Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/tile/kernel/process.c
10817 views
1
/*
2
* Copyright 2010 Tilera Corporation. All Rights Reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation, version 2.
7
*
8
* This program is distributed in the hope that it will be useful, but
9
* WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11
* NON INFRINGEMENT. See the GNU General Public License for
12
* more details.
13
*/
14
15
#include <linux/sched.h>
16
#include <linux/preempt.h>
17
#include <linux/module.h>
18
#include <linux/fs.h>
19
#include <linux/kprobes.h>
20
#include <linux/elfcore.h>
21
#include <linux/tick.h>
22
#include <linux/init.h>
23
#include <linux/mm.h>
24
#include <linux/compat.h>
25
#include <linux/hardirq.h>
26
#include <linux/syscalls.h>
27
#include <linux/kernel.h>
28
#include <linux/tracehook.h>
29
#include <linux/signal.h>
30
#include <asm/system.h>
31
#include <asm/stack.h>
32
#include <asm/homecache.h>
33
#include <asm/syscalls.h>
34
#include <asm/traps.h>
35
#ifdef CONFIG_HARDWALL
36
#include <asm/hardwall.h>
37
#endif
38
#include <arch/chip.h>
39
#include <arch/abi.h>
40
41
42
/*
43
* Use the (x86) "idle=poll" option to prefer low latency when leaving the
44
* idle loop over low power while in the idle loop, e.g. if we have
45
* one thread per core and we want to get threads out of futex waits fast.
46
*/
47
static int no_idle_nap;
48
static int __init idle_setup(char *str)
49
{
50
if (!str)
51
return -EINVAL;
52
53
if (!strcmp(str, "poll")) {
54
pr_info("using polling idle threads.\n");
55
no_idle_nap = 1;
56
} else if (!strcmp(str, "halt"))
57
no_idle_nap = 0;
58
else
59
return -1;
60
61
return 0;
62
}
63
early_param("idle", idle_setup);
64
65
/*
66
* The idle thread. There's no useful work to be
67
* done, so just try to conserve power and have a
68
* low exit latency (ie sit in a loop waiting for
69
* somebody to say that they'd like to reschedule)
70
*/
71
void cpu_idle(void)
72
{
73
int cpu = smp_processor_id();
74
75
76
current_thread_info()->status |= TS_POLLING;
77
78
if (no_idle_nap) {
79
while (1) {
80
while (!need_resched())
81
cpu_relax();
82
schedule();
83
}
84
}
85
86
/* endless idle loop with no priority at all */
87
while (1) {
88
tick_nohz_stop_sched_tick(1);
89
while (!need_resched()) {
90
if (cpu_is_offline(cpu))
91
BUG(); /* no HOTPLUG_CPU */
92
93
local_irq_disable();
94
__get_cpu_var(irq_stat).idle_timestamp = jiffies;
95
current_thread_info()->status &= ~TS_POLLING;
96
/*
97
* TS_POLLING-cleared state must be visible before we
98
* test NEED_RESCHED:
99
*/
100
smp_mb();
101
102
if (!need_resched())
103
_cpu_idle();
104
else
105
local_irq_enable();
106
current_thread_info()->status |= TS_POLLING;
107
}
108
tick_nohz_restart_sched_tick();
109
preempt_enable_no_resched();
110
schedule();
111
preempt_disable();
112
}
113
}
114
115
struct thread_info *alloc_thread_info_node(struct task_struct *task, int node)
116
{
117
struct page *page;
118
gfp_t flags = GFP_KERNEL;
119
120
#ifdef CONFIG_DEBUG_STACK_USAGE
121
flags |= __GFP_ZERO;
122
#endif
123
124
page = alloc_pages_node(node, flags, THREAD_SIZE_ORDER);
125
if (!page)
126
return NULL;
127
128
return (struct thread_info *)page_address(page);
129
}
130
131
/*
132
* Free a thread_info node, and all of its derivative
133
* data structures.
134
*/
135
void free_thread_info(struct thread_info *info)
136
{
137
struct single_step_state *step_state = info->step_state;
138
139
#ifdef CONFIG_HARDWALL
140
/*
141
* We free a thread_info from the context of the task that has
142
* been scheduled next, so the original task is already dead.
143
* Calling deactivate here just frees up the data structures.
144
* If the task we're freeing held the last reference to a
145
* hardwall fd, it would have been released prior to this point
146
* anyway via exit_files(), and "hardwall" would be NULL by now.
147
*/
148
if (info->task->thread.hardwall)
149
hardwall_deactivate(info->task);
150
#endif
151
152
if (step_state) {
153
154
/*
155
* FIXME: we don't munmap step_state->buffer
156
* because the mm_struct for this process (info->task->mm)
157
* has already been zeroed in exit_mm(). Keeping a
158
* reference to it here seems like a bad move, so this
159
* means we can't munmap() the buffer, and therefore if we
160
* ptrace multiple threads in a process, we will slowly
161
* leak user memory. (Note that as soon as the last
162
* thread in a process dies, we will reclaim all user
163
* memory including single-step buffers in the usual way.)
164
* We should either assign a kernel VA to this buffer
165
* somehow, or we should associate the buffer(s) with the
166
* mm itself so we can clean them up that way.
167
*/
168
kfree(step_state);
169
}
170
171
free_pages((unsigned long)info, THREAD_SIZE_ORDER);
172
}
173
174
static void save_arch_state(struct thread_struct *t);
175
176
int copy_thread(unsigned long clone_flags, unsigned long sp,
177
unsigned long stack_size,
178
struct task_struct *p, struct pt_regs *regs)
179
{
180
struct pt_regs *childregs;
181
unsigned long ksp;
182
183
/*
184
* When creating a new kernel thread we pass sp as zero.
185
* Assign it to a reasonable value now that we have the stack.
186
*/
187
if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
188
sp = KSTK_TOP(p);
189
190
/*
191
* Do not clone step state from the parent; each thread
192
* must make its own lazily.
193
*/
194
task_thread_info(p)->step_state = NULL;
195
196
/*
197
* Start new thread in ret_from_fork so it schedules properly
198
* and then return from interrupt like the parent.
199
*/
200
p->thread.pc = (unsigned long) ret_from_fork;
201
202
/* Save user stack top pointer so we can ID the stack vm area later. */
203
p->thread.usp0 = sp;
204
205
/* Record the pid of the process that created this one. */
206
p->thread.creator_pid = current->pid;
207
208
/*
209
* Copy the registers onto the kernel stack so the
210
* return-from-interrupt code will reload it into registers.
211
*/
212
childregs = task_pt_regs(p);
213
*childregs = *regs;
214
childregs->regs[0] = 0; /* return value is zero */
215
childregs->sp = sp; /* override with new user stack pointer */
216
217
/*
218
* If CLONE_SETTLS is set, set "tp" in the new task to "r4",
219
* which is passed in as arg #5 to sys_clone().
220
*/
221
if (clone_flags & CLONE_SETTLS)
222
childregs->tp = regs->regs[4];
223
224
/*
225
* Copy the callee-saved registers from the passed pt_regs struct
226
* into the context-switch callee-saved registers area.
227
* This way when we start the interrupt-return sequence, the
228
* callee-save registers will be correctly in registers, which
229
* is how we assume the compiler leaves them as we start doing
230
* the normal return-from-interrupt path after calling C code.
231
* Zero out the C ABI save area to mark the top of the stack.
232
*/
233
ksp = (unsigned long) childregs;
234
ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
235
((long *)ksp)[0] = ((long *)ksp)[1] = 0;
236
ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
237
memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
238
CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
239
ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
240
((long *)ksp)[0] = ((long *)ksp)[1] = 0;
241
p->thread.ksp = ksp;
242
243
#if CHIP_HAS_TILE_DMA()
244
/*
245
* No DMA in the new thread. We model this on the fact that
246
* fork() clears the pending signals, alarms, and aio for the child.
247
*/
248
memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
249
memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
250
#endif
251
252
#if CHIP_HAS_SN_PROC()
253
/* Likewise, the new thread is not running static processor code. */
254
p->thread.sn_proc_running = 0;
255
memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
256
#endif
257
258
#if CHIP_HAS_PROC_STATUS_SPR()
259
/* New thread has its miscellaneous processor state bits clear. */
260
p->thread.proc_status = 0;
261
#endif
262
263
#ifdef CONFIG_HARDWALL
264
/* New thread does not own any networks. */
265
p->thread.hardwall = NULL;
266
#endif
267
268
269
/*
270
* Start the new thread with the current architecture state
271
* (user interrupt masks, etc.).
272
*/
273
save_arch_state(&p->thread);
274
275
return 0;
276
}
277
278
/*
279
* Return "current" if it looks plausible, or else a pointer to a dummy.
280
* This can be helpful if we are just trying to emit a clean panic.
281
*/
282
struct task_struct *validate_current(void)
283
{
284
static struct task_struct corrupt = { .comm = "<corrupt>" };
285
struct task_struct *tsk = current;
286
if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
287
(void *)tsk > high_memory ||
288
((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
289
pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
290
tsk = &corrupt;
291
}
292
return tsk;
293
}
294
295
/* Take and return the pointer to the previous task, for schedule_tail(). */
296
struct task_struct *sim_notify_fork(struct task_struct *prev)
297
{
298
struct task_struct *tsk = current;
299
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
300
(tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
301
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
302
(tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
303
return prev;
304
}
305
306
int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
307
{
308
struct pt_regs *ptregs = task_pt_regs(tsk);
309
elf_core_copy_regs(regs, ptregs);
310
return 1;
311
}
312
313
#if CHIP_HAS_TILE_DMA()
314
315
/* Allow user processes to access the DMA SPRs */
316
void grant_dma_mpls(void)
317
{
318
#if CONFIG_KERNEL_PL == 2
319
__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
320
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
321
#else
322
__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
323
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
324
#endif
325
}
326
327
/* Forbid user processes from accessing the DMA SPRs */
328
void restrict_dma_mpls(void)
329
{
330
#if CONFIG_KERNEL_PL == 2
331
__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
332
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
333
#else
334
__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
335
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
336
#endif
337
}
338
339
/* Pause the DMA engine, then save off its state registers. */
340
static void save_tile_dma_state(struct tile_dma_state *dma)
341
{
342
unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
343
unsigned long post_suspend_state;
344
345
/* If we're running, suspend the engine. */
346
if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
347
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
348
349
/*
350
* Wait for the engine to idle, then save regs. Note that we
351
* want to record the "running" bit from before suspension,
352
* and the "done" bit from after, so that we can properly
353
* distinguish a case where the user suspended the engine from
354
* the case where the kernel suspended as part of the context
355
* swap.
356
*/
357
do {
358
post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
359
} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
360
361
dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
362
dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
363
dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
364
dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
365
dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
366
dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
367
dma->byte = __insn_mfspr(SPR_DMA_BYTE);
368
dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
369
(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
370
}
371
372
/* Restart a DMA that was running before we were context-switched out. */
373
static void restore_tile_dma_state(struct thread_struct *t)
374
{
375
const struct tile_dma_state *dma = &t->tile_dma_state;
376
377
/*
378
* The only way to restore the done bit is to run a zero
379
* length transaction.
380
*/
381
if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
382
!(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
383
__insn_mtspr(SPR_DMA_BYTE, 0);
384
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
385
while (__insn_mfspr(SPR_DMA_USER_STATUS) &
386
SPR_DMA_STATUS__BUSY_MASK)
387
;
388
}
389
390
__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
391
__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
392
__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
393
__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
394
__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
395
__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
396
__insn_mtspr(SPR_DMA_BYTE, dma->byte);
397
398
/*
399
* Restart the engine if we were running and not done.
400
* Clear a pending async DMA fault that we were waiting on return
401
* to user space to execute, since we expect the DMA engine
402
* to regenerate those faults for us now. Note that we don't
403
* try to clear the TIF_ASYNC_TLB flag, since it's relatively
404
* harmless if set, and it covers both DMA and the SN processor.
405
*/
406
if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
407
t->dma_async_tlb.fault_num = 0;
408
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
409
}
410
}
411
412
#endif
413
414
static void save_arch_state(struct thread_struct *t)
415
{
416
#if CHIP_HAS_SPLIT_INTR_MASK()
417
t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
418
((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
419
#else
420
t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
421
#endif
422
t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
423
t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
424
t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
425
t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
426
t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
427
t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
428
t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
429
#if CHIP_HAS_PROC_STATUS_SPR()
430
t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
431
#endif
432
#if !CHIP_HAS_FIXED_INTVEC_BASE()
433
t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
434
#endif
435
#if CHIP_HAS_TILE_RTF_HWM()
436
t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
437
#endif
438
#if CHIP_HAS_DSTREAM_PF()
439
t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
440
#endif
441
}
442
443
static void restore_arch_state(const struct thread_struct *t)
444
{
445
#if CHIP_HAS_SPLIT_INTR_MASK()
446
__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
447
__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
448
#else
449
__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
450
#endif
451
__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
452
__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
453
__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
454
__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
455
__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
456
__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
457
__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
458
#if CHIP_HAS_PROC_STATUS_SPR()
459
__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
460
#endif
461
#if !CHIP_HAS_FIXED_INTVEC_BASE()
462
__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
463
#endif
464
#if CHIP_HAS_TILE_RTF_HWM()
465
__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
466
#endif
467
#if CHIP_HAS_DSTREAM_PF()
468
__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
469
#endif
470
}
471
472
473
void _prepare_arch_switch(struct task_struct *next)
474
{
475
#if CHIP_HAS_SN_PROC()
476
int snctl;
477
#endif
478
#if CHIP_HAS_TILE_DMA()
479
struct tile_dma_state *dma = &current->thread.tile_dma_state;
480
if (dma->enabled)
481
save_tile_dma_state(dma);
482
#endif
483
#if CHIP_HAS_SN_PROC()
484
/*
485
* Suspend the static network processor if it was running.
486
* We do not suspend the fabric itself, just like we don't
487
* try to suspend the UDN.
488
*/
489
snctl = __insn_mfspr(SPR_SNCTL);
490
current->thread.sn_proc_running =
491
(snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
492
if (current->thread.sn_proc_running)
493
__insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
494
#endif
495
}
496
497
498
struct task_struct *__sched _switch_to(struct task_struct *prev,
499
struct task_struct *next)
500
{
501
/* DMA state is already saved; save off other arch state. */
502
save_arch_state(&prev->thread);
503
504
#if CHIP_HAS_TILE_DMA()
505
/*
506
* Restore DMA in new task if desired.
507
* Note that it is only safe to restart here since interrupts
508
* are disabled, so we can't take any DMATLB miss or access
509
* interrupts before we have finished switching stacks.
510
*/
511
if (next->thread.tile_dma_state.enabled) {
512
restore_tile_dma_state(&next->thread);
513
grant_dma_mpls();
514
} else {
515
restrict_dma_mpls();
516
}
517
#endif
518
519
/* Restore other arch state. */
520
restore_arch_state(&next->thread);
521
522
#if CHIP_HAS_SN_PROC()
523
/*
524
* Restart static network processor in the new process
525
* if it was running before.
526
*/
527
if (next->thread.sn_proc_running) {
528
int snctl = __insn_mfspr(SPR_SNCTL);
529
__insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
530
}
531
#endif
532
533
#ifdef CONFIG_HARDWALL
534
/* Enable or disable access to the network registers appropriately. */
535
if (prev->thread.hardwall != NULL) {
536
if (next->thread.hardwall == NULL)
537
restrict_network_mpls();
538
} else if (next->thread.hardwall != NULL) {
539
grant_network_mpls();
540
}
541
#endif
542
543
/*
544
* Switch kernel SP, PC, and callee-saved registers.
545
* In the context of the new task, return the old task pointer
546
* (i.e. the task that actually called __switch_to).
547
* Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
548
*/
549
return __switch_to(prev, next, next_current_ksp0(next));
550
}
551
552
/*
553
* This routine is called on return from interrupt if any of the
554
* TIF_WORK_MASK flags are set in thread_info->flags. It is
555
* entered with interrupts disabled so we don't miss an event
556
* that modified the thread_info flags. If any flag is set, we
557
* handle it and return, and the calling assembly code will
558
* re-disable interrupts, reload the thread flags, and call back
559
* if more flags need to be handled.
560
*
561
* We return whether we need to check the thread_info flags again
562
* or not. Note that we don't clear TIF_SINGLESTEP here, so it's
563
* important that it be tested last, and then claim that we don't
564
* need to recheck the flags.
565
*/
566
int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
567
{
568
if (thread_info_flags & _TIF_NEED_RESCHED) {
569
schedule();
570
return 1;
571
}
572
#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
573
if (thread_info_flags & _TIF_ASYNC_TLB) {
574
do_async_page_fault(regs);
575
return 1;
576
}
577
#endif
578
if (thread_info_flags & _TIF_SIGPENDING) {
579
do_signal(regs);
580
return 1;
581
}
582
if (thread_info_flags & _TIF_NOTIFY_RESUME) {
583
clear_thread_flag(TIF_NOTIFY_RESUME);
584
tracehook_notify_resume(regs);
585
if (current->replacement_session_keyring)
586
key_replace_session_keyring();
587
return 1;
588
}
589
if (thread_info_flags & _TIF_SINGLESTEP) {
590
if ((regs->ex1 & SPR_EX_CONTEXT_1_1__PL_MASK) == 0)
591
single_step_once(regs);
592
return 0;
593
}
594
panic("work_pending: bad flags %#x\n", thread_info_flags);
595
}
596
597
/* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
598
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
599
void __user *, parent_tidptr, void __user *, child_tidptr,
600
struct pt_regs *, regs)
601
{
602
if (!newsp)
603
newsp = regs->sp;
604
return do_fork(clone_flags, newsp, regs, 0,
605
parent_tidptr, child_tidptr);
606
}
607
608
/*
609
* sys_execve() executes a new program.
610
*/
611
SYSCALL_DEFINE4(execve, const char __user *, path,
612
const char __user *const __user *, argv,
613
const char __user *const __user *, envp,
614
struct pt_regs *, regs)
615
{
616
long error;
617
char *filename;
618
619
filename = getname(path);
620
error = PTR_ERR(filename);
621
if (IS_ERR(filename))
622
goto out;
623
error = do_execve(filename, argv, envp, regs);
624
putname(filename);
625
if (error == 0)
626
single_step_execve();
627
out:
628
return error;
629
}
630
631
#ifdef CONFIG_COMPAT
632
long compat_sys_execve(const char __user *path,
633
compat_uptr_t __user *argv,
634
compat_uptr_t __user *envp,
635
struct pt_regs *regs)
636
{
637
long error;
638
char *filename;
639
640
filename = getname(path);
641
error = PTR_ERR(filename);
642
if (IS_ERR(filename))
643
goto out;
644
error = compat_do_execve(filename, argv, envp, regs);
645
putname(filename);
646
if (error == 0)
647
single_step_execve();
648
out:
649
return error;
650
}
651
#endif
652
653
unsigned long get_wchan(struct task_struct *p)
654
{
655
struct KBacktraceIterator kbt;
656
657
if (!p || p == current || p->state == TASK_RUNNING)
658
return 0;
659
660
for (KBacktraceIterator_init(&kbt, p, NULL);
661
!KBacktraceIterator_end(&kbt);
662
KBacktraceIterator_next(&kbt)) {
663
if (!in_sched_functions(kbt.it.pc))
664
return kbt.it.pc;
665
}
666
667
return 0;
668
}
669
670
/*
671
* We pass in lr as zero (cleared in kernel_thread) and the caller
672
* part of the backtrace ABI on the stack also zeroed (in copy_thread)
673
* so that backtraces will stop with this function.
674
* Note that we don't use r0, since copy_thread() clears it.
675
*/
676
static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
677
{
678
do_exit(fn(arg));
679
}
680
681
/*
682
* Create a kernel thread
683
*/
684
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
685
{
686
struct pt_regs regs;
687
688
memset(&regs, 0, sizeof(regs));
689
regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
690
regs.pc = (long) start_kernel_thread;
691
regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
692
regs.regs[1] = (long) fn; /* function pointer */
693
regs.regs[2] = (long) arg; /* parameter register */
694
695
/* Ok, create the new process.. */
696
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
697
0, NULL, NULL);
698
}
699
EXPORT_SYMBOL(kernel_thread);
700
701
/* Flush thread state. */
702
void flush_thread(void)
703
{
704
/* Nothing */
705
}
706
707
/*
708
* Free current thread data structures etc..
709
*/
710
void exit_thread(void)
711
{
712
/* Nothing */
713
}
714
715
void show_regs(struct pt_regs *regs)
716
{
717
struct task_struct *tsk = validate_current();
718
int i;
719
720
pr_err("\n");
721
pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
722
tsk->pid, tsk->comm, smp_processor_id());
723
#ifdef __tilegx__
724
for (i = 0; i < 51; i += 3)
725
pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
726
i, regs->regs[i], i+1, regs->regs[i+1],
727
i+2, regs->regs[i+2]);
728
pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
729
regs->regs[51], regs->regs[52], regs->tp);
730
pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
731
#else
732
for (i = 0; i < 52; i += 4)
733
pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
734
" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
735
i, regs->regs[i], i+1, regs->regs[i+1],
736
i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
737
pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
738
regs->regs[52], regs->tp, regs->sp, regs->lr);
739
#endif
740
pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
741
regs->pc, regs->ex1, regs->faultnum);
742
743
dump_stack_regs(regs);
744
}
745
746