Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sparc/mm/hugetlbpage.c
10817 views
1
/*
2
* SPARC64 Huge TLB page support.
3
*
4
* Copyright (C) 2002, 2003, 2006 David S. Miller ([email protected])
5
*/
6
7
#include <linux/init.h>
8
#include <linux/module.h>
9
#include <linux/fs.h>
10
#include <linux/mm.h>
11
#include <linux/hugetlb.h>
12
#include <linux/pagemap.h>
13
#include <linux/sysctl.h>
14
15
#include <asm/mman.h>
16
#include <asm/pgalloc.h>
17
#include <asm/tlb.h>
18
#include <asm/tlbflush.h>
19
#include <asm/cacheflush.h>
20
#include <asm/mmu_context.h>
21
22
/* Slightly simplified from the non-hugepage variant because by
23
* definition we don't have to worry about any page coloring stuff
24
*/
25
#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
26
#define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
27
28
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
29
unsigned long addr,
30
unsigned long len,
31
unsigned long pgoff,
32
unsigned long flags)
33
{
34
struct mm_struct *mm = current->mm;
35
struct vm_area_struct * vma;
36
unsigned long task_size = TASK_SIZE;
37
unsigned long start_addr;
38
39
if (test_thread_flag(TIF_32BIT))
40
task_size = STACK_TOP32;
41
if (unlikely(len >= VA_EXCLUDE_START))
42
return -ENOMEM;
43
44
if (len > mm->cached_hole_size) {
45
start_addr = addr = mm->free_area_cache;
46
} else {
47
start_addr = addr = TASK_UNMAPPED_BASE;
48
mm->cached_hole_size = 0;
49
}
50
51
task_size -= len;
52
53
full_search:
54
addr = ALIGN(addr, HPAGE_SIZE);
55
56
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
57
/* At this point: (!vma || addr < vma->vm_end). */
58
if (addr < VA_EXCLUDE_START &&
59
(addr + len) >= VA_EXCLUDE_START) {
60
addr = VA_EXCLUDE_END;
61
vma = find_vma(mm, VA_EXCLUDE_END);
62
}
63
if (unlikely(task_size < addr)) {
64
if (start_addr != TASK_UNMAPPED_BASE) {
65
start_addr = addr = TASK_UNMAPPED_BASE;
66
mm->cached_hole_size = 0;
67
goto full_search;
68
}
69
return -ENOMEM;
70
}
71
if (likely(!vma || addr + len <= vma->vm_start)) {
72
/*
73
* Remember the place where we stopped the search:
74
*/
75
mm->free_area_cache = addr + len;
76
return addr;
77
}
78
if (addr + mm->cached_hole_size < vma->vm_start)
79
mm->cached_hole_size = vma->vm_start - addr;
80
81
addr = ALIGN(vma->vm_end, HPAGE_SIZE);
82
}
83
}
84
85
static unsigned long
86
hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
87
const unsigned long len,
88
const unsigned long pgoff,
89
const unsigned long flags)
90
{
91
struct vm_area_struct *vma;
92
struct mm_struct *mm = current->mm;
93
unsigned long addr = addr0;
94
95
/* This should only ever run for 32-bit processes. */
96
BUG_ON(!test_thread_flag(TIF_32BIT));
97
98
/* check if free_area_cache is useful for us */
99
if (len <= mm->cached_hole_size) {
100
mm->cached_hole_size = 0;
101
mm->free_area_cache = mm->mmap_base;
102
}
103
104
/* either no address requested or can't fit in requested address hole */
105
addr = mm->free_area_cache & HPAGE_MASK;
106
107
/* make sure it can fit in the remaining address space */
108
if (likely(addr > len)) {
109
vma = find_vma(mm, addr-len);
110
if (!vma || addr <= vma->vm_start) {
111
/* remember the address as a hint for next time */
112
return (mm->free_area_cache = addr-len);
113
}
114
}
115
116
if (unlikely(mm->mmap_base < len))
117
goto bottomup;
118
119
addr = (mm->mmap_base-len) & HPAGE_MASK;
120
121
do {
122
/*
123
* Lookup failure means no vma is above this address,
124
* else if new region fits below vma->vm_start,
125
* return with success:
126
*/
127
vma = find_vma(mm, addr);
128
if (likely(!vma || addr+len <= vma->vm_start)) {
129
/* remember the address as a hint for next time */
130
return (mm->free_area_cache = addr);
131
}
132
133
/* remember the largest hole we saw so far */
134
if (addr + mm->cached_hole_size < vma->vm_start)
135
mm->cached_hole_size = vma->vm_start - addr;
136
137
/* try just below the current vma->vm_start */
138
addr = (vma->vm_start-len) & HPAGE_MASK;
139
} while (likely(len < vma->vm_start));
140
141
bottomup:
142
/*
143
* A failed mmap() very likely causes application failure,
144
* so fall back to the bottom-up function here. This scenario
145
* can happen with large stack limits and large mmap()
146
* allocations.
147
*/
148
mm->cached_hole_size = ~0UL;
149
mm->free_area_cache = TASK_UNMAPPED_BASE;
150
addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
151
/*
152
* Restore the topdown base:
153
*/
154
mm->free_area_cache = mm->mmap_base;
155
mm->cached_hole_size = ~0UL;
156
157
return addr;
158
}
159
160
unsigned long
161
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
162
unsigned long len, unsigned long pgoff, unsigned long flags)
163
{
164
struct mm_struct *mm = current->mm;
165
struct vm_area_struct *vma;
166
unsigned long task_size = TASK_SIZE;
167
168
if (test_thread_flag(TIF_32BIT))
169
task_size = STACK_TOP32;
170
171
if (len & ~HPAGE_MASK)
172
return -EINVAL;
173
if (len > task_size)
174
return -ENOMEM;
175
176
if (flags & MAP_FIXED) {
177
if (prepare_hugepage_range(file, addr, len))
178
return -EINVAL;
179
return addr;
180
}
181
182
if (addr) {
183
addr = ALIGN(addr, HPAGE_SIZE);
184
vma = find_vma(mm, addr);
185
if (task_size - len >= addr &&
186
(!vma || addr + len <= vma->vm_start))
187
return addr;
188
}
189
if (mm->get_unmapped_area == arch_get_unmapped_area)
190
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
191
pgoff, flags);
192
else
193
return hugetlb_get_unmapped_area_topdown(file, addr, len,
194
pgoff, flags);
195
}
196
197
pte_t *huge_pte_alloc(struct mm_struct *mm,
198
unsigned long addr, unsigned long sz)
199
{
200
pgd_t *pgd;
201
pud_t *pud;
202
pmd_t *pmd;
203
pte_t *pte = NULL;
204
205
/* We must align the address, because our caller will run
206
* set_huge_pte_at() on whatever we return, which writes out
207
* all of the sub-ptes for the hugepage range. So we have
208
* to give it the first such sub-pte.
209
*/
210
addr &= HPAGE_MASK;
211
212
pgd = pgd_offset(mm, addr);
213
pud = pud_alloc(mm, pgd, addr);
214
if (pud) {
215
pmd = pmd_alloc(mm, pud, addr);
216
if (pmd)
217
pte = pte_alloc_map(mm, NULL, pmd, addr);
218
}
219
return pte;
220
}
221
222
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
223
{
224
pgd_t *pgd;
225
pud_t *pud;
226
pmd_t *pmd;
227
pte_t *pte = NULL;
228
229
addr &= HPAGE_MASK;
230
231
pgd = pgd_offset(mm, addr);
232
if (!pgd_none(*pgd)) {
233
pud = pud_offset(pgd, addr);
234
if (!pud_none(*pud)) {
235
pmd = pmd_offset(pud, addr);
236
if (!pmd_none(*pmd))
237
pte = pte_offset_map(pmd, addr);
238
}
239
}
240
return pte;
241
}
242
243
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
244
{
245
return 0;
246
}
247
248
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
249
pte_t *ptep, pte_t entry)
250
{
251
int i;
252
253
if (!pte_present(*ptep) && pte_present(entry))
254
mm->context.huge_pte_count++;
255
256
addr &= HPAGE_MASK;
257
for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
258
set_pte_at(mm, addr, ptep, entry);
259
ptep++;
260
addr += PAGE_SIZE;
261
pte_val(entry) += PAGE_SIZE;
262
}
263
}
264
265
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
266
pte_t *ptep)
267
{
268
pte_t entry;
269
int i;
270
271
entry = *ptep;
272
if (pte_present(entry))
273
mm->context.huge_pte_count--;
274
275
addr &= HPAGE_MASK;
276
277
for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
278
pte_clear(mm, addr, ptep);
279
addr += PAGE_SIZE;
280
ptep++;
281
}
282
283
return entry;
284
}
285
286
struct page *follow_huge_addr(struct mm_struct *mm,
287
unsigned long address, int write)
288
{
289
return ERR_PTR(-EINVAL);
290
}
291
292
int pmd_huge(pmd_t pmd)
293
{
294
return 0;
295
}
296
297
int pud_huge(pud_t pud)
298
{
299
return 0;
300
}
301
302
struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
303
pmd_t *pmd, int write)
304
{
305
return NULL;
306
}
307
308
static void context_reload(void *__data)
309
{
310
struct mm_struct *mm = __data;
311
312
if (mm == current->mm)
313
load_secondary_context(mm);
314
}
315
316
void hugetlb_prefault_arch_hook(struct mm_struct *mm)
317
{
318
struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
319
320
if (likely(tp->tsb != NULL))
321
return;
322
323
tsb_grow(mm, MM_TSB_HUGE, 0);
324
tsb_context_switch(mm);
325
smp_tsb_sync(mm);
326
327
/* On UltraSPARC-III+ and later, configure the second half of
328
* the Data-TLB for huge pages.
329
*/
330
if (tlb_type == cheetah_plus) {
331
unsigned long ctx;
332
333
spin_lock(&ctx_alloc_lock);
334
ctx = mm->context.sparc64_ctx_val;
335
ctx &= ~CTX_PGSZ_MASK;
336
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
337
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
338
339
if (ctx != mm->context.sparc64_ctx_val) {
340
/* When changing the page size fields, we
341
* must perform a context flush so that no
342
* stale entries match. This flush must
343
* occur with the original context register
344
* settings.
345
*/
346
do_flush_tlb_mm(mm);
347
348
/* Reload the context register of all processors
349
* also executing in this address space.
350
*/
351
mm->context.sparc64_ctx_val = ctx;
352
on_each_cpu(context_reload, mm, 0);
353
}
354
spin_unlock(&ctx_alloc_lock);
355
}
356
}
357
358