
304
goto intr_or_no_mm;
305
}
306
}
307
308
if (regs->tstate & TSTATE_PRIV) {
309
unsigned long tpc = regs->tpc;
310
311
/* Sanity check the PC. */
312
if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
313
(tpc >= MODULES_VADDR && tpc < MODULES_END)) {
314
/* Valid, no problems... */
315
} else {
316
bad_kernel_pc(regs, address);
317
return;
318
}
319
}
320
321
/*
322
* If we're in an interrupt or have no user
323
* context, we must not take the fault..
324
*/
325
if (in_atomic() || !mm)
326
goto intr_or_no_mm;
327
328
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
329
330
if (!down_read_trylock(&mm->mmap_sem)) {
331
if ((regs->tstate & TSTATE_PRIV) &&
332
!search_exception_tables(regs->tpc)) {
333
insn = get_fault_insn(regs, insn);
334
goto handle_kernel_fault;
335
}
336
down_read(&mm->mmap_sem);
337
}
338
339
vma = find_vma(mm, address);
340
if (!vma)
341
goto bad_area;
342
343
/* Pure DTLB misses do not tell us whether the fault causing
344
* load/store/atomic was a write or not, it only says that there
345
* was no match. So in such a case we (carefully) read the
346
* instruction to try and figure this out. It's an optimization
347
* so it's ok if we can't do this.
348
*
349
* Special hack, window spill/fill knows the exact fault type.
350
*/
351
if (((fault_code &
352
(FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
353
(vma->vm_flags & VM_WRITE) != 0) {
354
insn = get_fault_insn(regs, 0);
355
if (!insn)
356
goto continue_fault;
357
/* All loads, stores and atomics have bits 30 and 31 both set
358
* in the instruction. Bit 21 is set in all stores, but we
359
* have to avoid prefetches which also have bit 21 set.
360
*/
361
if ((insn & 0xc0200000) == 0xc0200000 &&
362
(insn & 0x01780000) != 0x01680000) {
363
/* Don't bother updating thread struct value,
364
* because update_mmu_cache only cares which tlb
365
* the access came from.
366
*/
367
fault_code |= FAULT_CODE_WRITE;
368
}
369
}
370
continue_fault:
371
372
if (vma->vm_start <= address)
373
goto good_area;
374
if (!(vma->vm_flags & VM_GROWSDOWN))
375
goto bad_area;
376
if (!(fault_code & FAULT_CODE_WRITE)) {
377
/* Non-faulting loads shouldn't expand stack. */
378
insn = get_fault_insn(regs, insn);
379
if ((insn & 0xc0800000) == 0xc0800000) {
380
unsigned char asi;
381
382
if (insn & 0x2000)
383
asi = (regs->tstate >> 24);
384
else
385
asi = (insn >> 5);
386
if ((asi & 0xf2) == 0x82)
387
goto bad_area;
388
}
389
}
390
if (expand_stack(vma, address))
391
goto bad_area;
392
/*
393
* Ok, we have a good vm_area for this memory access, so
394
* we can handle it..
395
*/
396
good_area:
397
si_code = SEGV_ACCERR;
398
399
/* If we took a ITLB miss on a non-executable page, catch
400
* that here.
401
*/
402
if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
403
BUG_ON(address != regs->tpc);
404
BUG_ON(regs->tstate & TSTATE_PRIV);
405
goto bad_area;
406
}
407
408
if (fault_code & FAULT_CODE_WRITE) {
409
if (!(vma->vm_flags & VM_WRITE))
410
goto bad_area;
411
412
/* Spitfire has an icache which does not snoop
413
* processor stores. Later processors do...
414
*/
415
if (tlb_type == spitfire &&
416
(vma->vm_flags & VM_EXEC) != 0 &&
417
vma->vm_file != NULL)
418
set_thread_fault_code(fault_code |
419
FAULT_CODE_BLKCOMMIT);
420
} else {
421
/* Allow reads even for write-only mappings */
422
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
423
goto bad_area;
424
}
425
426
fault = handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0);
427
if (unlikely(fault & VM_FAULT_ERROR)) {
428
if (fault & VM_FAULT_OOM)
429
goto out_of_memory;
430
else if (fault & VM_FAULT_SIGBUS)
431
goto do_sigbus;
432
BUG();
433
}
434
if (fault & VM_FAULT_MAJOR) {
435
current->maj_flt++;
436
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
437
regs, address);
438
} else {
439
current->min_flt++;
440
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
441
regs, address);
442
}
443
up_read(&mm->mmap_sem);
444
445
mm_rss = get_mm_rss(mm);
446
#ifdef CONFIG_HUGETLB_PAGE
447
mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
448
#endif
449
if (unlikely(mm_rss >
450
mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
451
tsb_grow(mm, MM_TSB_BASE, mm_rss);
452
#ifdef CONFIG_HUGETLB_PAGE
453
mm_rss = mm->context.huge_pte_count;
454
if (unlikely(mm_rss >
455
mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit))
456
tsb_grow(mm, MM_TSB_HUGE, mm_rss);
457
#endif
458
return;
459
460
/*
461
* Something tried to access memory that isn't in our memory map..
462
* Fix it, but check if it's kernel or user first..
463
*/
464
bad_area:
465
insn = get_fault_insn(regs, insn);
466
up_read(&mm->mmap_sem);
467
468
handle_kernel_fault:
469
do_kernel_fault(regs, si_code, fault_code, insn, address);
470
return;
471
472
/*
473
* We ran out of memory, or some other thing happened to us that made
474
* us unable to handle the page fault gracefully.
475
*/
476
out_of_memory:
477
insn = get_fault_insn(regs, insn);
478
up_read(&mm->mmap_sem);
479
if (!(regs->tstate & TSTATE_PRIV)) {
480
pagefault_out_of_memory();
481
return;
482
}
483
goto handle_kernel_fault;
484
485
intr_or_no_mm:
486
insn = get_fault_insn(regs, 0);
487
goto handle_kernel_fault;
488
489
do_sigbus:
490
insn = get_fault_insn(regs, insn);
491
up_read(&mm->mmap_sem);
492
493
/*
494
* Send a sigbus, regardless of whether we were in kernel
495
* or user mode.
496
*/
497
do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code);
498
499
/* Kernel mode? Handle exceptions or die */
500
if (regs->tstate & TSTATE_PRIV)
501
goto handle_kernel_fault;
502
}
503
504