Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/sparc/mm/init_64.c
10817 views
1
/*
2
* arch/sparc64/mm/init.c
3
*
4
* Copyright (C) 1996-1999 David S. Miller ([email protected])
5
* Copyright (C) 1997-1999 Jakub Jelinek ([email protected])
6
*/
7
8
#include <linux/module.h>
9
#include <linux/kernel.h>
10
#include <linux/sched.h>
11
#include <linux/string.h>
12
#include <linux/init.h>
13
#include <linux/bootmem.h>
14
#include <linux/mm.h>
15
#include <linux/hugetlb.h>
16
#include <linux/initrd.h>
17
#include <linux/swap.h>
18
#include <linux/pagemap.h>
19
#include <linux/poison.h>
20
#include <linux/fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/kprobes.h>
23
#include <linux/cache.h>
24
#include <linux/sort.h>
25
#include <linux/percpu.h>
26
#include <linux/memblock.h>
27
#include <linux/mmzone.h>
28
#include <linux/gfp.h>
29
30
#include <asm/head.h>
31
#include <asm/system.h>
32
#include <asm/page.h>
33
#include <asm/pgalloc.h>
34
#include <asm/pgtable.h>
35
#include <asm/oplib.h>
36
#include <asm/iommu.h>
37
#include <asm/io.h>
38
#include <asm/uaccess.h>
39
#include <asm/mmu_context.h>
40
#include <asm/tlbflush.h>
41
#include <asm/dma.h>
42
#include <asm/starfire.h>
43
#include <asm/tlb.h>
44
#include <asm/spitfire.h>
45
#include <asm/sections.h>
46
#include <asm/tsb.h>
47
#include <asm/hypervisor.h>
48
#include <asm/prom.h>
49
#include <asm/mdesc.h>
50
#include <asm/cpudata.h>
51
#include <asm/irq.h>
52
53
#include "init_64.h"
54
55
unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57
/* A bitmap, one bit for every 256MB of physical memory. If the bit
58
* is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59
* if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60
*/
61
unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63
#ifndef CONFIG_DEBUG_PAGEALLOC
64
/* A special kernel TSB for 4MB and 256MB linear mappings.
65
* Space is allocated for this right after the trap table
66
* in arch/sparc64/kernel/head.S
67
*/
68
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69
#endif
70
71
#define MAX_BANKS 32
72
73
static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74
static int pavail_ents __devinitdata;
75
76
static int cmp_p64(const void *a, const void *b)
77
{
78
const struct linux_prom64_registers *x = a, *y = b;
79
80
if (x->phys_addr > y->phys_addr)
81
return 1;
82
if (x->phys_addr < y->phys_addr)
83
return -1;
84
return 0;
85
}
86
87
static void __init read_obp_memory(const char *property,
88
struct linux_prom64_registers *regs,
89
int *num_ents)
90
{
91
phandle node = prom_finddevice("/memory");
92
int prop_size = prom_getproplen(node, property);
93
int ents, ret, i;
94
95
ents = prop_size / sizeof(struct linux_prom64_registers);
96
if (ents > MAX_BANKS) {
97
prom_printf("The machine has more %s property entries than "
98
"this kernel can support (%d).\n",
99
property, MAX_BANKS);
100
prom_halt();
101
}
102
103
ret = prom_getproperty(node, property, (char *) regs, prop_size);
104
if (ret == -1) {
105
prom_printf("Couldn't get %s property from /memory.\n");
106
prom_halt();
107
}
108
109
/* Sanitize what we got from the firmware, by page aligning
110
* everything.
111
*/
112
for (i = 0; i < ents; i++) {
113
unsigned long base, size;
114
115
base = regs[i].phys_addr;
116
size = regs[i].reg_size;
117
118
size &= PAGE_MASK;
119
if (base & ~PAGE_MASK) {
120
unsigned long new_base = PAGE_ALIGN(base);
121
122
size -= new_base - base;
123
if ((long) size < 0L)
124
size = 0UL;
125
base = new_base;
126
}
127
if (size == 0UL) {
128
/* If it is empty, simply get rid of it.
129
* This simplifies the logic of the other
130
* functions that process these arrays.
131
*/
132
memmove(&regs[i], &regs[i + 1],
133
(ents - i - 1) * sizeof(regs[0]));
134
i--;
135
ents--;
136
continue;
137
}
138
regs[i].phys_addr = base;
139
regs[i].reg_size = size;
140
}
141
142
*num_ents = ents;
143
144
sort(regs, ents, sizeof(struct linux_prom64_registers),
145
cmp_p64, NULL);
146
}
147
148
unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149
sizeof(unsigned long)];
150
EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151
152
/* Kernel physical address base and size in bytes. */
153
unsigned long kern_base __read_mostly;
154
unsigned long kern_size __read_mostly;
155
156
/* Initial ramdisk setup */
157
extern unsigned long sparc_ramdisk_image64;
158
extern unsigned int sparc_ramdisk_image;
159
extern unsigned int sparc_ramdisk_size;
160
161
struct page *mem_map_zero __read_mostly;
162
EXPORT_SYMBOL(mem_map_zero);
163
164
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166
unsigned long sparc64_kern_pri_context __read_mostly;
167
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168
unsigned long sparc64_kern_sec_context __read_mostly;
169
170
int num_kernel_image_mappings;
171
172
#ifdef CONFIG_DEBUG_DCFLUSH
173
atomic_t dcpage_flushes = ATOMIC_INIT(0);
174
#ifdef CONFIG_SMP
175
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176
#endif
177
#endif
178
179
inline void flush_dcache_page_impl(struct page *page)
180
{
181
BUG_ON(tlb_type == hypervisor);
182
#ifdef CONFIG_DEBUG_DCFLUSH
183
atomic_inc(&dcpage_flushes);
184
#endif
185
186
#ifdef DCACHE_ALIASING_POSSIBLE
187
__flush_dcache_page(page_address(page),
188
((tlb_type == spitfire) &&
189
page_mapping(page) != NULL));
190
#else
191
if (page_mapping(page) != NULL &&
192
tlb_type == spitfire)
193
__flush_icache_page(__pa(page_address(page)));
194
#endif
195
}
196
197
#define PG_dcache_dirty PG_arch_1
198
#define PG_dcache_cpu_shift 32UL
199
#define PG_dcache_cpu_mask \
200
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202
#define dcache_dirty_cpu(page) \
203
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205
static inline void set_dcache_dirty(struct page *page, int this_cpu)
206
{
207
unsigned long mask = this_cpu;
208
unsigned long non_cpu_bits;
209
210
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213
__asm__ __volatile__("1:\n\t"
214
"ldx [%2], %%g7\n\t"
215
"and %%g7, %1, %%g1\n\t"
216
"or %%g1, %0, %%g1\n\t"
217
"casx [%2], %%g7, %%g1\n\t"
218
"cmp %%g7, %%g1\n\t"
219
"bne,pn %%xcc, 1b\n\t"
220
" nop"
221
: /* no outputs */
222
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223
: "g1", "g7");
224
}
225
226
static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227
{
228
unsigned long mask = (1UL << PG_dcache_dirty);
229
230
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231
"1:\n\t"
232
"ldx [%2], %%g7\n\t"
233
"srlx %%g7, %4, %%g1\n\t"
234
"and %%g1, %3, %%g1\n\t"
235
"cmp %%g1, %0\n\t"
236
"bne,pn %%icc, 2f\n\t"
237
" andn %%g7, %1, %%g1\n\t"
238
"casx [%2], %%g7, %%g1\n\t"
239
"cmp %%g7, %%g1\n\t"
240
"bne,pn %%xcc, 1b\n\t"
241
" nop\n"
242
"2:"
243
: /* no outputs */
244
: "r" (cpu), "r" (mask), "r" (&page->flags),
245
"i" (PG_dcache_cpu_mask),
246
"i" (PG_dcache_cpu_shift)
247
: "g1", "g7");
248
}
249
250
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251
{
252
unsigned long tsb_addr = (unsigned long) ent;
253
254
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255
tsb_addr = __pa(tsb_addr);
256
257
__tsb_insert(tsb_addr, tag, pte);
258
}
259
260
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261
unsigned long _PAGE_SZBITS __read_mostly;
262
263
static void flush_dcache(unsigned long pfn)
264
{
265
struct page *page;
266
267
page = pfn_to_page(pfn);
268
if (page) {
269
unsigned long pg_flags;
270
271
pg_flags = page->flags;
272
if (pg_flags & (1UL << PG_dcache_dirty)) {
273
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274
PG_dcache_cpu_mask);
275
int this_cpu = get_cpu();
276
277
/* This is just to optimize away some function calls
278
* in the SMP case.
279
*/
280
if (cpu == this_cpu)
281
flush_dcache_page_impl(page);
282
else
283
smp_flush_dcache_page_impl(page, cpu);
284
285
clear_dcache_dirty_cpu(page, cpu);
286
287
put_cpu();
288
}
289
}
290
}
291
292
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293
{
294
struct mm_struct *mm;
295
struct tsb *tsb;
296
unsigned long tag, flags;
297
unsigned long tsb_index, tsb_hash_shift;
298
pte_t pte = *ptep;
299
300
if (tlb_type != hypervisor) {
301
unsigned long pfn = pte_pfn(pte);
302
303
if (pfn_valid(pfn))
304
flush_dcache(pfn);
305
}
306
307
mm = vma->vm_mm;
308
309
tsb_index = MM_TSB_BASE;
310
tsb_hash_shift = PAGE_SHIFT;
311
312
spin_lock_irqsave(&mm->context.lock, flags);
313
314
#ifdef CONFIG_HUGETLB_PAGE
315
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316
if ((tlb_type == hypervisor &&
317
(pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318
(tlb_type != hypervisor &&
319
(pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320
tsb_index = MM_TSB_HUGE;
321
tsb_hash_shift = HPAGE_SHIFT;
322
}
323
}
324
#endif
325
326
tsb = mm->context.tsb_block[tsb_index].tsb;
327
tsb += ((address >> tsb_hash_shift) &
328
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329
tag = (address >> 22UL);
330
tsb_insert(tsb, tag, pte_val(pte));
331
332
spin_unlock_irqrestore(&mm->context.lock, flags);
333
}
334
335
void flush_dcache_page(struct page *page)
336
{
337
struct address_space *mapping;
338
int this_cpu;
339
340
if (tlb_type == hypervisor)
341
return;
342
343
/* Do not bother with the expensive D-cache flush if it
344
* is merely the zero page. The 'bigcore' testcase in GDB
345
* causes this case to run millions of times.
346
*/
347
if (page == ZERO_PAGE(0))
348
return;
349
350
this_cpu = get_cpu();
351
352
mapping = page_mapping(page);
353
if (mapping && !mapping_mapped(mapping)) {
354
int dirty = test_bit(PG_dcache_dirty, &page->flags);
355
if (dirty) {
356
int dirty_cpu = dcache_dirty_cpu(page);
357
358
if (dirty_cpu == this_cpu)
359
goto out;
360
smp_flush_dcache_page_impl(page, dirty_cpu);
361
}
362
set_dcache_dirty(page, this_cpu);
363
} else {
364
/* We could delay the flush for the !page_mapping
365
* case too. But that case is for exec env/arg
366
* pages and those are %99 certainly going to get
367
* faulted into the tlb (and thus flushed) anyways.
368
*/
369
flush_dcache_page_impl(page);
370
}
371
372
out:
373
put_cpu();
374
}
375
EXPORT_SYMBOL(flush_dcache_page);
376
377
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378
{
379
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380
if (tlb_type == spitfire) {
381
unsigned long kaddr;
382
383
/* This code only runs on Spitfire cpus so this is
384
* why we can assume _PAGE_PADDR_4U.
385
*/
386
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387
unsigned long paddr, mask = _PAGE_PADDR_4U;
388
389
if (kaddr >= PAGE_OFFSET)
390
paddr = kaddr & mask;
391
else {
392
pgd_t *pgdp = pgd_offset_k(kaddr);
393
pud_t *pudp = pud_offset(pgdp, kaddr);
394
pmd_t *pmdp = pmd_offset(pudp, kaddr);
395
pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396
397
paddr = pte_val(*ptep) & mask;
398
}
399
__flush_icache_page(paddr);
400
}
401
}
402
}
403
EXPORT_SYMBOL(flush_icache_range);
404
405
void mmu_info(struct seq_file *m)
406
{
407
if (tlb_type == cheetah)
408
seq_printf(m, "MMU Type\t: Cheetah\n");
409
else if (tlb_type == cheetah_plus)
410
seq_printf(m, "MMU Type\t: Cheetah+\n");
411
else if (tlb_type == spitfire)
412
seq_printf(m, "MMU Type\t: Spitfire\n");
413
else if (tlb_type == hypervisor)
414
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415
else
416
seq_printf(m, "MMU Type\t: ???\n");
417
418
#ifdef CONFIG_DEBUG_DCFLUSH
419
seq_printf(m, "DCPageFlushes\t: %d\n",
420
atomic_read(&dcpage_flushes));
421
#ifdef CONFIG_SMP
422
seq_printf(m, "DCPageFlushesXC\t: %d\n",
423
atomic_read(&dcpage_flushes_xcall));
424
#endif /* CONFIG_SMP */
425
#endif /* CONFIG_DEBUG_DCFLUSH */
426
}
427
428
struct linux_prom_translation prom_trans[512] __read_mostly;
429
unsigned int prom_trans_ents __read_mostly;
430
431
unsigned long kern_locked_tte_data;
432
433
/* The obp translations are saved based on 8k pagesize, since obp can
434
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435
* HI_OBP_ADDRESS range are handled in ktlb.S.
436
*/
437
static inline int in_obp_range(unsigned long vaddr)
438
{
439
return (vaddr >= LOW_OBP_ADDRESS &&
440
vaddr < HI_OBP_ADDRESS);
441
}
442
443
static int cmp_ptrans(const void *a, const void *b)
444
{
445
const struct linux_prom_translation *x = a, *y = b;
446
447
if (x->virt > y->virt)
448
return 1;
449
if (x->virt < y->virt)
450
return -1;
451
return 0;
452
}
453
454
/* Read OBP translations property into 'prom_trans[]'. */
455
static void __init read_obp_translations(void)
456
{
457
int n, node, ents, first, last, i;
458
459
node = prom_finddevice("/virtual-memory");
460
n = prom_getproplen(node, "translations");
461
if (unlikely(n == 0 || n == -1)) {
462
prom_printf("prom_mappings: Couldn't get size.\n");
463
prom_halt();
464
}
465
if (unlikely(n > sizeof(prom_trans))) {
466
prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467
prom_halt();
468
}
469
470
if ((n = prom_getproperty(node, "translations",
471
(char *)&prom_trans[0],
472
sizeof(prom_trans))) == -1) {
473
prom_printf("prom_mappings: Couldn't get property.\n");
474
prom_halt();
475
}
476
477
n = n / sizeof(struct linux_prom_translation);
478
479
ents = n;
480
481
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482
cmp_ptrans, NULL);
483
484
/* Now kick out all the non-OBP entries. */
485
for (i = 0; i < ents; i++) {
486
if (in_obp_range(prom_trans[i].virt))
487
break;
488
}
489
first = i;
490
for (; i < ents; i++) {
491
if (!in_obp_range(prom_trans[i].virt))
492
break;
493
}
494
last = i;
495
496
for (i = 0; i < (last - first); i++) {
497
struct linux_prom_translation *src = &prom_trans[i + first];
498
struct linux_prom_translation *dest = &prom_trans[i];
499
500
*dest = *src;
501
}
502
for (; i < ents; i++) {
503
struct linux_prom_translation *dest = &prom_trans[i];
504
dest->virt = dest->size = dest->data = 0x0UL;
505
}
506
507
prom_trans_ents = last - first;
508
509
if (tlb_type == spitfire) {
510
/* Clear diag TTE bits. */
511
for (i = 0; i < prom_trans_ents; i++)
512
prom_trans[i].data &= ~0x0003fe0000000000UL;
513
}
514
}
515
516
static void __init hypervisor_tlb_lock(unsigned long vaddr,
517
unsigned long pte,
518
unsigned long mmu)
519
{
520
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
521
522
if (ret != 0) {
523
prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
524
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
525
prom_halt();
526
}
527
}
528
529
static unsigned long kern_large_tte(unsigned long paddr);
530
531
static void __init remap_kernel(void)
532
{
533
unsigned long phys_page, tte_vaddr, tte_data;
534
int i, tlb_ent = sparc64_highest_locked_tlbent();
535
536
tte_vaddr = (unsigned long) KERNBASE;
537
phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
538
tte_data = kern_large_tte(phys_page);
539
540
kern_locked_tte_data = tte_data;
541
542
/* Now lock us into the TLBs via Hypervisor or OBP. */
543
if (tlb_type == hypervisor) {
544
for (i = 0; i < num_kernel_image_mappings; i++) {
545
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
546
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
547
tte_vaddr += 0x400000;
548
tte_data += 0x400000;
549
}
550
} else {
551
for (i = 0; i < num_kernel_image_mappings; i++) {
552
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
553
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
554
tte_vaddr += 0x400000;
555
tte_data += 0x400000;
556
}
557
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
558
}
559
if (tlb_type == cheetah_plus) {
560
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
561
CTX_CHEETAH_PLUS_NUC);
562
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
563
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
564
}
565
}
566
567
568
static void __init inherit_prom_mappings(void)
569
{
570
/* Now fixup OBP's idea about where we really are mapped. */
571
printk("Remapping the kernel... ");
572
remap_kernel();
573
printk("done.\n");
574
}
575
576
void prom_world(int enter)
577
{
578
if (!enter)
579
set_fs((mm_segment_t) { get_thread_current_ds() });
580
581
__asm__ __volatile__("flushw");
582
}
583
584
void __flush_dcache_range(unsigned long start, unsigned long end)
585
{
586
unsigned long va;
587
588
if (tlb_type == spitfire) {
589
int n = 0;
590
591
for (va = start; va < end; va += 32) {
592
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
593
if (++n >= 512)
594
break;
595
}
596
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
597
start = __pa(start);
598
end = __pa(end);
599
for (va = start; va < end; va += 32)
600
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
601
"membar #Sync"
602
: /* no outputs */
603
: "r" (va),
604
"i" (ASI_DCACHE_INVALIDATE));
605
}
606
}
607
EXPORT_SYMBOL(__flush_dcache_range);
608
609
/* get_new_mmu_context() uses "cache + 1". */
610
DEFINE_SPINLOCK(ctx_alloc_lock);
611
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
612
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
613
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
614
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
615
616
/* Caller does TLB context flushing on local CPU if necessary.
617
* The caller also ensures that CTX_VALID(mm->context) is false.
618
*
619
* We must be careful about boundary cases so that we never
620
* let the user have CTX 0 (nucleus) or we ever use a CTX
621
* version of zero (and thus NO_CONTEXT would not be caught
622
* by version mis-match tests in mmu_context.h).
623
*
624
* Always invoked with interrupts disabled.
625
*/
626
void get_new_mmu_context(struct mm_struct *mm)
627
{
628
unsigned long ctx, new_ctx;
629
unsigned long orig_pgsz_bits;
630
unsigned long flags;
631
int new_version;
632
633
spin_lock_irqsave(&ctx_alloc_lock, flags);
634
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
635
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
636
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
637
new_version = 0;
638
if (new_ctx >= (1 << CTX_NR_BITS)) {
639
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
640
if (new_ctx >= ctx) {
641
int i;
642
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
643
CTX_FIRST_VERSION;
644
if (new_ctx == 1)
645
new_ctx = CTX_FIRST_VERSION;
646
647
/* Don't call memset, for 16 entries that's just
648
* plain silly...
649
*/
650
mmu_context_bmap[0] = 3;
651
mmu_context_bmap[1] = 0;
652
mmu_context_bmap[2] = 0;
653
mmu_context_bmap[3] = 0;
654
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
655
mmu_context_bmap[i + 0] = 0;
656
mmu_context_bmap[i + 1] = 0;
657
mmu_context_bmap[i + 2] = 0;
658
mmu_context_bmap[i + 3] = 0;
659
}
660
new_version = 1;
661
goto out;
662
}
663
}
664
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
665
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
666
out:
667
tlb_context_cache = new_ctx;
668
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
669
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
670
671
if (unlikely(new_version))
672
smp_new_mmu_context_version();
673
}
674
675
static int numa_enabled = 1;
676
static int numa_debug;
677
678
static int __init early_numa(char *p)
679
{
680
if (!p)
681
return 0;
682
683
if (strstr(p, "off"))
684
numa_enabled = 0;
685
686
if (strstr(p, "debug"))
687
numa_debug = 1;
688
689
return 0;
690
}
691
early_param("numa", early_numa);
692
693
#define numadbg(f, a...) \
694
do { if (numa_debug) \
695
printk(KERN_INFO f, ## a); \
696
} while (0)
697
698
static void __init find_ramdisk(unsigned long phys_base)
699
{
700
#ifdef CONFIG_BLK_DEV_INITRD
701
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
702
unsigned long ramdisk_image;
703
704
/* Older versions of the bootloader only supported a
705
* 32-bit physical address for the ramdisk image
706
* location, stored at sparc_ramdisk_image. Newer
707
* SILO versions set sparc_ramdisk_image to zero and
708
* provide a full 64-bit physical address at
709
* sparc_ramdisk_image64.
710
*/
711
ramdisk_image = sparc_ramdisk_image;
712
if (!ramdisk_image)
713
ramdisk_image = sparc_ramdisk_image64;
714
715
/* Another bootloader quirk. The bootloader normalizes
716
* the physical address to KERNBASE, so we have to
717
* factor that back out and add in the lowest valid
718
* physical page address to get the true physical address.
719
*/
720
ramdisk_image -= KERNBASE;
721
ramdisk_image += phys_base;
722
723
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
724
ramdisk_image, sparc_ramdisk_size);
725
726
initrd_start = ramdisk_image;
727
initrd_end = ramdisk_image + sparc_ramdisk_size;
728
729
memblock_reserve(initrd_start, sparc_ramdisk_size);
730
731
initrd_start += PAGE_OFFSET;
732
initrd_end += PAGE_OFFSET;
733
}
734
#endif
735
}
736
737
struct node_mem_mask {
738
unsigned long mask;
739
unsigned long val;
740
unsigned long bootmem_paddr;
741
};
742
static struct node_mem_mask node_masks[MAX_NUMNODES];
743
static int num_node_masks;
744
745
int numa_cpu_lookup_table[NR_CPUS];
746
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
747
748
#ifdef CONFIG_NEED_MULTIPLE_NODES
749
750
struct mdesc_mblock {
751
u64 base;
752
u64 size;
753
u64 offset; /* RA-to-PA */
754
};
755
static struct mdesc_mblock *mblocks;
756
static int num_mblocks;
757
758
static unsigned long ra_to_pa(unsigned long addr)
759
{
760
int i;
761
762
for (i = 0; i < num_mblocks; i++) {
763
struct mdesc_mblock *m = &mblocks[i];
764
765
if (addr >= m->base &&
766
addr < (m->base + m->size)) {
767
addr += m->offset;
768
break;
769
}
770
}
771
return addr;
772
}
773
774
static int find_node(unsigned long addr)
775
{
776
int i;
777
778
addr = ra_to_pa(addr);
779
for (i = 0; i < num_node_masks; i++) {
780
struct node_mem_mask *p = &node_masks[i];
781
782
if ((addr & p->mask) == p->val)
783
return i;
784
}
785
return -1;
786
}
787
788
u64 memblock_nid_range(u64 start, u64 end, int *nid)
789
{
790
*nid = find_node(start);
791
start += PAGE_SIZE;
792
while (start < end) {
793
int n = find_node(start);
794
795
if (n != *nid)
796
break;
797
start += PAGE_SIZE;
798
}
799
800
if (start > end)
801
start = end;
802
803
return start;
804
}
805
#else
806
u64 memblock_nid_range(u64 start, u64 end, int *nid)
807
{
808
*nid = 0;
809
return end;
810
}
811
#endif
812
813
/* This must be invoked after performing all of the necessary
814
* add_active_range() calls for 'nid'. We need to be able to get
815
* correct data from get_pfn_range_for_nid().
816
*/
817
static void __init allocate_node_data(int nid)
818
{
819
unsigned long paddr, num_pages, start_pfn, end_pfn;
820
struct pglist_data *p;
821
822
#ifdef CONFIG_NEED_MULTIPLE_NODES
823
paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
824
if (!paddr) {
825
prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
826
prom_halt();
827
}
828
NODE_DATA(nid) = __va(paddr);
829
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
830
831
NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
832
#endif
833
834
p = NODE_DATA(nid);
835
836
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
837
p->node_start_pfn = start_pfn;
838
p->node_spanned_pages = end_pfn - start_pfn;
839
840
if (p->node_spanned_pages) {
841
num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
842
843
paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
844
if (!paddr) {
845
prom_printf("Cannot allocate bootmap for nid[%d]\n",
846
nid);
847
prom_halt();
848
}
849
node_masks[nid].bootmem_paddr = paddr;
850
}
851
}
852
853
static void init_node_masks_nonnuma(void)
854
{
855
int i;
856
857
numadbg("Initializing tables for non-numa.\n");
858
859
node_masks[0].mask = node_masks[0].val = 0;
860
num_node_masks = 1;
861
862
for (i = 0; i < NR_CPUS; i++)
863
numa_cpu_lookup_table[i] = 0;
864
865
cpumask_setall(&numa_cpumask_lookup_table[0]);
866
}
867
868
#ifdef CONFIG_NEED_MULTIPLE_NODES
869
struct pglist_data *node_data[MAX_NUMNODES];
870
871
EXPORT_SYMBOL(numa_cpu_lookup_table);
872
EXPORT_SYMBOL(numa_cpumask_lookup_table);
873
EXPORT_SYMBOL(node_data);
874
875
struct mdesc_mlgroup {
876
u64 node;
877
u64 latency;
878
u64 match;
879
u64 mask;
880
};
881
static struct mdesc_mlgroup *mlgroups;
882
static int num_mlgroups;
883
884
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
885
u32 cfg_handle)
886
{
887
u64 arc;
888
889
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
890
u64 target = mdesc_arc_target(md, arc);
891
const u64 *val;
892
893
val = mdesc_get_property(md, target,
894
"cfg-handle", NULL);
895
if (val && *val == cfg_handle)
896
return 0;
897
}
898
return -ENODEV;
899
}
900
901
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
902
u32 cfg_handle)
903
{
904
u64 arc, candidate, best_latency = ~(u64)0;
905
906
candidate = MDESC_NODE_NULL;
907
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
908
u64 target = mdesc_arc_target(md, arc);
909
const char *name = mdesc_node_name(md, target);
910
const u64 *val;
911
912
if (strcmp(name, "pio-latency-group"))
913
continue;
914
915
val = mdesc_get_property(md, target, "latency", NULL);
916
if (!val)
917
continue;
918
919
if (*val < best_latency) {
920
candidate = target;
921
best_latency = *val;
922
}
923
}
924
925
if (candidate == MDESC_NODE_NULL)
926
return -ENODEV;
927
928
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
929
}
930
931
int of_node_to_nid(struct device_node *dp)
932
{
933
const struct linux_prom64_registers *regs;
934
struct mdesc_handle *md;
935
u32 cfg_handle;
936
int count, nid;
937
u64 grp;
938
939
/* This is the right thing to do on currently supported
940
* SUN4U NUMA platforms as well, as the PCI controller does
941
* not sit behind any particular memory controller.
942
*/
943
if (!mlgroups)
944
return -1;
945
946
regs = of_get_property(dp, "reg", NULL);
947
if (!regs)
948
return -1;
949
950
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
951
952
md = mdesc_grab();
953
954
count = 0;
955
nid = -1;
956
mdesc_for_each_node_by_name(md, grp, "group") {
957
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
958
nid = count;
959
break;
960
}
961
count++;
962
}
963
964
mdesc_release(md);
965
966
return nid;
967
}
968
969
static void __init add_node_ranges(void)
970
{
971
struct memblock_region *reg;
972
973
for_each_memblock(memory, reg) {
974
unsigned long size = reg->size;
975
unsigned long start, end;
976
977
start = reg->base;
978
end = start + size;
979
while (start < end) {
980
unsigned long this_end;
981
int nid;
982
983
this_end = memblock_nid_range(start, end, &nid);
984
985
numadbg("Adding active range nid[%d] "
986
"start[%lx] end[%lx]\n",
987
nid, start, this_end);
988
989
add_active_range(nid,
990
start >> PAGE_SHIFT,
991
this_end >> PAGE_SHIFT);
992
993
start = this_end;
994
}
995
}
996
}
997
998
static int __init grab_mlgroups(struct mdesc_handle *md)
999
{
1000
unsigned long paddr;
1001
int count = 0;
1002
u64 node;
1003
1004
mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1005
count++;
1006
if (!count)
1007
return -ENOENT;
1008
1009
paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1010
SMP_CACHE_BYTES);
1011
if (!paddr)
1012
return -ENOMEM;
1013
1014
mlgroups = __va(paddr);
1015
num_mlgroups = count;
1016
1017
count = 0;
1018
mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1019
struct mdesc_mlgroup *m = &mlgroups[count++];
1020
const u64 *val;
1021
1022
m->node = node;
1023
1024
val = mdesc_get_property(md, node, "latency", NULL);
1025
m->latency = *val;
1026
val = mdesc_get_property(md, node, "address-match", NULL);
1027
m->match = *val;
1028
val = mdesc_get_property(md, node, "address-mask", NULL);
1029
m->mask = *val;
1030
1031
numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1032
"match[%llx] mask[%llx]\n",
1033
count - 1, m->node, m->latency, m->match, m->mask);
1034
}
1035
1036
return 0;
1037
}
1038
1039
static int __init grab_mblocks(struct mdesc_handle *md)
1040
{
1041
unsigned long paddr;
1042
int count = 0;
1043
u64 node;
1044
1045
mdesc_for_each_node_by_name(md, node, "mblock")
1046
count++;
1047
if (!count)
1048
return -ENOENT;
1049
1050
paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1051
SMP_CACHE_BYTES);
1052
if (!paddr)
1053
return -ENOMEM;
1054
1055
mblocks = __va(paddr);
1056
num_mblocks = count;
1057
1058
count = 0;
1059
mdesc_for_each_node_by_name(md, node, "mblock") {
1060
struct mdesc_mblock *m = &mblocks[count++];
1061
const u64 *val;
1062
1063
val = mdesc_get_property(md, node, "base", NULL);
1064
m->base = *val;
1065
val = mdesc_get_property(md, node, "size", NULL);
1066
m->size = *val;
1067
val = mdesc_get_property(md, node,
1068
"address-congruence-offset", NULL);
1069
m->offset = *val;
1070
1071
numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1072
count - 1, m->base, m->size, m->offset);
1073
}
1074
1075
return 0;
1076
}
1077
1078
static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1079
u64 grp, cpumask_t *mask)
1080
{
1081
u64 arc;
1082
1083
cpumask_clear(mask);
1084
1085
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1086
u64 target = mdesc_arc_target(md, arc);
1087
const char *name = mdesc_node_name(md, target);
1088
const u64 *id;
1089
1090
if (strcmp(name, "cpu"))
1091
continue;
1092
id = mdesc_get_property(md, target, "id", NULL);
1093
if (*id < nr_cpu_ids)
1094
cpumask_set_cpu(*id, mask);
1095
}
1096
}
1097
1098
static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1099
{
1100
int i;
1101
1102
for (i = 0; i < num_mlgroups; i++) {
1103
struct mdesc_mlgroup *m = &mlgroups[i];
1104
if (m->node == node)
1105
return m;
1106
}
1107
return NULL;
1108
}
1109
1110
static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1111
int index)
1112
{
1113
struct mdesc_mlgroup *candidate = NULL;
1114
u64 arc, best_latency = ~(u64)0;
1115
struct node_mem_mask *n;
1116
1117
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1118
u64 target = mdesc_arc_target(md, arc);
1119
struct mdesc_mlgroup *m = find_mlgroup(target);
1120
if (!m)
1121
continue;
1122
if (m->latency < best_latency) {
1123
candidate = m;
1124
best_latency = m->latency;
1125
}
1126
}
1127
if (!candidate)
1128
return -ENOENT;
1129
1130
if (num_node_masks != index) {
1131
printk(KERN_ERR "Inconsistent NUMA state, "
1132
"index[%d] != num_node_masks[%d]\n",
1133
index, num_node_masks);
1134
return -EINVAL;
1135
}
1136
1137
n = &node_masks[num_node_masks++];
1138
1139
n->mask = candidate->mask;
1140
n->val = candidate->match;
1141
1142
numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1143
index, n->mask, n->val, candidate->latency);
1144
1145
return 0;
1146
}
1147
1148
static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1149
int index)
1150
{
1151
cpumask_t mask;
1152
int cpu;
1153
1154
numa_parse_mdesc_group_cpus(md, grp, &mask);
1155
1156
for_each_cpu(cpu, &mask)
1157
numa_cpu_lookup_table[cpu] = index;
1158
cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1159
1160
if (numa_debug) {
1161
printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1162
for_each_cpu(cpu, &mask)
1163
printk("%d ", cpu);
1164
printk("]\n");
1165
}
1166
1167
return numa_attach_mlgroup(md, grp, index);
1168
}
1169
1170
static int __init numa_parse_mdesc(void)
1171
{
1172
struct mdesc_handle *md = mdesc_grab();
1173
int i, err, count;
1174
u64 node;
1175
1176
node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1177
if (node == MDESC_NODE_NULL) {
1178
mdesc_release(md);
1179
return -ENOENT;
1180
}
1181
1182
err = grab_mblocks(md);
1183
if (err < 0)
1184
goto out;
1185
1186
err = grab_mlgroups(md);
1187
if (err < 0)
1188
goto out;
1189
1190
count = 0;
1191
mdesc_for_each_node_by_name(md, node, "group") {
1192
err = numa_parse_mdesc_group(md, node, count);
1193
if (err < 0)
1194
break;
1195
count++;
1196
}
1197
1198
add_node_ranges();
1199
1200
for (i = 0; i < num_node_masks; i++) {
1201
allocate_node_data(i);
1202
node_set_online(i);
1203
}
1204
1205
err = 0;
1206
out:
1207
mdesc_release(md);
1208
return err;
1209
}
1210
1211
static int __init numa_parse_jbus(void)
1212
{
1213
unsigned long cpu, index;
1214
1215
/* NUMA node id is encoded in bits 36 and higher, and there is
1216
* a 1-to-1 mapping from CPU ID to NUMA node ID.
1217
*/
1218
index = 0;
1219
for_each_present_cpu(cpu) {
1220
numa_cpu_lookup_table[cpu] = index;
1221
cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1222
node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1223
node_masks[index].val = cpu << 36UL;
1224
1225
index++;
1226
}
1227
num_node_masks = index;
1228
1229
add_node_ranges();
1230
1231
for (index = 0; index < num_node_masks; index++) {
1232
allocate_node_data(index);
1233
node_set_online(index);
1234
}
1235
1236
return 0;
1237
}
1238
1239
static int __init numa_parse_sun4u(void)
1240
{
1241
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1242
unsigned long ver;
1243
1244
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1245
if ((ver >> 32UL) == __JALAPENO_ID ||
1246
(ver >> 32UL) == __SERRANO_ID)
1247
return numa_parse_jbus();
1248
}
1249
return -1;
1250
}
1251
1252
static int __init bootmem_init_numa(void)
1253
{
1254
int err = -1;
1255
1256
numadbg("bootmem_init_numa()\n");
1257
1258
if (numa_enabled) {
1259
if (tlb_type == hypervisor)
1260
err = numa_parse_mdesc();
1261
else
1262
err = numa_parse_sun4u();
1263
}
1264
return err;
1265
}
1266
1267
#else
1268
1269
static int bootmem_init_numa(void)
1270
{
1271
return -1;
1272
}
1273
1274
#endif
1275
1276
static void __init bootmem_init_nonnuma(void)
1277
{
1278
unsigned long top_of_ram = memblock_end_of_DRAM();
1279
unsigned long total_ram = memblock_phys_mem_size();
1280
struct memblock_region *reg;
1281
1282
numadbg("bootmem_init_nonnuma()\n");
1283
1284
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1285
top_of_ram, total_ram);
1286
printk(KERN_INFO "Memory hole size: %ldMB\n",
1287
(top_of_ram - total_ram) >> 20);
1288
1289
init_node_masks_nonnuma();
1290
1291
for_each_memblock(memory, reg) {
1292
unsigned long start_pfn, end_pfn;
1293
1294
if (!reg->size)
1295
continue;
1296
1297
start_pfn = memblock_region_memory_base_pfn(reg);
1298
end_pfn = memblock_region_memory_end_pfn(reg);
1299
add_active_range(0, start_pfn, end_pfn);
1300
}
1301
1302
allocate_node_data(0);
1303
1304
node_set_online(0);
1305
}
1306
1307
static void __init reserve_range_in_node(int nid, unsigned long start,
1308
unsigned long end)
1309
{
1310
numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1311
nid, start, end);
1312
while (start < end) {
1313
unsigned long this_end;
1314
int n;
1315
1316
this_end = memblock_nid_range(start, end, &n);
1317
if (n == nid) {
1318
numadbg(" MATCH reserving range [%lx:%lx]\n",
1319
start, this_end);
1320
reserve_bootmem_node(NODE_DATA(nid), start,
1321
(this_end - start), BOOTMEM_DEFAULT);
1322
} else
1323
numadbg(" NO MATCH, advancing start to %lx\n",
1324
this_end);
1325
1326
start = this_end;
1327
}
1328
}
1329
1330
static void __init trim_reserved_in_node(int nid)
1331
{
1332
struct memblock_region *reg;
1333
1334
numadbg(" trim_reserved_in_node(%d)\n", nid);
1335
1336
for_each_memblock(reserved, reg)
1337
reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1338
}
1339
1340
static void __init bootmem_init_one_node(int nid)
1341
{
1342
struct pglist_data *p;
1343
1344
numadbg("bootmem_init_one_node(%d)\n", nid);
1345
1346
p = NODE_DATA(nid);
1347
1348
if (p->node_spanned_pages) {
1349
unsigned long paddr = node_masks[nid].bootmem_paddr;
1350
unsigned long end_pfn;
1351
1352
end_pfn = p->node_start_pfn + p->node_spanned_pages;
1353
1354
numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1355
nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1356
1357
init_bootmem_node(p, paddr >> PAGE_SHIFT,
1358
p->node_start_pfn, end_pfn);
1359
1360
numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1361
nid, end_pfn);
1362
free_bootmem_with_active_regions(nid, end_pfn);
1363
1364
trim_reserved_in_node(nid);
1365
1366
numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1367
nid);
1368
sparse_memory_present_with_active_regions(nid);
1369
}
1370
}
1371
1372
static unsigned long __init bootmem_init(unsigned long phys_base)
1373
{
1374
unsigned long end_pfn;
1375
int nid;
1376
1377
end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1378
max_pfn = max_low_pfn = end_pfn;
1379
min_low_pfn = (phys_base >> PAGE_SHIFT);
1380
1381
if (bootmem_init_numa() < 0)
1382
bootmem_init_nonnuma();
1383
1384
/* XXX cpu notifier XXX */
1385
1386
for_each_online_node(nid)
1387
bootmem_init_one_node(nid);
1388
1389
sparse_init();
1390
1391
return end_pfn;
1392
}
1393
1394
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1395
static int pall_ents __initdata;
1396
1397
#ifdef CONFIG_DEBUG_PAGEALLOC
1398
static unsigned long __ref kernel_map_range(unsigned long pstart,
1399
unsigned long pend, pgprot_t prot)
1400
{
1401
unsigned long vstart = PAGE_OFFSET + pstart;
1402
unsigned long vend = PAGE_OFFSET + pend;
1403
unsigned long alloc_bytes = 0UL;
1404
1405
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1406
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1407
vstart, vend);
1408
prom_halt();
1409
}
1410
1411
while (vstart < vend) {
1412
unsigned long this_end, paddr = __pa(vstart);
1413
pgd_t *pgd = pgd_offset_k(vstart);
1414
pud_t *pud;
1415
pmd_t *pmd;
1416
pte_t *pte;
1417
1418
pud = pud_offset(pgd, vstart);
1419
if (pud_none(*pud)) {
1420
pmd_t *new;
1421
1422
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1423
alloc_bytes += PAGE_SIZE;
1424
pud_populate(&init_mm, pud, new);
1425
}
1426
1427
pmd = pmd_offset(pud, vstart);
1428
if (!pmd_present(*pmd)) {
1429
pte_t *new;
1430
1431
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1432
alloc_bytes += PAGE_SIZE;
1433
pmd_populate_kernel(&init_mm, pmd, new);
1434
}
1435
1436
pte = pte_offset_kernel(pmd, vstart);
1437
this_end = (vstart + PMD_SIZE) & PMD_MASK;
1438
if (this_end > vend)
1439
this_end = vend;
1440
1441
while (vstart < this_end) {
1442
pte_val(*pte) = (paddr | pgprot_val(prot));
1443
1444
vstart += PAGE_SIZE;
1445
paddr += PAGE_SIZE;
1446
pte++;
1447
}
1448
}
1449
1450
return alloc_bytes;
1451
}
1452
1453
extern unsigned int kvmap_linear_patch[1];
1454
#endif /* CONFIG_DEBUG_PAGEALLOC */
1455
1456
static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1457
{
1458
const unsigned long shift_256MB = 28;
1459
const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1460
const unsigned long size_256MB = (1UL << shift_256MB);
1461
1462
while (start < end) {
1463
long remains;
1464
1465
remains = end - start;
1466
if (remains < size_256MB)
1467
break;
1468
1469
if (start & mask_256MB) {
1470
start = (start + size_256MB) & ~mask_256MB;
1471
continue;
1472
}
1473
1474
while (remains >= size_256MB) {
1475
unsigned long index = start >> shift_256MB;
1476
1477
__set_bit(index, kpte_linear_bitmap);
1478
1479
start += size_256MB;
1480
remains -= size_256MB;
1481
}
1482
}
1483
}
1484
1485
static void __init init_kpte_bitmap(void)
1486
{
1487
unsigned long i;
1488
1489
for (i = 0; i < pall_ents; i++) {
1490
unsigned long phys_start, phys_end;
1491
1492
phys_start = pall[i].phys_addr;
1493
phys_end = phys_start + pall[i].reg_size;
1494
1495
mark_kpte_bitmap(phys_start, phys_end);
1496
}
1497
}
1498
1499
static void __init kernel_physical_mapping_init(void)
1500
{
1501
#ifdef CONFIG_DEBUG_PAGEALLOC
1502
unsigned long i, mem_alloced = 0UL;
1503
1504
for (i = 0; i < pall_ents; i++) {
1505
unsigned long phys_start, phys_end;
1506
1507
phys_start = pall[i].phys_addr;
1508
phys_end = phys_start + pall[i].reg_size;
1509
1510
mem_alloced += kernel_map_range(phys_start, phys_end,
1511
PAGE_KERNEL);
1512
}
1513
1514
printk("Allocated %ld bytes for kernel page tables.\n",
1515
mem_alloced);
1516
1517
kvmap_linear_patch[0] = 0x01000000; /* nop */
1518
flushi(&kvmap_linear_patch[0]);
1519
1520
__flush_tlb_all();
1521
#endif
1522
}
1523
1524
#ifdef CONFIG_DEBUG_PAGEALLOC
1525
void kernel_map_pages(struct page *page, int numpages, int enable)
1526
{
1527
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1528
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1529
1530
kernel_map_range(phys_start, phys_end,
1531
(enable ? PAGE_KERNEL : __pgprot(0)));
1532
1533
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1534
PAGE_OFFSET + phys_end);
1535
1536
/* we should perform an IPI and flush all tlbs,
1537
* but that can deadlock->flush only current cpu.
1538
*/
1539
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1540
PAGE_OFFSET + phys_end);
1541
}
1542
#endif
1543
1544
unsigned long __init find_ecache_flush_span(unsigned long size)
1545
{
1546
int i;
1547
1548
for (i = 0; i < pavail_ents; i++) {
1549
if (pavail[i].reg_size >= size)
1550
return pavail[i].phys_addr;
1551
}
1552
1553
return ~0UL;
1554
}
1555
1556
static void __init tsb_phys_patch(void)
1557
{
1558
struct tsb_ldquad_phys_patch_entry *pquad;
1559
struct tsb_phys_patch_entry *p;
1560
1561
pquad = &__tsb_ldquad_phys_patch;
1562
while (pquad < &__tsb_ldquad_phys_patch_end) {
1563
unsigned long addr = pquad->addr;
1564
1565
if (tlb_type == hypervisor)
1566
*(unsigned int *) addr = pquad->sun4v_insn;
1567
else
1568
*(unsigned int *) addr = pquad->sun4u_insn;
1569
wmb();
1570
__asm__ __volatile__("flush %0"
1571
: /* no outputs */
1572
: "r" (addr));
1573
1574
pquad++;
1575
}
1576
1577
p = &__tsb_phys_patch;
1578
while (p < &__tsb_phys_patch_end) {
1579
unsigned long addr = p->addr;
1580
1581
*(unsigned int *) addr = p->insn;
1582
wmb();
1583
__asm__ __volatile__("flush %0"
1584
: /* no outputs */
1585
: "r" (addr));
1586
1587
p++;
1588
}
1589
}
1590
1591
/* Don't mark as init, we give this to the Hypervisor. */
1592
#ifndef CONFIG_DEBUG_PAGEALLOC
1593
#define NUM_KTSB_DESCR 2
1594
#else
1595
#define NUM_KTSB_DESCR 1
1596
#endif
1597
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1598
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1599
1600
static void __init sun4v_ktsb_init(void)
1601
{
1602
unsigned long ktsb_pa;
1603
1604
/* First KTSB for PAGE_SIZE mappings. */
1605
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1606
1607
switch (PAGE_SIZE) {
1608
case 8 * 1024:
1609
default:
1610
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1611
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1612
break;
1613
1614
case 64 * 1024:
1615
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1616
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1617
break;
1618
1619
case 512 * 1024:
1620
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1621
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1622
break;
1623
1624
case 4 * 1024 * 1024:
1625
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1626
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1627
break;
1628
}
1629
1630
ktsb_descr[0].assoc = 1;
1631
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1632
ktsb_descr[0].ctx_idx = 0;
1633
ktsb_descr[0].tsb_base = ktsb_pa;
1634
ktsb_descr[0].resv = 0;
1635
1636
#ifndef CONFIG_DEBUG_PAGEALLOC
1637
/* Second KTSB for 4MB/256MB mappings. */
1638
ktsb_pa = (kern_base +
1639
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1640
1641
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1642
ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1643
HV_PGSZ_MASK_256MB);
1644
ktsb_descr[1].assoc = 1;
1645
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1646
ktsb_descr[1].ctx_idx = 0;
1647
ktsb_descr[1].tsb_base = ktsb_pa;
1648
ktsb_descr[1].resv = 0;
1649
#endif
1650
}
1651
1652
void __cpuinit sun4v_ktsb_register(void)
1653
{
1654
unsigned long pa, ret;
1655
1656
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1657
1658
ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1659
if (ret != 0) {
1660
prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1661
"errors with %lx\n", pa, ret);
1662
prom_halt();
1663
}
1664
}
1665
1666
/* paging_init() sets up the page tables */
1667
1668
static unsigned long last_valid_pfn;
1669
pgd_t swapper_pg_dir[2048];
1670
1671
static void sun4u_pgprot_init(void);
1672
static void sun4v_pgprot_init(void);
1673
1674
void __init paging_init(void)
1675
{
1676
unsigned long end_pfn, shift, phys_base;
1677
unsigned long real_end, i;
1678
1679
/* These build time checkes make sure that the dcache_dirty_cpu()
1680
* page->flags usage will work.
1681
*
1682
* When a page gets marked as dcache-dirty, we store the
1683
* cpu number starting at bit 32 in the page->flags. Also,
1684
* functions like clear_dcache_dirty_cpu use the cpu mask
1685
* in 13-bit signed-immediate instruction fields.
1686
*/
1687
1688
/*
1689
* Page flags must not reach into upper 32 bits that are used
1690
* for the cpu number
1691
*/
1692
BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1693
1694
/*
1695
* The bit fields placed in the high range must not reach below
1696
* the 32 bit boundary. Otherwise we cannot place the cpu field
1697
* at the 32 bit boundary.
1698
*/
1699
BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1700
ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1701
1702
BUILD_BUG_ON(NR_CPUS > 4096);
1703
1704
kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1705
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1706
1707
/* Invalidate both kernel TSBs. */
1708
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1709
#ifndef CONFIG_DEBUG_PAGEALLOC
1710
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1711
#endif
1712
1713
if (tlb_type == hypervisor)
1714
sun4v_pgprot_init();
1715
else
1716
sun4u_pgprot_init();
1717
1718
if (tlb_type == cheetah_plus ||
1719
tlb_type == hypervisor)
1720
tsb_phys_patch();
1721
1722
if (tlb_type == hypervisor) {
1723
sun4v_patch_tlb_handlers();
1724
sun4v_ktsb_init();
1725
}
1726
1727
memblock_init();
1728
1729
/* Find available physical memory...
1730
*
1731
* Read it twice in order to work around a bug in openfirmware.
1732
* The call to grab this table itself can cause openfirmware to
1733
* allocate memory, which in turn can take away some space from
1734
* the list of available memory. Reading it twice makes sure
1735
* we really do get the final value.
1736
*/
1737
read_obp_translations();
1738
read_obp_memory("reg", &pall[0], &pall_ents);
1739
read_obp_memory("available", &pavail[0], &pavail_ents);
1740
read_obp_memory("available", &pavail[0], &pavail_ents);
1741
1742
phys_base = 0xffffffffffffffffUL;
1743
for (i = 0; i < pavail_ents; i++) {
1744
phys_base = min(phys_base, pavail[i].phys_addr);
1745
memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1746
}
1747
1748
memblock_reserve(kern_base, kern_size);
1749
1750
find_ramdisk(phys_base);
1751
1752
memblock_enforce_memory_limit(cmdline_memory_size);
1753
1754
memblock_analyze();
1755
memblock_dump_all();
1756
1757
set_bit(0, mmu_context_bmap);
1758
1759
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1760
1761
real_end = (unsigned long)_end;
1762
num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1763
printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1764
num_kernel_image_mappings);
1765
1766
/* Set kernel pgd to upper alias so physical page computations
1767
* work.
1768
*/
1769
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1770
1771
memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1772
1773
/* Now can init the kernel/bad page tables. */
1774
pud_set(pud_offset(&swapper_pg_dir[0], 0),
1775
swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1776
1777
inherit_prom_mappings();
1778
1779
init_kpte_bitmap();
1780
1781
/* Ok, we can use our TLB miss and window trap handlers safely. */
1782
setup_tba();
1783
1784
__flush_tlb_all();
1785
1786
if (tlb_type == hypervisor)
1787
sun4v_ktsb_register();
1788
1789
prom_build_devicetree();
1790
of_populate_present_mask();
1791
#ifndef CONFIG_SMP
1792
of_fill_in_cpu_data();
1793
#endif
1794
1795
if (tlb_type == hypervisor) {
1796
sun4v_mdesc_init();
1797
mdesc_populate_present_mask(cpu_all_mask);
1798
#ifndef CONFIG_SMP
1799
mdesc_fill_in_cpu_data(cpu_all_mask);
1800
#endif
1801
}
1802
1803
/* Once the OF device tree and MDESC have been setup, we know
1804
* the list of possible cpus. Therefore we can allocate the
1805
* IRQ stacks.
1806
*/
1807
for_each_possible_cpu(i) {
1808
/* XXX Use node local allocations... XXX */
1809
softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1810
hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1811
}
1812
1813
/* Setup bootmem... */
1814
last_valid_pfn = end_pfn = bootmem_init(phys_base);
1815
1816
#ifndef CONFIG_NEED_MULTIPLE_NODES
1817
max_mapnr = last_valid_pfn;
1818
#endif
1819
kernel_physical_mapping_init();
1820
1821
{
1822
unsigned long max_zone_pfns[MAX_NR_ZONES];
1823
1824
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1825
1826
max_zone_pfns[ZONE_NORMAL] = end_pfn;
1827
1828
free_area_init_nodes(max_zone_pfns);
1829
}
1830
1831
printk("Booting Linux...\n");
1832
}
1833
1834
int __devinit page_in_phys_avail(unsigned long paddr)
1835
{
1836
int i;
1837
1838
paddr &= PAGE_MASK;
1839
1840
for (i = 0; i < pavail_ents; i++) {
1841
unsigned long start, end;
1842
1843
start = pavail[i].phys_addr;
1844
end = start + pavail[i].reg_size;
1845
1846
if (paddr >= start && paddr < end)
1847
return 1;
1848
}
1849
if (paddr >= kern_base && paddr < (kern_base + kern_size))
1850
return 1;
1851
#ifdef CONFIG_BLK_DEV_INITRD
1852
if (paddr >= __pa(initrd_start) &&
1853
paddr < __pa(PAGE_ALIGN(initrd_end)))
1854
return 1;
1855
#endif
1856
1857
return 0;
1858
}
1859
1860
static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1861
static int pavail_rescan_ents __initdata;
1862
1863
/* Certain OBP calls, such as fetching "available" properties, can
1864
* claim physical memory. So, along with initializing the valid
1865
* address bitmap, what we do here is refetch the physical available
1866
* memory list again, and make sure it provides at least as much
1867
* memory as 'pavail' does.
1868
*/
1869
static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1870
{
1871
int i;
1872
1873
read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1874
1875
for (i = 0; i < pavail_ents; i++) {
1876
unsigned long old_start, old_end;
1877
1878
old_start = pavail[i].phys_addr;
1879
old_end = old_start + pavail[i].reg_size;
1880
while (old_start < old_end) {
1881
int n;
1882
1883
for (n = 0; n < pavail_rescan_ents; n++) {
1884
unsigned long new_start, new_end;
1885
1886
new_start = pavail_rescan[n].phys_addr;
1887
new_end = new_start +
1888
pavail_rescan[n].reg_size;
1889
1890
if (new_start <= old_start &&
1891
new_end >= (old_start + PAGE_SIZE)) {
1892
set_bit(old_start >> 22, bitmap);
1893
goto do_next_page;
1894
}
1895
}
1896
1897
prom_printf("mem_init: Lost memory in pavail\n");
1898
prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1899
pavail[i].phys_addr,
1900
pavail[i].reg_size);
1901
prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1902
pavail_rescan[i].phys_addr,
1903
pavail_rescan[i].reg_size);
1904
prom_printf("mem_init: Cannot continue, aborting.\n");
1905
prom_halt();
1906
1907
do_next_page:
1908
old_start += PAGE_SIZE;
1909
}
1910
}
1911
}
1912
1913
static void __init patch_tlb_miss_handler_bitmap(void)
1914
{
1915
extern unsigned int valid_addr_bitmap_insn[];
1916
extern unsigned int valid_addr_bitmap_patch[];
1917
1918
valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1919
mb();
1920
valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1921
flushi(&valid_addr_bitmap_insn[0]);
1922
}
1923
1924
void __init mem_init(void)
1925
{
1926
unsigned long codepages, datapages, initpages;
1927
unsigned long addr, last;
1928
1929
addr = PAGE_OFFSET + kern_base;
1930
last = PAGE_ALIGN(kern_size) + addr;
1931
while (addr < last) {
1932
set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1933
addr += PAGE_SIZE;
1934
}
1935
1936
setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1937
patch_tlb_miss_handler_bitmap();
1938
1939
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1940
1941
#ifdef CONFIG_NEED_MULTIPLE_NODES
1942
{
1943
int i;
1944
for_each_online_node(i) {
1945
if (NODE_DATA(i)->node_spanned_pages != 0) {
1946
totalram_pages +=
1947
free_all_bootmem_node(NODE_DATA(i));
1948
}
1949
}
1950
}
1951
#else
1952
totalram_pages = free_all_bootmem();
1953
#endif
1954
1955
/* We subtract one to account for the mem_map_zero page
1956
* allocated below.
1957
*/
1958
totalram_pages -= 1;
1959
num_physpages = totalram_pages;
1960
1961
/*
1962
* Set up the zero page, mark it reserved, so that page count
1963
* is not manipulated when freeing the page from user ptes.
1964
*/
1965
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1966
if (mem_map_zero == NULL) {
1967
prom_printf("paging_init: Cannot alloc zero page.\n");
1968
prom_halt();
1969
}
1970
SetPageReserved(mem_map_zero);
1971
1972
codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1973
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1974
datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1975
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1976
initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1977
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1978
1979
printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1980
nr_free_pages() << (PAGE_SHIFT-10),
1981
codepages << (PAGE_SHIFT-10),
1982
datapages << (PAGE_SHIFT-10),
1983
initpages << (PAGE_SHIFT-10),
1984
PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1985
1986
if (tlb_type == cheetah || tlb_type == cheetah_plus)
1987
cheetah_ecache_flush_init();
1988
}
1989
1990
void free_initmem(void)
1991
{
1992
unsigned long addr, initend;
1993
int do_free = 1;
1994
1995
/* If the physical memory maps were trimmed by kernel command
1996
* line options, don't even try freeing this initmem stuff up.
1997
* The kernel image could have been in the trimmed out region
1998
* and if so the freeing below will free invalid page structs.
1999
*/
2000
if (cmdline_memory_size)
2001
do_free = 0;
2002
2003
/*
2004
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2005
*/
2006
addr = PAGE_ALIGN((unsigned long)(__init_begin));
2007
initend = (unsigned long)(__init_end) & PAGE_MASK;
2008
for (; addr < initend; addr += PAGE_SIZE) {
2009
unsigned long page;
2010
struct page *p;
2011
2012
page = (addr +
2013
((unsigned long) __va(kern_base)) -
2014
((unsigned long) KERNBASE));
2015
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2016
2017
if (do_free) {
2018
p = virt_to_page(page);
2019
2020
ClearPageReserved(p);
2021
init_page_count(p);
2022
__free_page(p);
2023
num_physpages++;
2024
totalram_pages++;
2025
}
2026
}
2027
}
2028
2029
#ifdef CONFIG_BLK_DEV_INITRD
2030
void free_initrd_mem(unsigned long start, unsigned long end)
2031
{
2032
if (start < end)
2033
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2034
for (; start < end; start += PAGE_SIZE) {
2035
struct page *p = virt_to_page(start);
2036
2037
ClearPageReserved(p);
2038
init_page_count(p);
2039
__free_page(p);
2040
num_physpages++;
2041
totalram_pages++;
2042
}
2043
}
2044
#endif
2045
2046
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2047
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2048
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2049
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2050
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2051
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2052
2053
pgprot_t PAGE_KERNEL __read_mostly;
2054
EXPORT_SYMBOL(PAGE_KERNEL);
2055
2056
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2057
pgprot_t PAGE_COPY __read_mostly;
2058
2059
pgprot_t PAGE_SHARED __read_mostly;
2060
EXPORT_SYMBOL(PAGE_SHARED);
2061
2062
unsigned long pg_iobits __read_mostly;
2063
2064
unsigned long _PAGE_IE __read_mostly;
2065
EXPORT_SYMBOL(_PAGE_IE);
2066
2067
unsigned long _PAGE_E __read_mostly;
2068
EXPORT_SYMBOL(_PAGE_E);
2069
2070
unsigned long _PAGE_CACHE __read_mostly;
2071
EXPORT_SYMBOL(_PAGE_CACHE);
2072
2073
#ifdef CONFIG_SPARSEMEM_VMEMMAP
2074
unsigned long vmemmap_table[VMEMMAP_SIZE];
2075
2076
int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2077
{
2078
unsigned long vstart = (unsigned long) start;
2079
unsigned long vend = (unsigned long) (start + nr);
2080
unsigned long phys_start = (vstart - VMEMMAP_BASE);
2081
unsigned long phys_end = (vend - VMEMMAP_BASE);
2082
unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2083
unsigned long end = VMEMMAP_ALIGN(phys_end);
2084
unsigned long pte_base;
2085
2086
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2087
_PAGE_CP_4U | _PAGE_CV_4U |
2088
_PAGE_P_4U | _PAGE_W_4U);
2089
if (tlb_type == hypervisor)
2090
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2091
_PAGE_CP_4V | _PAGE_CV_4V |
2092
_PAGE_P_4V | _PAGE_W_4V);
2093
2094
for (; addr < end; addr += VMEMMAP_CHUNK) {
2095
unsigned long *vmem_pp =
2096
vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2097
void *block;
2098
2099
if (!(*vmem_pp & _PAGE_VALID)) {
2100
block = vmemmap_alloc_block(1UL << 22, node);
2101
if (!block)
2102
return -ENOMEM;
2103
2104
*vmem_pp = pte_base | __pa(block);
2105
2106
printk(KERN_INFO "[%p-%p] page_structs=%lu "
2107
"node=%d entry=%lu/%lu\n", start, block, nr,
2108
node,
2109
addr >> VMEMMAP_CHUNK_SHIFT,
2110
VMEMMAP_SIZE);
2111
}
2112
}
2113
return 0;
2114
}
2115
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2116
2117
static void prot_init_common(unsigned long page_none,
2118
unsigned long page_shared,
2119
unsigned long page_copy,
2120
unsigned long page_readonly,
2121
unsigned long page_exec_bit)
2122
{
2123
PAGE_COPY = __pgprot(page_copy);
2124
PAGE_SHARED = __pgprot(page_shared);
2125
2126
protection_map[0x0] = __pgprot(page_none);
2127
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2128
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2129
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2130
protection_map[0x4] = __pgprot(page_readonly);
2131
protection_map[0x5] = __pgprot(page_readonly);
2132
protection_map[0x6] = __pgprot(page_copy);
2133
protection_map[0x7] = __pgprot(page_copy);
2134
protection_map[0x8] = __pgprot(page_none);
2135
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2136
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2137
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2138
protection_map[0xc] = __pgprot(page_readonly);
2139
protection_map[0xd] = __pgprot(page_readonly);
2140
protection_map[0xe] = __pgprot(page_shared);
2141
protection_map[0xf] = __pgprot(page_shared);
2142
}
2143
2144
static void __init sun4u_pgprot_init(void)
2145
{
2146
unsigned long page_none, page_shared, page_copy, page_readonly;
2147
unsigned long page_exec_bit;
2148
2149
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2150
_PAGE_CACHE_4U | _PAGE_P_4U |
2151
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2152
_PAGE_EXEC_4U);
2153
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2154
_PAGE_CACHE_4U | _PAGE_P_4U |
2155
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2156
_PAGE_EXEC_4U | _PAGE_L_4U);
2157
2158
_PAGE_IE = _PAGE_IE_4U;
2159
_PAGE_E = _PAGE_E_4U;
2160
_PAGE_CACHE = _PAGE_CACHE_4U;
2161
2162
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2163
__ACCESS_BITS_4U | _PAGE_E_4U);
2164
2165
#ifdef CONFIG_DEBUG_PAGEALLOC
2166
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2167
0xfffff80000000000UL;
2168
#else
2169
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2170
0xfffff80000000000UL;
2171
#endif
2172
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2173
_PAGE_P_4U | _PAGE_W_4U);
2174
2175
/* XXX Should use 256MB on Panther. XXX */
2176
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2177
2178
_PAGE_SZBITS = _PAGE_SZBITS_4U;
2179
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2180
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2181
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2182
2183
2184
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2185
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2186
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2187
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2188
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
2189
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2190
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
2191
2192
page_exec_bit = _PAGE_EXEC_4U;
2193
2194
prot_init_common(page_none, page_shared, page_copy, page_readonly,
2195
page_exec_bit);
2196
}
2197
2198
static void __init sun4v_pgprot_init(void)
2199
{
2200
unsigned long page_none, page_shared, page_copy, page_readonly;
2201
unsigned long page_exec_bit;
2202
2203
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2204
_PAGE_CACHE_4V | _PAGE_P_4V |
2205
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2206
_PAGE_EXEC_4V);
2207
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2208
2209
_PAGE_IE = _PAGE_IE_4V;
2210
_PAGE_E = _PAGE_E_4V;
2211
_PAGE_CACHE = _PAGE_CACHE_4V;
2212
2213
#ifdef CONFIG_DEBUG_PAGEALLOC
2214
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2215
0xfffff80000000000UL;
2216
#else
2217
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2218
0xfffff80000000000UL;
2219
#endif
2220
kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2221
_PAGE_P_4V | _PAGE_W_4V);
2222
2223
#ifdef CONFIG_DEBUG_PAGEALLOC
2224
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2225
0xfffff80000000000UL;
2226
#else
2227
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2228
0xfffff80000000000UL;
2229
#endif
2230
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2231
_PAGE_P_4V | _PAGE_W_4V);
2232
2233
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2234
__ACCESS_BITS_4V | _PAGE_E_4V);
2235
2236
_PAGE_SZBITS = _PAGE_SZBITS_4V;
2237
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2238
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2239
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2240
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2241
2242
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2243
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2244
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2245
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2246
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
2247
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2248
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
2249
2250
page_exec_bit = _PAGE_EXEC_4V;
2251
2252
prot_init_common(page_none, page_shared, page_copy, page_readonly,
2253
page_exec_bit);
2254
}
2255
2256
unsigned long pte_sz_bits(unsigned long sz)
2257
{
2258
if (tlb_type == hypervisor) {
2259
switch (sz) {
2260
case 8 * 1024:
2261
default:
2262
return _PAGE_SZ8K_4V;
2263
case 64 * 1024:
2264
return _PAGE_SZ64K_4V;
2265
case 512 * 1024:
2266
return _PAGE_SZ512K_4V;
2267
case 4 * 1024 * 1024:
2268
return _PAGE_SZ4MB_4V;
2269
}
2270
} else {
2271
switch (sz) {
2272
case 8 * 1024:
2273
default:
2274
return _PAGE_SZ8K_4U;
2275
case 64 * 1024:
2276
return _PAGE_SZ64K_4U;
2277
case 512 * 1024:
2278
return _PAGE_SZ512K_4U;
2279
case 4 * 1024 * 1024:
2280
return _PAGE_SZ4MB_4U;
2281
}
2282
}
2283
}
2284
2285
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2286
{
2287
pte_t pte;
2288
2289
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2290
pte_val(pte) |= (((unsigned long)space) << 32);
2291
pte_val(pte) |= pte_sz_bits(page_size);
2292
2293
return pte;
2294
}
2295
2296
static unsigned long kern_large_tte(unsigned long paddr)
2297
{
2298
unsigned long val;
2299
2300
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2301
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2302
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2303
if (tlb_type == hypervisor)
2304
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2305
_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2306
_PAGE_EXEC_4V | _PAGE_W_4V);
2307
2308
return val | paddr;
2309
}
2310
2311
/* If not locked, zap it. */
2312
void __flush_tlb_all(void)
2313
{
2314
unsigned long pstate;
2315
int i;
2316
2317
__asm__ __volatile__("flushw\n\t"
2318
"rdpr %%pstate, %0\n\t"
2319
"wrpr %0, %1, %%pstate"
2320
: "=r" (pstate)
2321
: "i" (PSTATE_IE));
2322
if (tlb_type == hypervisor) {
2323
sun4v_mmu_demap_all();
2324
} else if (tlb_type == spitfire) {
2325
for (i = 0; i < 64; i++) {
2326
/* Spitfire Errata #32 workaround */
2327
/* NOTE: Always runs on spitfire, so no
2328
* cheetah+ page size encodings.
2329
*/
2330
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
2331
"flush %%g6"
2332
: /* No outputs */
2333
: "r" (0),
2334
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2335
2336
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2337
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2338
"membar #Sync"
2339
: /* no outputs */
2340
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2341
spitfire_put_dtlb_data(i, 0x0UL);
2342
}
2343
2344
/* Spitfire Errata #32 workaround */
2345
/* NOTE: Always runs on spitfire, so no
2346
* cheetah+ page size encodings.
2347
*/
2348
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
2349
"flush %%g6"
2350
: /* No outputs */
2351
: "r" (0),
2352
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2353
2354
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2355
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2356
"membar #Sync"
2357
: /* no outputs */
2358
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2359
spitfire_put_itlb_data(i, 0x0UL);
2360
}
2361
}
2362
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2363
cheetah_flush_dtlb_all();
2364
cheetah_flush_itlb_all();
2365
}
2366
__asm__ __volatile__("wrpr %0, 0, %%pstate"
2367
: : "r" (pstate));
2368
}
2369
2370