Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/tile/kernel/intvec_32.S
10817 views
1
/*
2
* Copyright 2010 Tilera Corporation. All Rights Reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation, version 2.
7
*
8
* This program is distributed in the hope that it will be useful, but
9
* WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11
* NON INFRINGEMENT. See the GNU General Public License for
12
* more details.
13
*
14
* Linux interrupt vectors.
15
*/
16
17
#include <linux/linkage.h>
18
#include <linux/errno.h>
19
#include <linux/init.h>
20
#include <linux/unistd.h>
21
#include <asm/ptrace.h>
22
#include <asm/thread_info.h>
23
#include <asm/irqflags.h>
24
#include <asm/atomic.h>
25
#include <asm/asm-offsets.h>
26
#include <hv/hypervisor.h>
27
#include <arch/abi.h>
28
#include <arch/interrupts.h>
29
#include <arch/spr_def.h>
30
31
#ifdef CONFIG_PREEMPT
32
# error "No support for kernel preemption currently"
33
#endif
34
35
#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
36
37
#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
38
39
#if !CHIP_HAS_WH64()
40
/* By making this an empty macro, we can use wh64 in the code. */
41
.macro wh64 reg
42
.endm
43
#endif
44
45
.macro push_reg reg, ptr=sp, delta=-4
46
{
47
sw \ptr, \reg
48
addli \ptr, \ptr, \delta
49
}
50
.endm
51
52
.macro pop_reg reg, ptr=sp, delta=4
53
{
54
lw \reg, \ptr
55
addli \ptr, \ptr, \delta
56
}
57
.endm
58
59
.macro pop_reg_zero reg, zreg, ptr=sp, delta=4
60
{
61
move \zreg, zero
62
lw \reg, \ptr
63
addi \ptr, \ptr, \delta
64
}
65
.endm
66
67
.macro push_extra_callee_saves reg
68
PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
69
push_reg r51, \reg
70
push_reg r50, \reg
71
push_reg r49, \reg
72
push_reg r48, \reg
73
push_reg r47, \reg
74
push_reg r46, \reg
75
push_reg r45, \reg
76
push_reg r44, \reg
77
push_reg r43, \reg
78
push_reg r42, \reg
79
push_reg r41, \reg
80
push_reg r40, \reg
81
push_reg r39, \reg
82
push_reg r38, \reg
83
push_reg r37, \reg
84
push_reg r36, \reg
85
push_reg r35, \reg
86
push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
87
.endm
88
89
.macro panic str
90
.pushsection .rodata, "a"
91
1:
92
.asciz "\str"
93
.popsection
94
{
95
moveli r0, lo16(1b)
96
}
97
{
98
auli r0, r0, ha16(1b)
99
jal panic
100
}
101
.endm
102
103
#ifdef __COLLECT_LINKER_FEEDBACK__
104
.pushsection .text.intvec_feedback,"ax"
105
intvec_feedback:
106
.popsection
107
#endif
108
109
/*
110
* Default interrupt handler.
111
*
112
* vecnum is where we'll put this code.
113
* c_routine is the C routine we'll call.
114
*
115
* The C routine is passed two arguments:
116
* - A pointer to the pt_regs state.
117
* - The interrupt vector number.
118
*
119
* The "processing" argument specifies the code for processing
120
* the interrupt. Defaults to "handle_interrupt".
121
*/
122
.macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt
123
.org (\vecnum << 8)
124
intvec_\vecname:
125
.ifc \vecnum, INT_SWINT_1
126
blz TREG_SYSCALL_NR_NAME, sys_cmpxchg
127
.endif
128
129
/* Temporarily save a register so we have somewhere to work. */
130
131
mtspr SPR_SYSTEM_SAVE_K_1, r0
132
mfspr r0, SPR_EX_CONTEXT_K_1
133
134
/* The cmpxchg code clears sp to force us to reset it here on fault. */
135
{
136
bz sp, 2f
137
andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
138
}
139
140
.ifc \vecnum, INT_DOUBLE_FAULT
141
/*
142
* For double-faults from user-space, fall through to the normal
143
* register save and stack setup path. Otherwise, it's the
144
* hypervisor giving us one last chance to dump diagnostics, and we
145
* branch to the kernel_double_fault routine to do so.
146
*/
147
bz r0, 1f
148
j _kernel_double_fault
149
1:
150
.else
151
/*
152
* If we're coming from user-space, then set sp to the top of
153
* the kernel stack. Otherwise, assume sp is already valid.
154
*/
155
{
156
bnz r0, 0f
157
move r0, sp
158
}
159
.endif
160
161
.ifc \c_routine, do_page_fault
162
/*
163
* The page_fault handler may be downcalled directly by the
164
* hypervisor even when Linux is running and has ICS set.
165
*
166
* In this case the contents of EX_CONTEXT_K_1 reflect the
167
* previous fault and can't be relied on to choose whether or
168
* not to reinitialize the stack pointer. So we add a test
169
* to see whether SYSTEM_SAVE_K_2 has the high bit set,
170
* and if so we don't reinitialize sp, since we must be coming
171
* from Linux. (In fact the precise case is !(val & ~1),
172
* but any Linux PC has to have the high bit set.)
173
*
174
* Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for
175
* any path that turns into a downcall to one of our TLB handlers.
176
*/
177
mfspr r0, SPR_SYSTEM_SAVE_K_2
178
{
179
blz r0, 0f /* high bit in S_S_1_2 is for a PC to use */
180
move r0, sp
181
}
182
.endif
183
184
2:
185
/*
186
* SYSTEM_SAVE_K_0 holds the cpu number in the low bits, and
187
* the current stack top in the higher bits. So we recover
188
* our stack top by just masking off the low bits, then
189
* point sp at the top aligned address on the actual stack page.
190
*/
191
mfspr r0, SPR_SYSTEM_SAVE_K_0
192
mm r0, r0, zero, LOG2_THREAD_SIZE, 31
193
194
0:
195
/*
196
* Align the stack mod 64 so we can properly predict what
197
* cache lines we need to write-hint to reduce memory fetch
198
* latency as we enter the kernel. The layout of memory is
199
* as follows, with cache line 0 at the lowest VA, and cache
200
* line 4 just below the r0 value this "andi" computes.
201
* Note that we never write to cache line 4, and we skip
202
* cache line 1 for syscalls.
203
*
204
* cache line 4: ptregs padding (two words)
205
* cache line 3: r46...lr, pc, ex1, faultnum, orig_r0, flags, pad
206
* cache line 2: r30...r45
207
* cache line 1: r14...r29
208
* cache line 0: 2 x frame, r0..r13
209
*/
210
andi r0, r0, -64
211
212
/*
213
* Push the first four registers on the stack, so that we can set
214
* them to vector-unique values before we jump to the common code.
215
*
216
* Registers are pushed on the stack as a struct pt_regs,
217
* with the sp initially just above the struct, and when we're
218
* done, sp points to the base of the struct, minus
219
* C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
220
*
221
* This routine saves just the first four registers, plus the
222
* stack context so we can do proper backtracing right away,
223
* and defers to handle_interrupt to save the rest.
224
* The backtracer needs pc, ex1, lr, sp, r52, and faultnum.
225
*/
226
addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
227
wh64 r0 /* cache line 3 */
228
{
229
sw r0, lr
230
addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
231
}
232
{
233
sw r0, sp
234
addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
235
}
236
{
237
sw sp, r52
238
addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
239
}
240
wh64 sp /* cache line 0 */
241
{
242
sw sp, r1
243
addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
244
}
245
{
246
sw sp, r2
247
addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
248
}
249
{
250
sw sp, r3
251
addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
252
}
253
mfspr r0, SPR_EX_CONTEXT_K_0
254
.ifc \processing,handle_syscall
255
/*
256
* Bump the saved PC by one bundle so that when we return, we won't
257
* execute the same swint instruction again. We need to do this while
258
* we're in the critical section.
259
*/
260
addi r0, r0, 8
261
.endif
262
{
263
sw sp, r0
264
addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
265
}
266
mfspr r0, SPR_EX_CONTEXT_K_1
267
{
268
sw sp, r0
269
addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
270
/*
271
* Use r0 for syscalls so it's a temporary; use r1 for interrupts
272
* so that it gets passed through unchanged to the handler routine.
273
* Note that the .if conditional confusingly spans bundles.
274
*/
275
.ifc \processing,handle_syscall
276
movei r0, \vecnum
277
}
278
{
279
sw sp, r0
280
.else
281
movei r1, \vecnum
282
}
283
{
284
sw sp, r1
285
.endif
286
addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
287
}
288
mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */
289
{
290
sw sp, r0
291
addi sp, sp, -PTREGS_OFFSET_REG(0) - 4
292
}
293
{
294
sw sp, zero /* write zero into "Next SP" frame pointer */
295
addi sp, sp, -4 /* leave SP pointing at bottom of frame */
296
}
297
.ifc \processing,handle_syscall
298
j handle_syscall
299
.else
300
/*
301
* Capture per-interrupt SPR context to registers.
302
* We overload the meaning of r3 on this path such that if its bit 31
303
* is set, we have to mask all interrupts including NMIs before
304
* clearing the interrupt critical section bit.
305
* See discussion below at "finish_interrupt_save".
306
*/
307
.ifc \c_routine, do_page_fault
308
mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */
309
mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */
310
.else
311
.ifc \vecnum, INT_DOUBLE_FAULT
312
{
313
mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */
314
movei r3, 0
315
}
316
.else
317
.ifc \c_routine, do_trap
318
{
319
mfspr r2, GPV_REASON
320
movei r3, 0
321
}
322
.else
323
.ifc \c_routine, op_handle_perf_interrupt
324
{
325
mfspr r2, PERF_COUNT_STS
326
movei r3, -1 /* not used, but set for consistency */
327
}
328
.else
329
#if CHIP_HAS_AUX_PERF_COUNTERS()
330
.ifc \c_routine, op_handle_aux_perf_interrupt
331
{
332
mfspr r2, AUX_PERF_COUNT_STS
333
movei r3, -1 /* not used, but set for consistency */
334
}
335
.else
336
#endif
337
movei r3, 0
338
#if CHIP_HAS_AUX_PERF_COUNTERS()
339
.endif
340
#endif
341
.endif
342
.endif
343
.endif
344
.endif
345
/* Put function pointer in r0 */
346
moveli r0, lo16(\c_routine)
347
{
348
auli r0, r0, ha16(\c_routine)
349
j \processing
350
}
351
.endif
352
ENDPROC(intvec_\vecname)
353
354
#ifdef __COLLECT_LINKER_FEEDBACK__
355
.pushsection .text.intvec_feedback,"ax"
356
.org (\vecnum << 5)
357
FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt1, 1 << 8)
358
jrp lr
359
.popsection
360
#endif
361
362
.endm
363
364
365
/*
366
* Save the rest of the registers that we didn't save in the actual
367
* vector itself. We can't use r0-r10 inclusive here.
368
*/
369
.macro finish_interrupt_save, function
370
371
/* If it's a syscall, save a proper orig_r0, otherwise just zero. */
372
PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
373
{
374
.ifc \function,handle_syscall
375
sw r52, r0
376
.else
377
sw r52, zero
378
.endif
379
PTREGS_PTR(r52, PTREGS_OFFSET_TP)
380
}
381
382
/*
383
* For ordinary syscalls, we save neither caller- nor callee-
384
* save registers, since the syscall invoker doesn't expect the
385
* caller-saves to be saved, and the called kernel functions will
386
* take care of saving the callee-saves for us.
387
*
388
* For interrupts we save just the caller-save registers. Saving
389
* them is required (since the "caller" can't save them). Again,
390
* the called kernel functions will restore the callee-save
391
* registers for us appropriately.
392
*
393
* On return, we normally restore nothing special for syscalls,
394
* and just the caller-save registers for interrupts.
395
*
396
* However, there are some important caveats to all this:
397
*
398
* - We always save a few callee-save registers to give us
399
* some scratchpad registers to carry across function calls.
400
*
401
* - fork/vfork/etc require us to save all the callee-save
402
* registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
403
*
404
* - We always save r0..r5 and r10 for syscalls, since we need
405
* to reload them a bit later for the actual kernel call, and
406
* since we might need them for -ERESTARTNOINTR, etc.
407
*
408
* - Before invoking a signal handler, we save the unsaved
409
* callee-save registers so they are visible to the
410
* signal handler or any ptracer.
411
*
412
* - If the unsaved callee-save registers are modified, we set
413
* a bit in pt_regs so we know to reload them from pt_regs
414
* and not just rely on the kernel function unwinding.
415
* (Done for ptrace register writes and SA_SIGINFO handler.)
416
*/
417
{
418
sw r52, tp
419
PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
420
}
421
wh64 r52 /* cache line 2 */
422
push_reg r33, r52
423
push_reg r32, r52
424
push_reg r31, r52
425
.ifc \function,handle_syscall
426
push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
427
push_reg TREG_SYSCALL_NR_NAME, r52, \
428
PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
429
.else
430
431
push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
432
wh64 r52 /* cache line 1 */
433
push_reg r29, r52
434
push_reg r28, r52
435
push_reg r27, r52
436
push_reg r26, r52
437
push_reg r25, r52
438
push_reg r24, r52
439
push_reg r23, r52
440
push_reg r22, r52
441
push_reg r21, r52
442
push_reg r20, r52
443
push_reg r19, r52
444
push_reg r18, r52
445
push_reg r17, r52
446
push_reg r16, r52
447
push_reg r15, r52
448
push_reg r14, r52
449
push_reg r13, r52
450
push_reg r12, r52
451
push_reg r11, r52
452
push_reg r10, r52
453
push_reg r9, r52
454
push_reg r8, r52
455
push_reg r7, r52
456
push_reg r6, r52
457
458
.endif
459
460
push_reg r5, r52
461
sw r52, r4
462
463
/* Load tp with our per-cpu offset. */
464
#ifdef CONFIG_SMP
465
{
466
mfspr r20, SPR_SYSTEM_SAVE_K_0
467
moveli r21, lo16(__per_cpu_offset)
468
}
469
{
470
auli r21, r21, ha16(__per_cpu_offset)
471
mm r20, r20, zero, 0, LOG2_THREAD_SIZE-1
472
}
473
s2a r20, r20, r21
474
lw tp, r20
475
#else
476
move tp, zero
477
#endif
478
479
/*
480
* If we will be returning to the kernel, we will need to
481
* reset the interrupt masks to the state they had before.
482
* Set DISABLE_IRQ in flags iff we came from PL1 with irqs disabled.
483
* We load flags in r32 here so we can jump to .Lrestore_regs
484
* directly after do_page_fault_ics() if necessary.
485
*/
486
mfspr r32, SPR_EX_CONTEXT_K_1
487
{
488
andi r32, r32, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
489
PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
490
}
491
bzt r32, 1f /* zero if from user space */
492
IRQS_DISABLED(r32) /* zero if irqs enabled */
493
#if PT_FLAGS_DISABLE_IRQ != 1
494
# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
495
#endif
496
1:
497
.ifnc \function,handle_syscall
498
/* Record the fact that we saved the caller-save registers above. */
499
ori r32, r32, PT_FLAGS_CALLER_SAVES
500
.endif
501
sw r21, r32
502
503
#ifdef __COLLECT_LINKER_FEEDBACK__
504
/*
505
* Notify the feedback routines that we were in the
506
* appropriate fixed interrupt vector area. Note that we
507
* still have ICS set at this point, so we can't invoke any
508
* atomic operations or we will panic. The feedback
509
* routines internally preserve r0..r10 and r30 up.
510
*/
511
.ifnc \function,handle_syscall
512
shli r20, r1, 5
513
.else
514
moveli r20, INT_SWINT_1 << 5
515
.endif
516
addli r20, r20, lo16(intvec_feedback)
517
auli r20, r20, ha16(intvec_feedback)
518
jalr r20
519
520
/* And now notify the feedback routines that we are here. */
521
FEEDBACK_ENTER(\function)
522
#endif
523
524
/*
525
* we've captured enough state to the stack (including in
526
* particular our EX_CONTEXT state) that we can now release
527
* the interrupt critical section and replace it with our
528
* standard "interrupts disabled" mask value. This allows
529
* synchronous interrupts (and profile interrupts) to punch
530
* through from this point onwards.
531
*
532
* If bit 31 of r3 is set during a non-NMI interrupt, we know we
533
* are on the path where the hypervisor has punched through our
534
* ICS with a page fault, so we call out to do_page_fault_ics()
535
* to figure out what to do with it. If the fault was in
536
* an atomic op, we unlock the atomic lock, adjust the
537
* saved register state a little, and return "zero" in r4,
538
* falling through into the normal page-fault interrupt code.
539
* If the fault was in a kernel-space atomic operation, then
540
* do_page_fault_ics() resolves it itself, returns "one" in r4,
541
* and as a result goes directly to restoring registers and iret,
542
* without trying to adjust the interrupt masks at all.
543
* The do_page_fault_ics() API involves passing and returning
544
* a five-word struct (in registers) to avoid writing the
545
* save and restore code here.
546
*/
547
.ifc \function,handle_nmi
548
IRQ_DISABLE_ALL(r20)
549
.else
550
.ifnc \function,handle_syscall
551
bgezt r3, 1f
552
{
553
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
554
jal do_page_fault_ics
555
}
556
FEEDBACK_REENTER(\function)
557
bzt r4, 1f
558
j .Lrestore_regs
559
1:
560
.endif
561
IRQ_DISABLE(r20, r21)
562
.endif
563
mtspr INTERRUPT_CRITICAL_SECTION, zero
564
565
#if CHIP_HAS_WH64()
566
/*
567
* Prepare the first 256 stack bytes to be rapidly accessible
568
* without having to fetch the background data. We don't really
569
* know how far to write-hint, but kernel stacks generally
570
* aren't that big, and write-hinting here does take some time.
571
*/
572
addi r52, sp, -64
573
{
574
wh64 r52
575
addi r52, r52, -64
576
}
577
{
578
wh64 r52
579
addi r52, r52, -64
580
}
581
{
582
wh64 r52
583
addi r52, r52, -64
584
}
585
wh64 r52
586
#endif
587
588
#ifdef CONFIG_TRACE_IRQFLAGS
589
.ifnc \function,handle_nmi
590
/*
591
* We finally have enough state set up to notify the irq
592
* tracing code that irqs were disabled on entry to the handler.
593
* The TRACE_IRQS_OFF call clobbers registers r0-r29.
594
* For syscalls, we already have the register state saved away
595
* on the stack, so we don't bother to do any register saves here,
596
* and later we pop the registers back off the kernel stack.
597
* For interrupt handlers, save r0-r3 in callee-saved registers.
598
*/
599
.ifnc \function,handle_syscall
600
{ move r30, r0; move r31, r1 }
601
{ move r32, r2; move r33, r3 }
602
.endif
603
TRACE_IRQS_OFF
604
.ifnc \function,handle_syscall
605
{ move r0, r30; move r1, r31 }
606
{ move r2, r32; move r3, r33 }
607
.endif
608
.endif
609
#endif
610
611
.endm
612
613
.macro check_single_stepping, kind, not_single_stepping
614
/*
615
* Check for single stepping in user-level priv
616
* kind can be "normal", "ill", or "syscall"
617
* At end, if fall-thru
618
* r29: thread_info->step_state
619
* r28: &pt_regs->pc
620
* r27: pt_regs->pc
621
* r26: thread_info->step_state->buffer
622
*/
623
624
/* Check for single stepping */
625
GET_THREAD_INFO(r29)
626
{
627
/* Get pointer to field holding step state */
628
addi r29, r29, THREAD_INFO_STEP_STATE_OFFSET
629
630
/* Get pointer to EX1 in register state */
631
PTREGS_PTR(r27, PTREGS_OFFSET_EX1)
632
}
633
{
634
/* Get pointer to field holding PC */
635
PTREGS_PTR(r28, PTREGS_OFFSET_PC)
636
637
/* Load the pointer to the step state */
638
lw r29, r29
639
}
640
/* Load EX1 */
641
lw r27, r27
642
{
643
/* Points to flags */
644
addi r23, r29, SINGLESTEP_STATE_FLAGS_OFFSET
645
646
/* No single stepping if there is no step state structure */
647
bzt r29, \not_single_stepping
648
}
649
{
650
/* mask off ICS and any other high bits */
651
andi r27, r27, SPR_EX_CONTEXT_1_1__PL_MASK
652
653
/* Load pointer to single step instruction buffer */
654
lw r26, r29
655
}
656
/* Check priv state */
657
bnz r27, \not_single_stepping
658
659
/* Get flags */
660
lw r22, r23
661
{
662
/* Branch if single-step mode not enabled */
663
bbnst r22, \not_single_stepping
664
665
/* Clear enabled flag */
666
andi r22, r22, ~SINGLESTEP_STATE_MASK_IS_ENABLED
667
}
668
.ifc \kind,normal
669
{
670
/* Load PC */
671
lw r27, r28
672
673
/* Point to the entry containing the original PC */
674
addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
675
}
676
{
677
/* Disable single stepping flag */
678
sw r23, r22
679
}
680
{
681
/* Get the original pc */
682
lw r24, r24
683
684
/* See if the PC is at the start of the single step buffer */
685
seq r25, r26, r27
686
}
687
/*
688
* NOTE: it is really expected that the PC be in the single step buffer
689
* at this point
690
*/
691
bzt r25, \not_single_stepping
692
693
/* Restore the original PC */
694
sw r28, r24
695
.else
696
.ifc \kind,syscall
697
{
698
/* Load PC */
699
lw r27, r28
700
701
/* Point to the entry containing the next PC */
702
addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
703
}
704
{
705
/* Increment the stopped PC by the bundle size */
706
addi r26, r26, 8
707
708
/* Disable single stepping flag */
709
sw r23, r22
710
}
711
{
712
/* Get the next pc */
713
lw r24, r24
714
715
/*
716
* See if the PC is one bundle past the start of the
717
* single step buffer
718
*/
719
seq r25, r26, r27
720
}
721
{
722
/*
723
* NOTE: it is really expected that the PC be in the
724
* single step buffer at this point
725
*/
726
bzt r25, \not_single_stepping
727
}
728
/* Set to the next PC */
729
sw r28, r24
730
.else
731
{
732
/* Point to 3rd bundle in buffer */
733
addi r25, r26, 16
734
735
/* Load PC */
736
lw r27, r28
737
}
738
{
739
/* Disable single stepping flag */
740
sw r23, r22
741
742
/* See if the PC is in the single step buffer */
743
slte_u r24, r26, r27
744
}
745
{
746
slte_u r25, r27, r25
747
748
/*
749
* NOTE: it is really expected that the PC be in the
750
* single step buffer at this point
751
*/
752
bzt r24, \not_single_stepping
753
}
754
bzt r25, \not_single_stepping
755
.endif
756
.endif
757
.endm
758
759
/*
760
* Redispatch a downcall.
761
*/
762
.macro dc_dispatch vecnum, vecname
763
.org (\vecnum << 8)
764
intvec_\vecname:
765
j hv_downcall_dispatch
766
ENDPROC(intvec_\vecname)
767
.endm
768
769
/*
770
* Common code for most interrupts. The C function we're eventually
771
* going to is in r0, and the faultnum is in r1; the original
772
* values for those registers are on the stack.
773
*/
774
.pushsection .text.handle_interrupt,"ax"
775
handle_interrupt:
776
finish_interrupt_save handle_interrupt
777
778
/*
779
* Check for if we are single stepping in user level. If so, then
780
* we need to restore the PC.
781
*/
782
783
check_single_stepping normal, .Ldispatch_interrupt
784
.Ldispatch_interrupt:
785
786
/* Jump to the C routine; it should enable irqs as soon as possible. */
787
{
788
jalr r0
789
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
790
}
791
FEEDBACK_REENTER(handle_interrupt)
792
{
793
movei r30, 0 /* not an NMI */
794
j interrupt_return
795
}
796
STD_ENDPROC(handle_interrupt)
797
798
/*
799
* This routine takes a boolean in r30 indicating if this is an NMI.
800
* If so, we also expect a boolean in r31 indicating whether to
801
* re-enable the oprofile interrupts.
802
*/
803
STD_ENTRY(interrupt_return)
804
/* If we're resuming to kernel space, don't check thread flags. */
805
{
806
bnz r30, .Lrestore_all /* NMIs don't special-case user-space */
807
PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
808
}
809
lw r29, r29
810
andi r29, r29, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
811
{
812
bzt r29, .Lresume_userspace
813
PTREGS_PTR(r29, PTREGS_OFFSET_PC)
814
}
815
816
/* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
817
{
818
lw r28, r29
819
moveli r27, lo16(_cpu_idle_nap)
820
}
821
{
822
auli r27, r27, ha16(_cpu_idle_nap)
823
}
824
{
825
seq r27, r27, r28
826
}
827
{
828
bbns r27, .Lrestore_all
829
addi r28, r28, 8
830
}
831
sw r29, r28
832
j .Lrestore_all
833
834
.Lresume_userspace:
835
FEEDBACK_REENTER(interrupt_return)
836
837
/*
838
* Disable interrupts so as to make sure we don't
839
* miss an interrupt that sets any of the thread flags (like
840
* need_resched or sigpending) between sampling and the iret.
841
* Routines like schedule() or do_signal() may re-enable
842
* interrupts before returning.
843
*/
844
IRQ_DISABLE(r20, r21)
845
TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */
846
847
/* Get base of stack in r32; note r30/31 are used as arguments here. */
848
GET_THREAD_INFO(r32)
849
850
851
/* Check to see if there is any work to do before returning to user. */
852
{
853
addi r29, r32, THREAD_INFO_FLAGS_OFFSET
854
moveli r1, lo16(_TIF_ALLWORK_MASK)
855
}
856
{
857
lw r29, r29
858
auli r1, r1, ha16(_TIF_ALLWORK_MASK)
859
}
860
and r1, r29, r1
861
bzt r1, .Lrestore_all
862
863
/*
864
* Make sure we have all the registers saved for signal
865
* handling or single-step. Call out to C code to figure out
866
* exactly what we need to do for each flag bit, then if
867
* necessary, reload the flags and recheck.
868
*/
869
push_extra_callee_saves r0
870
{
871
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
872
jal do_work_pending
873
}
874
bnz r0, .Lresume_userspace
875
876
/*
877
* In the NMI case we
878
* omit the call to single_process_check_nohz, which normally checks
879
* to see if we should start or stop the scheduler tick, because
880
* we can't call arbitrary Linux code from an NMI context.
881
* We always call the homecache TLB deferral code to re-trigger
882
* the deferral mechanism.
883
*
884
* The other chunk of responsibility this code has is to reset the
885
* interrupt masks appropriately to reset irqs and NMIs. We have
886
* to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
887
* lockdep-type stuff, but we can't set ICS until afterwards, since
888
* ICS can only be used in very tight chunks of code to avoid
889
* tripping over various assertions that it is off.
890
*
891
* (There is what looks like a window of vulnerability here since
892
* we might take a profile interrupt between the two SPR writes
893
* that set the mask, but since we write the low SPR word first,
894
* and our interrupt entry code checks the low SPR word, any
895
* profile interrupt will actually disable interrupts in both SPRs
896
* before returning, which is OK.)
897
*/
898
.Lrestore_all:
899
PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
900
{
901
lw r0, r0
902
PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
903
}
904
{
905
andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK
906
lw r32, r32
907
}
908
bnz r0, 1f
909
j 2f
910
#if PT_FLAGS_DISABLE_IRQ != 1
911
# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use bbnst below
912
#endif
913
1: bbnst r32, 2f
914
IRQ_DISABLE(r20,r21)
915
TRACE_IRQS_OFF
916
movei r0, 1
917
mtspr INTERRUPT_CRITICAL_SECTION, r0
918
bzt r30, .Lrestore_regs
919
j 3f
920
2: TRACE_IRQS_ON
921
movei r0, 1
922
mtspr INTERRUPT_CRITICAL_SECTION, r0
923
IRQ_ENABLE(r20, r21)
924
bzt r30, .Lrestore_regs
925
3:
926
927
928
/*
929
* We now commit to returning from this interrupt, since we will be
930
* doing things like setting EX_CONTEXT SPRs and unwinding the stack
931
* frame. No calls should be made to any other code after this point.
932
* This code should only be entered with ICS set.
933
* r32 must still be set to ptregs.flags.
934
* We launch loads to each cache line separately first, so we can
935
* get some parallelism out of the memory subsystem.
936
* We start zeroing caller-saved registers throughout, since
937
* that will save some cycles if this turns out to be a syscall.
938
*/
939
.Lrestore_regs:
940
FEEDBACK_REENTER(interrupt_return) /* called from elsewhere */
941
942
/*
943
* Rotate so we have one high bit and one low bit to test.
944
* - low bit says whether to restore all the callee-saved registers,
945
* or just r30-r33, and r52 up.
946
* - high bit (i.e. sign bit) says whether to restore all the
947
* caller-saved registers, or just r0.
948
*/
949
#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
950
# error Rotate trick does not work :-)
951
#endif
952
{
953
rli r20, r32, 30
954
PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
955
}
956
957
/*
958
* Load cache lines 0, 2, and 3 in that order, then use
959
* the last loaded value, which makes it likely that the other
960
* cache lines have also loaded, at which point we should be
961
* able to safely read all the remaining words on those cache
962
* lines without waiting for the memory subsystem.
963
*/
964
pop_reg_zero r0, r28, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
965
pop_reg_zero r30, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(30)
966
pop_reg_zero r21, r3, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
967
pop_reg_zero lr, r4, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_EX1
968
{
969
mtspr SPR_EX_CONTEXT_K_0, r21
970
move r5, zero
971
}
972
{
973
mtspr SPR_EX_CONTEXT_K_1, lr
974
andi lr, lr, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
975
}
976
977
/* Restore callee-saveds that we actually use. */
978
pop_reg_zero r52, r6, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_REG(52)
979
pop_reg_zero r31, r7
980
pop_reg_zero r32, r8
981
pop_reg_zero r33, r9, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
982
983
/*
984
* If we modified other callee-saveds, restore them now.
985
* This is rare, but could be via ptrace or signal handler.
986
*/
987
{
988
move r10, zero
989
bbs r20, .Lrestore_callees
990
}
991
.Lcontinue_restore_regs:
992
993
/* Check if we're returning from a syscall. */
994
{
995
move r11, zero
996
blzt r20, 1f /* no, so go restore callee-save registers */
997
}
998
999
/*
1000
* Check if we're returning to userspace.
1001
* Note that if we're not, we don't worry about zeroing everything.
1002
*/
1003
{
1004
addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
1005
bnz lr, .Lkernel_return
1006
}
1007
1008
/*
1009
* On return from syscall, we've restored r0 from pt_regs, but we
1010
* clear the remainder of the caller-saved registers. We could
1011
* restore the syscall arguments, but there's not much point,
1012
* and it ensures user programs aren't trying to use the
1013
* caller-saves if we clear them, as well as avoiding leaking
1014
* kernel pointers into userspace.
1015
*/
1016
pop_reg_zero lr, r12, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1017
pop_reg_zero tp, r13, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1018
{
1019
lw sp, sp
1020
move r14, zero
1021
move r15, zero
1022
}
1023
{ move r16, zero; move r17, zero }
1024
{ move r18, zero; move r19, zero }
1025
{ move r20, zero; move r21, zero }
1026
{ move r22, zero; move r23, zero }
1027
{ move r24, zero; move r25, zero }
1028
{ move r26, zero; move r27, zero }
1029
1030
/* Set r1 to errno if we are returning an error, otherwise zero. */
1031
{
1032
moveli r29, 4096
1033
sub r1, zero, r0
1034
}
1035
slt_u r29, r1, r29
1036
{
1037
mnz r1, r29, r1
1038
move r29, zero
1039
}
1040
iret
1041
1042
/*
1043
* Not a syscall, so restore caller-saved registers.
1044
* First kick off a load for cache line 1, which we're touching
1045
* for the first time here.
1046
*/
1047
.align 64
1048
1: pop_reg r29, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(29)
1049
pop_reg r1
1050
pop_reg r2
1051
pop_reg r3
1052
pop_reg r4
1053
pop_reg r5
1054
pop_reg r6
1055
pop_reg r7
1056
pop_reg r8
1057
pop_reg r9
1058
pop_reg r10
1059
pop_reg r11
1060
pop_reg r12
1061
pop_reg r13
1062
pop_reg r14
1063
pop_reg r15
1064
pop_reg r16
1065
pop_reg r17
1066
pop_reg r18
1067
pop_reg r19
1068
pop_reg r20
1069
pop_reg r21
1070
pop_reg r22
1071
pop_reg r23
1072
pop_reg r24
1073
pop_reg r25
1074
pop_reg r26
1075
pop_reg r27
1076
pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1077
/* r29 already restored above */
1078
bnz lr, .Lkernel_return
1079
pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1080
pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1081
lw sp, sp
1082
iret
1083
1084
/*
1085
* We can't restore tp when in kernel mode, since a thread might
1086
* have migrated from another cpu and brought a stale tp value.
1087
*/
1088
.Lkernel_return:
1089
pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1090
lw sp, sp
1091
iret
1092
1093
/* Restore callee-saved registers from r34 to r51. */
1094
.Lrestore_callees:
1095
addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1096
pop_reg r34
1097
pop_reg r35
1098
pop_reg r36
1099
pop_reg r37
1100
pop_reg r38
1101
pop_reg r39
1102
pop_reg r40
1103
pop_reg r41
1104
pop_reg r42
1105
pop_reg r43
1106
pop_reg r44
1107
pop_reg r45
1108
pop_reg r46
1109
pop_reg r47
1110
pop_reg r48
1111
pop_reg r49
1112
pop_reg r50
1113
pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1114
j .Lcontinue_restore_regs
1115
STD_ENDPROC(interrupt_return)
1116
1117
/*
1118
* Some interrupts don't check for single stepping
1119
*/
1120
.pushsection .text.handle_interrupt_no_single_step,"ax"
1121
handle_interrupt_no_single_step:
1122
finish_interrupt_save handle_interrupt_no_single_step
1123
{
1124
jalr r0
1125
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1126
}
1127
FEEDBACK_REENTER(handle_interrupt_no_single_step)
1128
{
1129
movei r30, 0 /* not an NMI */
1130
j interrupt_return
1131
}
1132
STD_ENDPROC(handle_interrupt_no_single_step)
1133
1134
/*
1135
* "NMI" interrupts mask ALL interrupts before calling the
1136
* handler, and don't check thread flags, etc., on the way
1137
* back out. In general, the only things we do here for NMIs
1138
* are the register save/restore, fixing the PC if we were
1139
* doing single step, and the dataplane kernel-TLB management.
1140
* We don't (for example) deal with start/stop of the sched tick.
1141
*/
1142
.pushsection .text.handle_nmi,"ax"
1143
handle_nmi:
1144
finish_interrupt_save handle_nmi
1145
check_single_stepping normal, .Ldispatch_nmi
1146
.Ldispatch_nmi:
1147
{
1148
jalr r0
1149
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1150
}
1151
FEEDBACK_REENTER(handle_nmi)
1152
j interrupt_return
1153
STD_ENDPROC(handle_nmi)
1154
1155
/*
1156
* Parallel code for syscalls to handle_interrupt.
1157
*/
1158
.pushsection .text.handle_syscall,"ax"
1159
handle_syscall:
1160
finish_interrupt_save handle_syscall
1161
1162
/*
1163
* Check for if we are single stepping in user level. If so, then
1164
* we need to restore the PC.
1165
*/
1166
check_single_stepping syscall, .Ldispatch_syscall
1167
.Ldispatch_syscall:
1168
1169
/* Enable irqs. */
1170
TRACE_IRQS_ON
1171
IRQ_ENABLE(r20, r21)
1172
1173
/* Bump the counter for syscalls made on this tile. */
1174
moveli r20, lo16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1175
auli r20, r20, ha16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1176
add r20, r20, tp
1177
lw r21, r20
1178
addi r21, r21, 1
1179
sw r20, r21
1180
1181
/* Trace syscalls, if requested. */
1182
GET_THREAD_INFO(r31)
1183
addi r31, r31, THREAD_INFO_FLAGS_OFFSET
1184
lw r30, r31
1185
andi r30, r30, _TIF_SYSCALL_TRACE
1186
bzt r30, .Lrestore_syscall_regs
1187
jal do_syscall_trace
1188
FEEDBACK_REENTER(handle_syscall)
1189
1190
/*
1191
* We always reload our registers from the stack at this
1192
* point. They might be valid, if we didn't build with
1193
* TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1194
* doing syscall tracing, but there are enough cases now that it
1195
* seems simplest just to do the reload unconditionally.
1196
*/
1197
.Lrestore_syscall_regs:
1198
PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1199
pop_reg r0, r11
1200
pop_reg r1, r11
1201
pop_reg r2, r11
1202
pop_reg r3, r11
1203
pop_reg r4, r11
1204
pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1205
pop_reg TREG_SYSCALL_NR_NAME, r11
1206
1207
/* Ensure that the syscall number is within the legal range. */
1208
moveli r21, __NR_syscalls
1209
{
1210
slt_u r21, TREG_SYSCALL_NR_NAME, r21
1211
moveli r20, lo16(sys_call_table)
1212
}
1213
{
1214
bbns r21, .Linvalid_syscall
1215
auli r20, r20, ha16(sys_call_table)
1216
}
1217
s2a r20, TREG_SYSCALL_NR_NAME, r20
1218
lw r20, r20
1219
1220
/* Jump to syscall handler. */
1221
jalr r20
1222
.Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */
1223
1224
/*
1225
* Write our r0 onto the stack so it gets restored instead
1226
* of whatever the user had there before.
1227
*/
1228
PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1229
sw r29, r0
1230
1231
.Lsyscall_sigreturn_skip:
1232
FEEDBACK_REENTER(handle_syscall)
1233
1234
/* Do syscall trace again, if requested. */
1235
lw r30, r31
1236
andi r30, r30, _TIF_SYSCALL_TRACE
1237
bzt r30, 1f
1238
jal do_syscall_trace
1239
FEEDBACK_REENTER(handle_syscall)
1240
1: j .Lresume_userspace /* jump into middle of interrupt_return */
1241
1242
.Linvalid_syscall:
1243
/* Report an invalid syscall back to the user program */
1244
{
1245
PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1246
movei r28, -ENOSYS
1247
}
1248
sw r29, r28
1249
j .Lresume_userspace /* jump into middle of interrupt_return */
1250
STD_ENDPROC(handle_syscall)
1251
1252
/* Return the address for oprofile to suppress in backtraces. */
1253
STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1254
lnk r0
1255
{
1256
addli r0, r0, .Lhandle_syscall_link - .
1257
jrp lr
1258
}
1259
STD_ENDPROC(handle_syscall_link_address)
1260
1261
STD_ENTRY(ret_from_fork)
1262
jal sim_notify_fork
1263
jal schedule_tail
1264
FEEDBACK_REENTER(ret_from_fork)
1265
j .Lresume_userspace /* jump into middle of interrupt_return */
1266
STD_ENDPROC(ret_from_fork)
1267
1268
/*
1269
* Code for ill interrupt.
1270
*/
1271
.pushsection .text.handle_ill,"ax"
1272
handle_ill:
1273
finish_interrupt_save handle_ill
1274
1275
/*
1276
* Check for if we are single stepping in user level. If so, then
1277
* we need to restore the PC.
1278
*/
1279
check_single_stepping ill, .Ldispatch_normal_ill
1280
1281
{
1282
/* See if the PC is the 1st bundle in the buffer */
1283
seq r25, r27, r26
1284
1285
/* Point to the 2nd bundle in the buffer */
1286
addi r26, r26, 8
1287
}
1288
{
1289
/* Point to the original pc */
1290
addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
1291
1292
/* Branch if the PC is the 1st bundle in the buffer */
1293
bnz r25, 3f
1294
}
1295
{
1296
/* See if the PC is the 2nd bundle of the buffer */
1297
seq r25, r27, r26
1298
1299
/* Set PC to next instruction */
1300
addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
1301
}
1302
{
1303
/* Point to flags */
1304
addi r25, r29, SINGLESTEP_STATE_FLAGS_OFFSET
1305
1306
/* Branch if PC is in the second bundle */
1307
bz r25, 2f
1308
}
1309
/* Load flags */
1310
lw r25, r25
1311
{
1312
/*
1313
* Get the offset for the register to restore
1314
* Note: the lower bound is 2, so we have implicit scaling by 4.
1315
* No multiplication of the register number by the size of a register
1316
* is needed.
1317
*/
1318
mm r27, r25, zero, SINGLESTEP_STATE_TARGET_LB, \
1319
SINGLESTEP_STATE_TARGET_UB
1320
1321
/* Mask Rewrite_LR */
1322
andi r25, r25, SINGLESTEP_STATE_MASK_UPDATE
1323
}
1324
{
1325
addi r29, r29, SINGLESTEP_STATE_UPDATE_VALUE_OFFSET
1326
1327
/* Don't rewrite temp register */
1328
bz r25, 3f
1329
}
1330
{
1331
/* Get the temp value */
1332
lw r29, r29
1333
1334
/* Point to where the register is stored */
1335
add r27, r27, sp
1336
}
1337
1338
/* Add in the C ABI save area size to the register offset */
1339
addi r27, r27, C_ABI_SAVE_AREA_SIZE
1340
1341
/* Restore the user's register with the temp value */
1342
sw r27, r29
1343
j 3f
1344
1345
2:
1346
/* Must be in the third bundle */
1347
addi r24, r29, SINGLESTEP_STATE_BRANCH_NEXT_PC_OFFSET
1348
1349
3:
1350
/* set PC and continue */
1351
lw r26, r24
1352
sw r28, r26
1353
1354
/*
1355
* Clear TIF_SINGLESTEP to prevent recursion if we execute an ill.
1356
* The normal non-arch flow redundantly clears TIF_SINGLESTEP, but we
1357
* need to clear it here and can't really impose on all other arches.
1358
* So what's another write between friends?
1359
*/
1360
GET_THREAD_INFO(r0)
1361
1362
addi r1, r0, THREAD_INFO_FLAGS_OFFSET
1363
{
1364
lw r2, r1
1365
addi r0, r0, THREAD_INFO_TASK_OFFSET /* currently a no-op */
1366
}
1367
andi r2, r2, ~_TIF_SINGLESTEP
1368
sw r1, r2
1369
1370
/* Issue a sigtrap */
1371
{
1372
lw r0, r0 /* indirect thru thread_info to get task_info*/
1373
addi r1, sp, C_ABI_SAVE_AREA_SIZE /* put ptregs pointer into r1 */
1374
move r2, zero /* load error code into r2 */
1375
}
1376
1377
jal send_sigtrap /* issue a SIGTRAP */
1378
FEEDBACK_REENTER(handle_ill)
1379
j .Lresume_userspace /* jump into middle of interrupt_return */
1380
1381
.Ldispatch_normal_ill:
1382
{
1383
jalr r0
1384
PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1385
}
1386
FEEDBACK_REENTER(handle_ill)
1387
{
1388
movei r30, 0 /* not an NMI */
1389
j interrupt_return
1390
}
1391
STD_ENDPROC(handle_ill)
1392
1393
/* Various stub interrupt handlers and syscall handlers */
1394
1395
STD_ENTRY_LOCAL(_kernel_double_fault)
1396
mfspr r1, SPR_EX_CONTEXT_K_0
1397
move r2, lr
1398
move r3, sp
1399
move r4, r52
1400
addi sp, sp, -C_ABI_SAVE_AREA_SIZE
1401
j kernel_double_fault
1402
STD_ENDPROC(_kernel_double_fault)
1403
1404
STD_ENTRY_LOCAL(bad_intr)
1405
mfspr r2, SPR_EX_CONTEXT_K_0
1406
panic "Unhandled interrupt %#x: PC %#lx"
1407
STD_ENDPROC(bad_intr)
1408
1409
/* Put address of pt_regs in reg and jump. */
1410
#define PTREGS_SYSCALL(x, reg) \
1411
STD_ENTRY(_##x); \
1412
{ \
1413
PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
1414
j x \
1415
}; \
1416
STD_ENDPROC(_##x)
1417
1418
/*
1419
* Special-case sigreturn to not write r0 to the stack on return.
1420
* This is technically more efficient, but it also avoids difficulties
1421
* in the 64-bit OS when handling 32-bit compat code, since we must not
1422
* sign-extend r0 for the sigreturn return-value case.
1423
*/
1424
#define PTREGS_SYSCALL_SIGRETURN(x, reg) \
1425
STD_ENTRY(_##x); \
1426
addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \
1427
{ \
1428
PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
1429
j x \
1430
}; \
1431
STD_ENDPROC(_##x)
1432
1433
PTREGS_SYSCALL(sys_execve, r3)
1434
PTREGS_SYSCALL(sys_sigaltstack, r2)
1435
PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0)
1436
PTREGS_SYSCALL(sys_cmpxchg_badaddr, r1)
1437
1438
/* Save additional callee-saves to pt_regs, put address in r4 and jump. */
1439
STD_ENTRY(_sys_clone)
1440
push_extra_callee_saves r4
1441
j sys_clone
1442
STD_ENDPROC(_sys_clone)
1443
1444
/*
1445
* This entrypoint is taken for the cmpxchg and atomic_update fast
1446
* swints. We may wish to generalize it to other fast swints at some
1447
* point, but for now there are just two very similar ones, which
1448
* makes it faster.
1449
*
1450
* The fast swint code is designed to have a small footprint. It does
1451
* not save or restore any GPRs, counting on the caller-save registers
1452
* to be available to it on entry. It does not modify any callee-save
1453
* registers (including "lr"). It does not check what PL it is being
1454
* called at, so you'd better not call it other than at PL0.
1455
* The <atomic.h> wrapper assumes it only clobbers r20-r29, so if
1456
* it ever is necessary to use more registers, be aware.
1457
*
1458
* It does not use the stack, but since it might be re-interrupted by
1459
* a page fault which would assume the stack was valid, it does
1460
* save/restore the stack pointer and zero it out to make sure it gets reset.
1461
* Since we always keep interrupts disabled, the hypervisor won't
1462
* clobber our EX_CONTEXT_K_x registers, so we don't save/restore them
1463
* (other than to advance the PC on return).
1464
*
1465
* We have to manually validate the user vs kernel address range
1466
* (since at PL1 we can read/write both), and for performance reasons
1467
* we don't allow cmpxchg on the fc000000 memory region, since we only
1468
* validate that the user address is below PAGE_OFFSET.
1469
*
1470
* We place it in the __HEAD section to ensure it is relatively
1471
* near to the intvec_SWINT_1 code (reachable by a conditional branch).
1472
*
1473
* Our use of ATOMIC_LOCK_REG here must match do_page_fault_ics().
1474
*
1475
* As we do in lib/atomic_asm_32.S, we bypass a store if the value we
1476
* would store is the same as the value we just loaded.
1477
*/
1478
__HEAD
1479
.align 64
1480
/* Align much later jump on the start of a cache line. */
1481
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
1482
nop
1483
#if PAGE_SIZE >= 0x10000
1484
nop
1485
#endif
1486
#endif
1487
ENTRY(sys_cmpxchg)
1488
1489
/*
1490
* Save "sp" and set it zero for any possible page fault.
1491
*
1492
* HACK: We want to both zero sp and check r0's alignment,
1493
* so we do both at once. If "sp" becomes nonzero we
1494
* know r0 is unaligned and branch to the error handler that
1495
* restores sp, so this is OK.
1496
*
1497
* ICS is disabled right now so having a garbage but nonzero
1498
* sp is OK, since we won't execute any faulting instructions
1499
* when it is nonzero.
1500
*/
1501
{
1502
move r27, sp
1503
andi sp, r0, 3
1504
}
1505
1506
/*
1507
* Get the lock address in ATOMIC_LOCK_REG, and also validate that the
1508
* address is less than PAGE_OFFSET, since that won't trap at PL1.
1509
* We only use bits less than PAGE_SHIFT to avoid having to worry
1510
* about aliasing among multiple mappings of the same physical page,
1511
* and we ignore the low 3 bits so we have one lock that covers
1512
* both a cmpxchg64() and a cmpxchg() on either its low or high word.
1513
* NOTE: this must match __atomic_hashed_lock() in lib/atomic_32.c.
1514
*/
1515
1516
#if (PAGE_OFFSET & 0xffff) != 0
1517
# error Code here assumes PAGE_OFFSET can be loaded with just hi16()
1518
#endif
1519
1520
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1521
{
1522
/* Check for unaligned input. */
1523
bnz sp, .Lcmpxchg_badaddr
1524
mm r25, r0, zero, 3, PAGE_SHIFT-1
1525
}
1526
{
1527
crc32_32 r25, zero, r25
1528
moveli r21, lo16(atomic_lock_ptr)
1529
}
1530
{
1531
auli r21, r21, ha16(atomic_lock_ptr)
1532
auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1533
}
1534
{
1535
shri r20, r25, 32 - ATOMIC_HASH_L1_SHIFT
1536
slt_u r23, r0, r23
1537
lw r26, r0 /* see comment in the "#else" for the "lw r26". */
1538
}
1539
{
1540
s2a r21, r20, r21
1541
bbns r23, .Lcmpxchg_badaddr
1542
}
1543
{
1544
lw r21, r21
1545
seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1546
andi r25, r25, ATOMIC_HASH_L2_SIZE - 1
1547
}
1548
{
1549
/* Branch away at this point if we're doing a 64-bit cmpxchg. */
1550
bbs r23, .Lcmpxchg64
1551
andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1552
}
1553
{
1554
s2a ATOMIC_LOCK_REG_NAME, r25, r21
1555
j .Lcmpxchg32_tns /* see comment in the #else for the jump. */
1556
}
1557
1558
#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1559
{
1560
/* Check for unaligned input. */
1561
bnz sp, .Lcmpxchg_badaddr
1562
auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1563
}
1564
{
1565
/*
1566
* Slide bits into position for 'mm'. We want to ignore
1567
* the low 3 bits of r0, and consider only the next
1568
* ATOMIC_HASH_SHIFT bits.
1569
* Because of C pointer arithmetic, we want to compute this:
1570
*
1571
* ((char*)atomic_locks +
1572
* (((r0 >> 3) & (1 << (ATOMIC_HASH_SIZE - 1))) << 2))
1573
*
1574
* Instead of two shifts we just ">> 1", and use 'mm'
1575
* to ignore the low and high bits we don't want.
1576
*/
1577
shri r25, r0, 1
1578
1579
slt_u r23, r0, r23
1580
1581
/*
1582
* Ensure that the TLB is loaded before we take out the lock.
1583
* On tilepro, this will start fetching the value all the way
1584
* into our L1 as well (and if it gets modified before we
1585
* grab the lock, it will be invalidated from our cache
1586
* before we reload it). On tile64, we'll start fetching it
1587
* into our L1 if we're the home, and if we're not, we'll
1588
* still at least start fetching it into the home's L2.
1589
*/
1590
lw r26, r0
1591
}
1592
{
1593
auli r21, zero, ha16(atomic_locks)
1594
1595
bbns r23, .Lcmpxchg_badaddr
1596
}
1597
#if PAGE_SIZE < 0x10000
1598
/* atomic_locks is page-aligned so for big pages we don't need this. */
1599
addli r21, r21, lo16(atomic_locks)
1600
#endif
1601
{
1602
/*
1603
* Insert the hash bits into the page-aligned pointer.
1604
* ATOMIC_HASH_SHIFT is so big that we don't actually hash
1605
* the unmasked address bits, as that may cause unnecessary
1606
* collisions.
1607
*/
1608
mm ATOMIC_LOCK_REG_NAME, r25, r21, 2, (ATOMIC_HASH_SHIFT + 2) - 1
1609
1610
seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1611
}
1612
{
1613
/* Branch away at this point if we're doing a 64-bit cmpxchg. */
1614
bbs r23, .Lcmpxchg64
1615
andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1616
}
1617
{
1618
/*
1619
* We very carefully align the code that actually runs with
1620
* the lock held (twelve bundles) so that we know it is all in
1621
* the icache when we start. This instruction (the jump) is
1622
* at the start of the first cache line, address zero mod 64;
1623
* we jump to the very end of the second cache line to get that
1624
* line loaded in the icache, then fall through to issue the tns
1625
* in the third cache line, at which point it's all cached.
1626
* Note that is for performance, not correctness.
1627
*/
1628
j .Lcmpxchg32_tns
1629
}
1630
1631
#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1632
1633
/* Symbol for do_page_fault_ics() to use to compare against the PC. */
1634
.global __sys_cmpxchg_grab_lock
1635
__sys_cmpxchg_grab_lock:
1636
1637
/*
1638
* Perform the actual cmpxchg or atomic_update.
1639
*/
1640
.Ldo_cmpxchg32:
1641
{
1642
lw r21, r0
1643
seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_atomic_update
1644
move r24, r2
1645
}
1646
{
1647
seq r22, r21, r1 /* See if cmpxchg matches. */
1648
and r25, r21, r1 /* If atomic_update, compute (*mem & mask) */
1649
}
1650
{
1651
or r22, r22, r23 /* Skip compare branch for atomic_update. */
1652
add r25, r25, r2 /* Compute (*mem & mask) + addend. */
1653
}
1654
{
1655
mvnz r24, r23, r25 /* Use atomic_update value if appropriate. */
1656
bbns r22, .Lcmpxchg32_nostore
1657
}
1658
seq r22, r24, r21 /* Are we storing the value we loaded? */
1659
bbs r22, .Lcmpxchg32_nostore
1660
sw r0, r24
1661
1662
/* The following instruction is the start of the second cache line. */
1663
/* Do slow mtspr here so the following "mf" waits less. */
1664
{
1665
move sp, r27
1666
mtspr SPR_EX_CONTEXT_K_0, r28
1667
}
1668
mf
1669
1670
{
1671
move r0, r21
1672
sw ATOMIC_LOCK_REG_NAME, zero
1673
}
1674
iret
1675
1676
/* Duplicated code here in the case where we don't overlap "mf" */
1677
.Lcmpxchg32_nostore:
1678
{
1679
move r0, r21
1680
sw ATOMIC_LOCK_REG_NAME, zero
1681
}
1682
{
1683
move sp, r27
1684
mtspr SPR_EX_CONTEXT_K_0, r28
1685
}
1686
iret
1687
1688
/*
1689
* The locking code is the same for 32-bit cmpxchg/atomic_update,
1690
* and for 64-bit cmpxchg. We provide it as a macro and put
1691
* it into both versions. We can't share the code literally
1692
* since it depends on having the right branch-back address.
1693
*/
1694
.macro cmpxchg_lock, bitwidth
1695
1696
/* Lock; if we succeed, jump back up to the read-modify-write. */
1697
#ifdef CONFIG_SMP
1698
tns r21, ATOMIC_LOCK_REG_NAME
1699
#else
1700
/*
1701
* Non-SMP preserves all the lock infrastructure, to keep the
1702
* code simpler for the interesting (SMP) case. However, we do
1703
* one small optimization here and in atomic_asm.S, which is
1704
* to fake out acquiring the actual lock in the atomic_lock table.
1705
*/
1706
movei r21, 0
1707
#endif
1708
1709
/* Issue the slow SPR here while the tns result is in flight. */
1710
mfspr r28, SPR_EX_CONTEXT_K_0
1711
1712
{
1713
addi r28, r28, 8 /* return to the instruction after the swint1 */
1714
bzt r21, .Ldo_cmpxchg\bitwidth
1715
}
1716
/*
1717
* The preceding instruction is the last thing that must be
1718
* hot in the icache before we do the "tns" above.
1719
*/
1720
1721
#ifdef CONFIG_SMP
1722
/*
1723
* We failed to acquire the tns lock on our first try. Now use
1724
* bounded exponential backoff to retry, like __atomic_spinlock().
1725
*/
1726
{
1727
moveli r23, 2048 /* maximum backoff time in cycles */
1728
moveli r25, 32 /* starting backoff time in cycles */
1729
}
1730
1: mfspr r26, CYCLE_LOW /* get start point for this backoff */
1731
2: mfspr r22, CYCLE_LOW /* test to see if we've backed off enough */
1732
sub r22, r22, r26
1733
slt r22, r22, r25
1734
bbst r22, 2b
1735
{
1736
shli r25, r25, 1 /* double the backoff; retry the tns */
1737
tns r21, ATOMIC_LOCK_REG_NAME
1738
}
1739
slt r26, r23, r25 /* is the proposed backoff too big? */
1740
{
1741
mvnz r25, r26, r23
1742
bzt r21, .Ldo_cmpxchg\bitwidth
1743
}
1744
j 1b
1745
#endif /* CONFIG_SMP */
1746
.endm
1747
1748
.Lcmpxchg32_tns:
1749
/*
1750
* This is the last instruction on the second cache line.
1751
* The nop here loads the second line, then we fall through
1752
* to the tns to load the third line before we take the lock.
1753
*/
1754
nop
1755
cmpxchg_lock 32
1756
1757
/*
1758
* This code is invoked from sys_cmpxchg after most of the
1759
* preconditions have been checked. We still need to check
1760
* that r0 is 8-byte aligned, since if it's not we won't
1761
* actually be atomic. However, ATOMIC_LOCK_REG has the atomic
1762
* lock pointer and r27/r28 have the saved SP/PC.
1763
* r23 is holding "r0 & 7" so we can test for alignment.
1764
* The compare value is in r2/r3; the new value is in r4/r5.
1765
* On return, we must put the old value in r0/r1.
1766
*/
1767
.align 64
1768
.Lcmpxchg64:
1769
{
1770
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1771
s2a ATOMIC_LOCK_REG_NAME, r25, r21
1772
#endif
1773
bzt r23, .Lcmpxchg64_tns
1774
}
1775
j .Lcmpxchg_badaddr
1776
1777
.Ldo_cmpxchg64:
1778
{
1779
lw r21, r0
1780
addi r25, r0, 4
1781
}
1782
{
1783
lw r1, r25
1784
}
1785
seq r26, r21, r2
1786
{
1787
bz r26, .Lcmpxchg64_mismatch
1788
seq r26, r1, r3
1789
}
1790
{
1791
bz r26, .Lcmpxchg64_mismatch
1792
}
1793
sw r0, r4
1794
sw r25, r5
1795
1796
/*
1797
* The 32-bit path provides optimized "match" and "mismatch"
1798
* iret paths, but we don't have enough bundles in this cache line
1799
* to do that, so we just make even the "mismatch" path do an "mf".
1800
*/
1801
.Lcmpxchg64_mismatch:
1802
{
1803
move sp, r27
1804
mtspr SPR_EX_CONTEXT_K_0, r28
1805
}
1806
mf
1807
{
1808
move r0, r21
1809
sw ATOMIC_LOCK_REG_NAME, zero
1810
}
1811
iret
1812
1813
.Lcmpxchg64_tns:
1814
cmpxchg_lock 64
1815
1816
1817
/*
1818
* Reset sp and revector to sys_cmpxchg_badaddr(), which will
1819
* just raise the appropriate signal and exit. Doing it this
1820
* way means we don't have to duplicate the code in intvec.S's
1821
* int_hand macro that locates the top of the stack.
1822
*/
1823
.Lcmpxchg_badaddr:
1824
{
1825
moveli TREG_SYSCALL_NR_NAME, __NR_cmpxchg_badaddr
1826
move sp, r27
1827
}
1828
j intvec_SWINT_1
1829
ENDPROC(sys_cmpxchg)
1830
ENTRY(__sys_cmpxchg_end)
1831
1832
1833
/* The single-step support may need to read all the registers. */
1834
int_unalign:
1835
push_extra_callee_saves r0
1836
j do_trap
1837
1838
/* Include .intrpt1 array of interrupt vectors */
1839
.section ".intrpt1", "ax"
1840
1841
#define op_handle_perf_interrupt bad_intr
1842
#define op_handle_aux_perf_interrupt bad_intr
1843
1844
#ifndef CONFIG_HARDWALL
1845
#define do_hardwall_trap bad_intr
1846
#endif
1847
1848
int_hand INT_ITLB_MISS, ITLB_MISS, \
1849
do_page_fault, handle_interrupt_no_single_step
1850
int_hand INT_MEM_ERROR, MEM_ERROR, bad_intr
1851
int_hand INT_ILL, ILL, do_trap, handle_ill
1852
int_hand INT_GPV, GPV, do_trap
1853
int_hand INT_SN_ACCESS, SN_ACCESS, do_trap
1854
int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap
1855
int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap
1856
int_hand INT_IDN_REFILL, IDN_REFILL, bad_intr
1857
int_hand INT_UDN_REFILL, UDN_REFILL, bad_intr
1858
int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1859
int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1860
int_hand INT_SWINT_3, SWINT_3, do_trap
1861
int_hand INT_SWINT_2, SWINT_2, do_trap
1862
int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1863
int_hand INT_SWINT_0, SWINT_0, do_trap
1864
int_hand INT_UNALIGN_DATA, UNALIGN_DATA, int_unalign
1865
int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault
1866
int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1867
int_hand INT_DMATLB_MISS, DMATLB_MISS, do_page_fault
1868
int_hand INT_DMATLB_ACCESS, DMATLB_ACCESS, do_page_fault
1869
int_hand INT_SNITLB_MISS, SNITLB_MISS, do_page_fault
1870
int_hand INT_SN_NOTIFY, SN_NOTIFY, bad_intr
1871
int_hand INT_SN_FIREWALL, SN_FIREWALL, do_hardwall_trap
1872
int_hand INT_IDN_FIREWALL, IDN_FIREWALL, bad_intr
1873
int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1874
int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1875
int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr
1876
int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr
1877
int_hand INT_DMA_NOTIFY, DMA_NOTIFY, bad_intr
1878
int_hand INT_IDN_CA, IDN_CA, bad_intr
1879
int_hand INT_UDN_CA, UDN_CA, bad_intr
1880
int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1881
int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1882
int_hand INT_PERF_COUNT, PERF_COUNT, \
1883
op_handle_perf_interrupt, handle_nmi
1884
int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr
1885
#if CONFIG_KERNEL_PL == 2
1886
dc_dispatch INT_INTCTRL_2, INTCTRL_2
1887
int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr
1888
#else
1889
int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr
1890
dc_dispatch INT_INTCTRL_1, INTCTRL_1
1891
#endif
1892
int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr
1893
int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
1894
hv_message_intr
1895
int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, \
1896
tile_dev_intr
1897
int_hand INT_I_ASID, I_ASID, bad_intr
1898
int_hand INT_D_ASID, D_ASID, bad_intr
1899
int_hand INT_DMATLB_MISS_DWNCL, DMATLB_MISS_DWNCL, \
1900
do_page_fault
1901
int_hand INT_SNITLB_MISS_DWNCL, SNITLB_MISS_DWNCL, \
1902
do_page_fault
1903
int_hand INT_DMATLB_ACCESS_DWNCL, DMATLB_ACCESS_DWNCL, \
1904
do_page_fault
1905
int_hand INT_SN_CPL, SN_CPL, bad_intr
1906
int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
1907
#if CHIP_HAS_AUX_PERF_COUNTERS()
1908
int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
1909
op_handle_aux_perf_interrupt, handle_nmi
1910
#endif
1911
1912
/* Synthetic interrupt delivered only by the simulator */
1913
int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint
1914
1915