Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/tile/kernel/pci-dma.c
10817 views
1
/*
2
* Copyright 2010 Tilera Corporation. All Rights Reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation, version 2.
7
*
8
* This program is distributed in the hope that it will be useful, but
9
* WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11
* NON INFRINGEMENT. See the GNU General Public License for
12
* more details.
13
*/
14
15
#include <linux/mm.h>
16
#include <linux/dma-mapping.h>
17
#include <linux/vmalloc.h>
18
#include <asm/tlbflush.h>
19
#include <asm/homecache.h>
20
21
/* Generic DMA mapping functions: */
22
23
/*
24
* Allocate what Linux calls "coherent" memory, which for us just
25
* means uncached.
26
*/
27
void *dma_alloc_coherent(struct device *dev,
28
size_t size,
29
dma_addr_t *dma_handle,
30
gfp_t gfp)
31
{
32
u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
33
int node = dev_to_node(dev);
34
int order = get_order(size);
35
struct page *pg;
36
dma_addr_t addr;
37
38
gfp |= __GFP_ZERO;
39
40
/*
41
* By forcing NUMA node 0 for 32-bit masks we ensure that the
42
* high 32 bits of the resulting PA will be zero. If the mask
43
* size is, e.g., 24, we may still not be able to guarantee a
44
* suitable memory address, in which case we will return NULL.
45
* But such devices are uncommon.
46
*/
47
if (dma_mask <= DMA_BIT_MASK(32))
48
node = 0;
49
50
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
51
if (pg == NULL)
52
return NULL;
53
54
addr = page_to_phys(pg);
55
if (addr + size > dma_mask) {
56
homecache_free_pages(addr, order);
57
return NULL;
58
}
59
60
*dma_handle = addr;
61
return page_address(pg);
62
}
63
EXPORT_SYMBOL(dma_alloc_coherent);
64
65
/*
66
* Free memory that was allocated with dma_alloc_coherent.
67
*/
68
void dma_free_coherent(struct device *dev, size_t size,
69
void *vaddr, dma_addr_t dma_handle)
70
{
71
homecache_free_pages((unsigned long)vaddr, get_order(size));
72
}
73
EXPORT_SYMBOL(dma_free_coherent);
74
75
/*
76
* The map routines "map" the specified address range for DMA
77
* accesses. The memory belongs to the device after this call is
78
* issued, until it is unmapped with dma_unmap_single.
79
*
80
* We don't need to do any mapping, we just flush the address range
81
* out of the cache and return a DMA address.
82
*
83
* The unmap routines do whatever is necessary before the processor
84
* accesses the memory again, and must be called before the driver
85
* touches the memory. We can get away with a cache invalidate if we
86
* can count on nothing having been touched.
87
*/
88
89
/* Flush a PA range from cache page by page. */
90
static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
91
{
92
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
93
size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
94
95
while ((ssize_t)size > 0) {
96
/* Flush the page. */
97
homecache_flush_cache(page++, 0);
98
99
/* Figure out if we need to continue on the next page. */
100
size -= bytesleft;
101
bytesleft = PAGE_SIZE;
102
}
103
}
104
105
/*
106
* dma_map_single can be passed any memory address, and there appear
107
* to be no alignment constraints.
108
*
109
* There is a chance that the start of the buffer will share a cache
110
* line with some other data that has been touched in the meantime.
111
*/
112
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
113
enum dma_data_direction direction)
114
{
115
dma_addr_t dma_addr = __pa(ptr);
116
117
BUG_ON(!valid_dma_direction(direction));
118
WARN_ON(size == 0);
119
120
__dma_map_pa_range(dma_addr, size);
121
122
return dma_addr;
123
}
124
EXPORT_SYMBOL(dma_map_single);
125
126
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
127
enum dma_data_direction direction)
128
{
129
BUG_ON(!valid_dma_direction(direction));
130
}
131
EXPORT_SYMBOL(dma_unmap_single);
132
133
int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
134
enum dma_data_direction direction)
135
{
136
struct scatterlist *sg;
137
int i;
138
139
BUG_ON(!valid_dma_direction(direction));
140
141
WARN_ON(nents == 0 || sglist->length == 0);
142
143
for_each_sg(sglist, sg, nents, i) {
144
sg->dma_address = sg_phys(sg);
145
__dma_map_pa_range(sg->dma_address, sg->length);
146
}
147
148
return nents;
149
}
150
EXPORT_SYMBOL(dma_map_sg);
151
152
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
153
enum dma_data_direction direction)
154
{
155
BUG_ON(!valid_dma_direction(direction));
156
}
157
EXPORT_SYMBOL(dma_unmap_sg);
158
159
dma_addr_t dma_map_page(struct device *dev, struct page *page,
160
unsigned long offset, size_t size,
161
enum dma_data_direction direction)
162
{
163
BUG_ON(!valid_dma_direction(direction));
164
165
BUG_ON(offset + size > PAGE_SIZE);
166
homecache_flush_cache(page, 0);
167
168
return page_to_pa(page) + offset;
169
}
170
EXPORT_SYMBOL(dma_map_page);
171
172
void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
173
enum dma_data_direction direction)
174
{
175
BUG_ON(!valid_dma_direction(direction));
176
}
177
EXPORT_SYMBOL(dma_unmap_page);
178
179
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
180
size_t size, enum dma_data_direction direction)
181
{
182
BUG_ON(!valid_dma_direction(direction));
183
}
184
EXPORT_SYMBOL(dma_sync_single_for_cpu);
185
186
void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
187
size_t size, enum dma_data_direction direction)
188
{
189
unsigned long start = PFN_DOWN(dma_handle);
190
unsigned long end = PFN_DOWN(dma_handle + size - 1);
191
unsigned long i;
192
193
BUG_ON(!valid_dma_direction(direction));
194
for (i = start; i <= end; ++i)
195
homecache_flush_cache(pfn_to_page(i), 0);
196
}
197
EXPORT_SYMBOL(dma_sync_single_for_device);
198
199
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
200
enum dma_data_direction direction)
201
{
202
BUG_ON(!valid_dma_direction(direction));
203
WARN_ON(nelems == 0 || sg[0].length == 0);
204
}
205
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
206
207
/*
208
* Flush and invalidate cache for scatterlist.
209
*/
210
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
211
int nelems, enum dma_data_direction direction)
212
{
213
struct scatterlist *sg;
214
int i;
215
216
BUG_ON(!valid_dma_direction(direction));
217
WARN_ON(nelems == 0 || sglist->length == 0);
218
219
for_each_sg(sglist, sg, nelems, i) {
220
dma_sync_single_for_device(dev, sg->dma_address,
221
sg_dma_len(sg), direction);
222
}
223
}
224
EXPORT_SYMBOL(dma_sync_sg_for_device);
225
226
void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
227
unsigned long offset, size_t size,
228
enum dma_data_direction direction)
229
{
230
dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
231
}
232
EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
233
234
void dma_sync_single_range_for_device(struct device *dev,
235
dma_addr_t dma_handle,
236
unsigned long offset, size_t size,
237
enum dma_data_direction direction)
238
{
239
dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
240
}
241
EXPORT_SYMBOL(dma_sync_single_range_for_device);
242
243
/*
244
* dma_alloc_noncoherent() returns non-cacheable memory, so there's no
245
* need to do any flushing here.
246
*/
247
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
248
enum dma_data_direction direction)
249
{
250
}
251
EXPORT_SYMBOL(dma_cache_sync);
252
253