Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/tile/kernel/pci.c
10817 views
1
/*
2
* Copyright 2011 Tilera Corporation. All Rights Reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation, version 2.
7
*
8
* This program is distributed in the hope that it will be useful, but
9
* WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11
* NON INFRINGEMENT. See the GNU General Public License for
12
* more details.
13
*/
14
15
#include <linux/kernel.h>
16
#include <linux/pci.h>
17
#include <linux/delay.h>
18
#include <linux/string.h>
19
#include <linux/init.h>
20
#include <linux/capability.h>
21
#include <linux/sched.h>
22
#include <linux/errno.h>
23
#include <linux/bootmem.h>
24
#include <linux/irq.h>
25
#include <linux/io.h>
26
#include <linux/uaccess.h>
27
28
#include <asm/processor.h>
29
#include <asm/sections.h>
30
#include <asm/byteorder.h>
31
#include <asm/hv_driver.h>
32
#include <hv/drv_pcie_rc_intf.h>
33
34
35
/*
36
* Initialization flow and process
37
* -------------------------------
38
*
39
* This files contains the routines to search for PCI buses,
40
* enumerate the buses, and configure any attached devices.
41
*
42
* There are two entry points here:
43
* 1) tile_pci_init
44
* This sets up the pci_controller structs, and opens the
45
* FDs to the hypervisor. This is called from setup_arch() early
46
* in the boot process.
47
* 2) pcibios_init
48
* This probes the PCI bus(es) for any attached hardware. It's
49
* called by subsys_initcall. All of the real work is done by the
50
* generic Linux PCI layer.
51
*
52
*/
53
54
/*
55
* This flag tells if the platform is TILEmpower that needs
56
* special configuration for the PLX switch chip.
57
*/
58
int __write_once tile_plx_gen1;
59
60
static struct pci_controller controllers[TILE_NUM_PCIE];
61
static int num_controllers;
62
static int pci_scan_flags[TILE_NUM_PCIE];
63
64
static struct pci_ops tile_cfg_ops;
65
66
67
/*
68
* We don't need to worry about the alignment of resources.
69
*/
70
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
71
resource_size_t size, resource_size_t align)
72
{
73
return res->start;
74
}
75
EXPORT_SYMBOL(pcibios_align_resource);
76
77
/*
78
* Open a FD to the hypervisor PCI device.
79
*
80
* controller_id is the controller number, config type is 0 or 1 for
81
* config0 or config1 operations.
82
*/
83
static int __devinit tile_pcie_open(int controller_id, int config_type)
84
{
85
char filename[32];
86
int fd;
87
88
sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
89
90
fd = hv_dev_open((HV_VirtAddr)filename, 0);
91
92
return fd;
93
}
94
95
96
/*
97
* Get the IRQ numbers from the HV and set up the handlers for them.
98
*/
99
static int __devinit tile_init_irqs(int controller_id,
100
struct pci_controller *controller)
101
{
102
char filename[32];
103
int fd;
104
int ret;
105
int x;
106
struct pcie_rc_config rc_config;
107
108
sprintf(filename, "pcie/%d/ctl", controller_id);
109
fd = hv_dev_open((HV_VirtAddr)filename, 0);
110
if (fd < 0) {
111
pr_err("PCI: hv_dev_open(%s) failed\n", filename);
112
return -1;
113
}
114
ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
115
sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
116
hv_dev_close(fd);
117
if (ret != sizeof(rc_config)) {
118
pr_err("PCI: wanted %zd bytes, got %d\n",
119
sizeof(rc_config), ret);
120
return -1;
121
}
122
/* Record irq_base so that we can map INTx to IRQ # later. */
123
controller->irq_base = rc_config.intr;
124
125
for (x = 0; x < 4; x++)
126
tile_irq_activate(rc_config.intr + x,
127
TILE_IRQ_HW_CLEAR);
128
129
if (rc_config.plx_gen1)
130
controller->plx_gen1 = 1;
131
132
return 0;
133
}
134
135
/*
136
* First initialization entry point, called from setup_arch().
137
*
138
* Find valid controllers and fill in pci_controller structs for each
139
* of them.
140
*
141
* Returns the number of controllers discovered.
142
*/
143
int __devinit tile_pci_init(void)
144
{
145
int i;
146
147
pr_info("PCI: Searching for controllers...\n");
148
149
/* Re-init number of PCIe controllers to support hot-plug feature. */
150
num_controllers = 0;
151
152
/* Do any configuration we need before using the PCIe */
153
154
for (i = 0; i < TILE_NUM_PCIE; i++) {
155
/*
156
* To see whether we need a real config op based on
157
* the results of pcibios_init(), to support PCIe hot-plug.
158
*/
159
if (pci_scan_flags[i] == 0) {
160
int hv_cfg_fd0 = -1;
161
int hv_cfg_fd1 = -1;
162
int hv_mem_fd = -1;
163
char name[32];
164
struct pci_controller *controller;
165
166
/*
167
* Open the fd to the HV. If it fails then this
168
* device doesn't exist.
169
*/
170
hv_cfg_fd0 = tile_pcie_open(i, 0);
171
if (hv_cfg_fd0 < 0)
172
continue;
173
hv_cfg_fd1 = tile_pcie_open(i, 1);
174
if (hv_cfg_fd1 < 0) {
175
pr_err("PCI: Couldn't open config fd to HV "
176
"for controller %d\n", i);
177
goto err_cont;
178
}
179
180
sprintf(name, "pcie/%d/mem", i);
181
hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
182
if (hv_mem_fd < 0) {
183
pr_err("PCI: Could not open mem fd to HV!\n");
184
goto err_cont;
185
}
186
187
pr_info("PCI: Found PCI controller #%d\n", i);
188
189
controller = &controllers[i];
190
191
controller->index = i;
192
controller->hv_cfg_fd[0] = hv_cfg_fd0;
193
controller->hv_cfg_fd[1] = hv_cfg_fd1;
194
controller->hv_mem_fd = hv_mem_fd;
195
controller->first_busno = 0;
196
controller->last_busno = 0xff;
197
controller->ops = &tile_cfg_ops;
198
199
num_controllers++;
200
continue;
201
202
err_cont:
203
if (hv_cfg_fd0 >= 0)
204
hv_dev_close(hv_cfg_fd0);
205
if (hv_cfg_fd1 >= 0)
206
hv_dev_close(hv_cfg_fd1);
207
if (hv_mem_fd >= 0)
208
hv_dev_close(hv_mem_fd);
209
continue;
210
}
211
}
212
213
/*
214
* Before using the PCIe, see if we need to do any platform-specific
215
* configuration, such as the PLX switch Gen 1 issue on TILEmpower.
216
*/
217
for (i = 0; i < num_controllers; i++) {
218
struct pci_controller *controller = &controllers[i];
219
220
if (controller->plx_gen1)
221
tile_plx_gen1 = 1;
222
}
223
224
return num_controllers;
225
}
226
227
/*
228
* (pin - 1) converts from the PCI standard's [1:4] convention to
229
* a normal [0:3] range.
230
*/
231
static int tile_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
232
{
233
struct pci_controller *controller =
234
(struct pci_controller *)dev->sysdata;
235
return (pin - 1) + controller->irq_base;
236
}
237
238
239
static void __devinit fixup_read_and_payload_sizes(void)
240
{
241
struct pci_dev *dev = NULL;
242
int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
243
int max_read_size = 0x2; /* Limit to 512 byte reads. */
244
u16 new_values;
245
246
/* Scan for the smallest maximum payload size. */
247
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
248
int pcie_caps_offset;
249
u32 devcap;
250
int max_payload;
251
252
pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
253
if (pcie_caps_offset == 0)
254
continue;
255
256
pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
257
&devcap);
258
max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
259
if (max_payload < smallest_max_payload)
260
smallest_max_payload = max_payload;
261
}
262
263
/* Now, set the max_payload_size for all devices to that value. */
264
new_values = (max_read_size << 12) | (smallest_max_payload << 5);
265
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
266
int pcie_caps_offset;
267
u16 devctl;
268
269
pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
270
if (pcie_caps_offset == 0)
271
continue;
272
273
pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
274
&devctl);
275
devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
276
devctl |= new_values;
277
pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
278
devctl);
279
}
280
}
281
282
283
/*
284
* Second PCI initialization entry point, called by subsys_initcall.
285
*
286
* The controllers have been set up by the time we get here, by a call to
287
* tile_pci_init.
288
*/
289
int __devinit pcibios_init(void)
290
{
291
int i;
292
293
pr_info("PCI: Probing PCI hardware\n");
294
295
/*
296
* Delay a bit in case devices aren't ready. Some devices are
297
* known to require at least 20ms here, but we use a more
298
* conservative value.
299
*/
300
mdelay(250);
301
302
/* Scan all of the recorded PCI controllers. */
303
for (i = 0; i < TILE_NUM_PCIE; i++) {
304
/*
305
* Do real pcibios init ops if the controller is initialized
306
* by tile_pci_init() successfully and not initialized by
307
* pcibios_init() yet to support PCIe hot-plug.
308
*/
309
if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
310
struct pci_controller *controller = &controllers[i];
311
struct pci_bus *bus;
312
313
if (tile_init_irqs(i, controller)) {
314
pr_err("PCI: Could not initialize IRQs\n");
315
continue;
316
}
317
318
pr_info("PCI: initializing controller #%d\n", i);
319
320
/*
321
* This comes from the generic Linux PCI driver.
322
*
323
* It reads the PCI tree for this bus into the Linux
324
* data structures.
325
*
326
* This is inlined in linux/pci.h and calls into
327
* pci_scan_bus_parented() in probe.c.
328
*/
329
bus = pci_scan_bus(0, controller->ops, controller);
330
controller->root_bus = bus;
331
controller->last_busno = bus->subordinate;
332
}
333
}
334
335
/* Do machine dependent PCI interrupt routing */
336
pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
337
338
/*
339
* This comes from the generic Linux PCI driver.
340
*
341
* It allocates all of the resources (I/O memory, etc)
342
* associated with the devices read in above.
343
*/
344
pci_assign_unassigned_resources();
345
346
/* Configure the max_read_size and max_payload_size values. */
347
fixup_read_and_payload_sizes();
348
349
/* Record the I/O resources in the PCI controller structure. */
350
for (i = 0; i < TILE_NUM_PCIE; i++) {
351
/*
352
* Do real pcibios init ops if the controller is initialized
353
* by tile_pci_init() successfully and not initialized by
354
* pcibios_init() yet to support PCIe hot-plug.
355
*/
356
if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
357
struct pci_bus *root_bus = controllers[i].root_bus;
358
struct pci_bus *next_bus;
359
struct pci_dev *dev;
360
361
list_for_each_entry(dev, &root_bus->devices, bus_list) {
362
/*
363
* Find the PCI host controller, ie. the 1st
364
* bridge.
365
*/
366
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
367
(PCI_SLOT(dev->devfn) == 0)) {
368
next_bus = dev->subordinate;
369
controllers[i].mem_resources[0] =
370
*next_bus->resource[0];
371
controllers[i].mem_resources[1] =
372
*next_bus->resource[1];
373
controllers[i].mem_resources[2] =
374
*next_bus->resource[2];
375
376
/* Setup flags. */
377
pci_scan_flags[i] = 1;
378
379
break;
380
}
381
}
382
}
383
}
384
385
return 0;
386
}
387
subsys_initcall(pcibios_init);
388
389
/*
390
* No bus fixups needed.
391
*/
392
void __devinit pcibios_fixup_bus(struct pci_bus *bus)
393
{
394
/* Nothing needs to be done. */
395
}
396
397
/*
398
* This can be called from the generic PCI layer, but doesn't need to
399
* do anything.
400
*/
401
char __devinit *pcibios_setup(char *str)
402
{
403
/* Nothing needs to be done. */
404
return str;
405
}
406
407
/*
408
* This is called from the generic Linux layer.
409
*/
410
void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
411
{
412
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
413
}
414
415
/*
416
* Enable memory and/or address decoding, as appropriate, for the
417
* device described by the 'dev' struct.
418
*
419
* This is called from the generic PCI layer, and can be called
420
* for bridges or endpoints.
421
*/
422
int pcibios_enable_device(struct pci_dev *dev, int mask)
423
{
424
u16 cmd, old_cmd;
425
u8 header_type;
426
int i;
427
struct resource *r;
428
429
pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
430
431
pci_read_config_word(dev, PCI_COMMAND, &cmd);
432
old_cmd = cmd;
433
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
434
/*
435
* For bridges, we enable both memory and I/O decoding
436
* in call cases.
437
*/
438
cmd |= PCI_COMMAND_IO;
439
cmd |= PCI_COMMAND_MEMORY;
440
} else {
441
/*
442
* For endpoints, we enable memory and/or I/O decoding
443
* only if they have a memory resource of that type.
444
*/
445
for (i = 0; i < 6; i++) {
446
r = &dev->resource[i];
447
if (r->flags & IORESOURCE_UNSET) {
448
pr_err("PCI: Device %s not available "
449
"because of resource collisions\n",
450
pci_name(dev));
451
return -EINVAL;
452
}
453
if (r->flags & IORESOURCE_IO)
454
cmd |= PCI_COMMAND_IO;
455
if (r->flags & IORESOURCE_MEM)
456
cmd |= PCI_COMMAND_MEMORY;
457
}
458
}
459
460
/*
461
* We only write the command if it changed.
462
*/
463
if (cmd != old_cmd)
464
pci_write_config_word(dev, PCI_COMMAND, cmd);
465
return 0;
466
}
467
468
void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max)
469
{
470
unsigned long start = pci_resource_start(dev, bar);
471
unsigned long len = pci_resource_len(dev, bar);
472
unsigned long flags = pci_resource_flags(dev, bar);
473
474
if (!len)
475
return NULL;
476
if (max && len > max)
477
len = max;
478
479
if (!(flags & IORESOURCE_MEM)) {
480
pr_info("PCI: Trying to map invalid resource %#lx\n", flags);
481
start = 0;
482
}
483
484
return (void __iomem *)start;
485
}
486
EXPORT_SYMBOL(pci_iomap);
487
488
489
/****************************************************************
490
*
491
* Tile PCI config space read/write routines
492
*
493
****************************************************************/
494
495
/*
496
* These are the normal read and write ops
497
* These are expanded with macros from pci_bus_read_config_byte() etc.
498
*
499
* devfn is the combined PCI slot & function.
500
*
501
* offset is in bytes, from the start of config space for the
502
* specified bus & slot.
503
*/
504
505
static int __devinit tile_cfg_read(struct pci_bus *bus,
506
unsigned int devfn,
507
int offset,
508
int size,
509
u32 *val)
510
{
511
struct pci_controller *controller = bus->sysdata;
512
int busnum = bus->number & 0xff;
513
int slot = (devfn >> 3) & 0x1f;
514
int function = devfn & 0x7;
515
u32 addr;
516
int config_mode = 1;
517
518
/*
519
* There is no bridge between the Tile and bus 0, so we
520
* use config0 to talk to bus 0.
521
*
522
* If we're talking to a bus other than zero then we
523
* must have found a bridge.
524
*/
525
if (busnum == 0) {
526
/*
527
* We fake an empty slot for (busnum == 0) && (slot > 0),
528
* since there is only one slot on bus 0.
529
*/
530
if (slot) {
531
*val = 0xFFFFFFFF;
532
return 0;
533
}
534
config_mode = 0;
535
}
536
537
addr = busnum << 20; /* Bus in 27:20 */
538
addr |= slot << 15; /* Slot (device) in 19:15 */
539
addr |= function << 12; /* Function is in 14:12 */
540
addr |= (offset & 0xFFF); /* byte address in 0:11 */
541
542
return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
543
(HV_VirtAddr)(val), size, addr);
544
}
545
546
547
/*
548
* See tile_cfg_read() for relevant comments.
549
* Note that "val" is the value to write, not a pointer to that value.
550
*/
551
static int __devinit tile_cfg_write(struct pci_bus *bus,
552
unsigned int devfn,
553
int offset,
554
int size,
555
u32 val)
556
{
557
struct pci_controller *controller = bus->sysdata;
558
int busnum = bus->number & 0xff;
559
int slot = (devfn >> 3) & 0x1f;
560
int function = devfn & 0x7;
561
u32 addr;
562
int config_mode = 1;
563
HV_VirtAddr valp = (HV_VirtAddr)&val;
564
565
/*
566
* For bus 0 slot 0 we use config 0 accesses.
567
*/
568
if (busnum == 0) {
569
/*
570
* We fake an empty slot for (busnum == 0) && (slot > 0),
571
* since there is only one slot on bus 0.
572
*/
573
if (slot)
574
return 0;
575
config_mode = 0;
576
}
577
578
addr = busnum << 20; /* Bus in 27:20 */
579
addr |= slot << 15; /* Slot (device) in 19:15 */
580
addr |= function << 12; /* Function is in 14:12 */
581
addr |= (offset & 0xFFF); /* byte address in 0:11 */
582
583
#ifdef __BIG_ENDIAN
584
/* Point to the correct part of the 32-bit "val". */
585
valp += 4 - size;
586
#endif
587
588
return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
589
valp, size, addr);
590
}
591
592
593
static struct pci_ops tile_cfg_ops = {
594
.read = tile_cfg_read,
595
.write = tile_cfg_write,
596
};
597
598
599
/*
600
* In the following, each PCI controller's mem_resources[1]
601
* represents its (non-prefetchable) PCI memory resource.
602
* mem_resources[0] and mem_resources[2] refer to its PCI I/O and
603
* prefetchable PCI memory resources, respectively.
604
* For more details, see pci_setup_bridge() in setup-bus.c.
605
* By comparing the target PCI memory address against the
606
* end address of controller 0, we can determine the controller
607
* that should accept the PCI memory access.
608
*/
609
#define TILE_READ(size, type) \
610
type _tile_read##size(unsigned long addr) \
611
{ \
612
type val; \
613
int idx = 0; \
614
if (addr > controllers[0].mem_resources[1].end && \
615
addr > controllers[0].mem_resources[2].end) \
616
idx = 1; \
617
if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
618
(HV_VirtAddr)(&val), sizeof(type), addr)) \
619
pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
620
sizeof(type), addr); \
621
return val; \
622
} \
623
EXPORT_SYMBOL(_tile_read##size)
624
625
TILE_READ(b, u8);
626
TILE_READ(w, u16);
627
TILE_READ(l, u32);
628
TILE_READ(q, u64);
629
630
#define TILE_WRITE(size, type) \
631
void _tile_write##size(type val, unsigned long addr) \
632
{ \
633
int idx = 0; \
634
if (addr > controllers[0].mem_resources[1].end && \
635
addr > controllers[0].mem_resources[2].end) \
636
idx = 1; \
637
if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
638
(HV_VirtAddr)(&val), sizeof(type), addr)) \
639
pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
640
sizeof(type), addr); \
641
} \
642
EXPORT_SYMBOL(_tile_write##size)
643
644
TILE_WRITE(b, u8);
645
TILE_WRITE(w, u16);
646
TILE_WRITE(l, u32);
647
TILE_WRITE(q, u64);
648
649