Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/tile/lib/memcpy_32.S
10818 views
1
/*
2
* Copyright 2010 Tilera Corporation. All Rights Reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation, version 2.
7
*
8
* This program is distributed in the hope that it will be useful, but
9
* WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11
* NON INFRINGEMENT. See the GNU General Public License for
12
* more details.
13
*/
14
15
#include <arch/chip.h>
16
17
18
/*
19
* This file shares the implementation of the userspace memcpy and
20
* the kernel's memcpy, copy_to_user and copy_from_user.
21
*/
22
23
#include <linux/linkage.h>
24
25
/* On TILE64, we wrap these functions via arch/tile/lib/memcpy_tile64.c */
26
#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
27
#define memcpy __memcpy_asm
28
#define __copy_to_user_inatomic __copy_to_user_inatomic_asm
29
#define __copy_from_user_inatomic __copy_from_user_inatomic_asm
30
#define __copy_from_user_zeroing __copy_from_user_zeroing_asm
31
#endif
32
33
#define IS_MEMCPY 0
34
#define IS_COPY_FROM_USER 1
35
#define IS_COPY_FROM_USER_ZEROING 2
36
#define IS_COPY_TO_USER -1
37
38
.section .text.memcpy_common, "ax"
39
.align 64
40
41
/* Use this to preface each bundle that can cause an exception so
42
* the kernel can clean up properly. The special cleanup code should
43
* not use these, since it knows what it is doing.
44
*/
45
#define EX \
46
.pushsection __ex_table, "a"; \
47
.word 9f, memcpy_common_fixup; \
48
.popsection; \
49
9
50
51
52
/* __copy_from_user_inatomic takes the kernel target address in r0,
53
* the user source in r1, and the bytes to copy in r2.
54
* It returns the number of uncopiable bytes (hopefully zero) in r0.
55
*/
56
ENTRY(__copy_from_user_inatomic)
57
.type __copy_from_user_inatomic, @function
58
FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \
59
.text.memcpy_common, \
60
.Lend_memcpy_common - __copy_from_user_inatomic)
61
{ movei r29, IS_COPY_FROM_USER; j memcpy_common }
62
.size __copy_from_user_inatomic, . - __copy_from_user_inatomic
63
64
/* __copy_from_user_zeroing is like __copy_from_user_inatomic, but
65
* any uncopiable bytes are zeroed in the target.
66
*/
67
ENTRY(__copy_from_user_zeroing)
68
.type __copy_from_user_zeroing, @function
69
FEEDBACK_REENTER(__copy_from_user_inatomic)
70
{ movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common }
71
.size __copy_from_user_zeroing, . - __copy_from_user_zeroing
72
73
/* __copy_to_user_inatomic takes the user target address in r0,
74
* the kernel source in r1, and the bytes to copy in r2.
75
* It returns the number of uncopiable bytes (hopefully zero) in r0.
76
*/
77
ENTRY(__copy_to_user_inatomic)
78
.type __copy_to_user_inatomic, @function
79
FEEDBACK_REENTER(__copy_from_user_inatomic)
80
{ movei r29, IS_COPY_TO_USER; j memcpy_common }
81
.size __copy_to_user_inatomic, . - __copy_to_user_inatomic
82
83
ENTRY(memcpy)
84
.type memcpy, @function
85
FEEDBACK_REENTER(__copy_from_user_inatomic)
86
{ movei r29, IS_MEMCPY }
87
.size memcpy, . - memcpy
88
/* Fall through */
89
90
.type memcpy_common, @function
91
memcpy_common:
92
/* On entry, r29 holds one of the IS_* macro values from above. */
93
94
95
/* r0 is the dest, r1 is the source, r2 is the size. */
96
97
/* Save aside original dest so we can return it at the end. */
98
{ sw sp, lr; move r23, r0; or r4, r0, r1 }
99
100
/* Check for an empty size. */
101
{ bz r2, .Ldone; andi r4, r4, 3 }
102
103
/* Save aside original values in case of a fault. */
104
{ move r24, r1; move r25, r2 }
105
move r27, lr
106
107
/* Check for an unaligned source or dest. */
108
{ bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
109
110
.Lcheck_aligned_copy_size:
111
/* If we are copying < 256 bytes, branch to simple case. */
112
{ blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
113
114
/* Copying >= 256 bytes, so jump to complex prefetching loop. */
115
{ andi r6, r1, 63; j .Lcopy_many }
116
117
/*
118
*
119
* Aligned 4 byte at a time copy loop
120
*
121
*/
122
123
.Lcopy_8_loop:
124
/* Copy two words at a time to hide load latency. */
125
EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
126
EX: { lw r4, r1; addi r1, r1, 4 }
127
EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
128
EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
129
.Lcopy_8_check:
130
{ bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
131
132
/* Copy odd leftover word, if any. */
133
{ bnzt r4, .Lcheck_odd_stragglers }
134
EX: { lw r3, r1; addi r1, r1, 4 }
135
EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
136
137
.Lcheck_odd_stragglers:
138
{ bnz r2, .Lcopy_unaligned_few }
139
140
.Ldone:
141
/* For memcpy return original dest address, else zero. */
142
{ mz r0, r29, r23; jrp lr }
143
144
145
/*
146
*
147
* Prefetching multiple cache line copy handler (for large transfers).
148
*
149
*/
150
151
/* Copy words until r1 is cache-line-aligned. */
152
.Lalign_loop:
153
EX: { lw r3, r1; addi r1, r1, 4 }
154
{ andi r6, r1, 63 }
155
EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
156
.Lcopy_many:
157
{ bnzt r6, .Lalign_loop; addi r9, r0, 63 }
158
159
{ addi r3, r1, 60; andi r9, r9, -64 }
160
161
#if CHIP_HAS_WH64()
162
/* No need to prefetch dst, we'll just do the wh64
163
* right before we copy a line.
164
*/
165
#endif
166
167
EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 }
168
/* Intentionally stall for a few cycles to leave L2 cache alone. */
169
{ bnzt zero, .; move r27, lr }
170
EX: { lw r6, r3; addi r3, r3, 64 }
171
/* Intentionally stall for a few cycles to leave L2 cache alone. */
172
{ bnzt zero, . }
173
EX: { lw r7, r3; addi r3, r3, 64 }
174
#if !CHIP_HAS_WH64()
175
/* Prefetch the dest */
176
/* Intentionally stall for a few cycles to leave L2 cache alone. */
177
{ bnzt zero, . }
178
/* Use a real load to cause a TLB miss if necessary. We aren't using
179
* r28, so this should be fine.
180
*/
181
EX: { lw r28, r9; addi r9, r9, 64 }
182
/* Intentionally stall for a few cycles to leave L2 cache alone. */
183
{ bnzt zero, . }
184
{ prefetch r9; addi r9, r9, 64 }
185
/* Intentionally stall for a few cycles to leave L2 cache alone. */
186
{ bnzt zero, . }
187
{ prefetch r9; addi r9, r9, 64 }
188
#endif
189
/* Intentionally stall for a few cycles to leave L2 cache alone. */
190
{ bz zero, .Lbig_loop2 }
191
192
/* On entry to this loop:
193
* - r0 points to the start of dst line 0
194
* - r1 points to start of src line 0
195
* - r2 >= (256 - 60), only the first time the loop trips.
196
* - r3 contains r1 + 128 + 60 [pointer to end of source line 2]
197
* This is our prefetch address. When we get near the end
198
* rather than prefetching off the end this is changed to point
199
* to some "safe" recently loaded address.
200
* - r5 contains *(r1 + 60) [i.e. last word of source line 0]
201
* - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1]
202
* - r9 contains ((r0 + 63) & -64)
203
* [start of next dst cache line.]
204
*/
205
206
.Lbig_loop:
207
{ jal .Lcopy_line2; add r15, r1, r2 }
208
209
.Lbig_loop2:
210
/* Copy line 0, first stalling until r5 is ready. */
211
EX: { move r12, r5; lw r16, r1 }
212
{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
213
/* Prefetch several lines ahead. */
214
EX: { lw r5, r3; addi r3, r3, 64 }
215
{ jal .Lcopy_line }
216
217
/* Copy line 1, first stalling until r6 is ready. */
218
EX: { move r12, r6; lw r16, r1 }
219
{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
220
/* Prefetch several lines ahead. */
221
EX: { lw r6, r3; addi r3, r3, 64 }
222
{ jal .Lcopy_line }
223
224
/* Copy line 2, first stalling until r7 is ready. */
225
EX: { move r12, r7; lw r16, r1 }
226
{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
227
/* Prefetch several lines ahead. */
228
EX: { lw r7, r3; addi r3, r3, 64 }
229
/* Use up a caches-busy cycle by jumping back to the top of the
230
* loop. Might as well get it out of the way now.
231
*/
232
{ j .Lbig_loop }
233
234
235
/* On entry:
236
* - r0 points to the destination line.
237
* - r1 points to the source line.
238
* - r3 is the next prefetch address.
239
* - r9 holds the last address used for wh64.
240
* - r12 = WORD_15
241
* - r16 = WORD_0.
242
* - r17 == r1 + 16.
243
* - r27 holds saved lr to restore.
244
*
245
* On exit:
246
* - r0 is incremented by 64.
247
* - r1 is incremented by 64, unless that would point to a word
248
* beyond the end of the source array, in which case it is redirected
249
* to point to an arbitrary word already in the cache.
250
* - r2 is decremented by 64.
251
* - r3 is unchanged, unless it points to a word beyond the
252
* end of the source array, in which case it is redirected
253
* to point to an arbitrary word already in the cache.
254
* Redirecting is OK since if we are that close to the end
255
* of the array we will not come back to this subroutine
256
* and use the contents of the prefetched address.
257
* - r4 is nonzero iff r2 >= 64.
258
* - r9 is incremented by 64, unless it points beyond the
259
* end of the last full destination cache line, in which
260
* case it is redirected to a "safe address" that can be
261
* clobbered (sp - 64)
262
* - lr contains the value in r27.
263
*/
264
265
/* r26 unused */
266
267
.Lcopy_line:
268
/* TODO: when r3 goes past the end, we would like to redirect it
269
* to prefetch the last partial cache line (if any) just once, for the
270
* benefit of the final cleanup loop. But we don't want to
271
* prefetch that line more than once, or subsequent prefetches
272
* will go into the RTF. But then .Lbig_loop should unconditionally
273
* branch to top of loop to execute final prefetch, and its
274
* nop should become a conditional branch.
275
*/
276
277
/* We need two non-memory cycles here to cover the resources
278
* used by the loads initiated by the caller.
279
*/
280
{ add r15, r1, r2 }
281
.Lcopy_line2:
282
{ slt_u r13, r3, r15; addi r17, r1, 16 }
283
284
/* NOTE: this will stall for one cycle as L1 is busy. */
285
286
/* Fill second L1D line. */
287
EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
288
289
#if CHIP_HAS_WH64()
290
/* Prepare destination line for writing. */
291
EX: { wh64 r9; addi r9, r9, 64 }
292
#else
293
/* Prefetch dest line */
294
{ prefetch r9; addi r9, r9, 64 }
295
#endif
296
/* Load seven words that are L1D hits to cover wh64 L2 usage. */
297
298
/* Load the three remaining words from the last L1D line, which
299
* we know has already filled the L1D.
300
*/
301
EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */
302
EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */
303
EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */
304
305
/* Load the three remaining words from the first L1D line, first
306
* stalling until it has filled by "looking at" r16.
307
*/
308
EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */
309
EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */
310
EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
311
312
/* Load second word from the second L1D line, first
313
* stalling until it has filled by "looking at" r17.
314
*/
315
EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */
316
317
/* Store last word to the destination line, potentially dirtying it
318
* for the first time, which keeps the L2 busy for two cycles.
319
*/
320
EX: { sw r10, r12 } /* store(WORD_15) */
321
322
/* Use two L1D hits to cover the sw L2 access above. */
323
EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */
324
EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */
325
326
/* Fill third L1D line. */
327
EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */
328
329
/* Store first L1D line. */
330
EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
331
EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
332
EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
333
#if CHIP_HAS_WH64()
334
EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
335
#else
336
/* Back up the r9 to a cache line we are already storing to
337
* if it gets past the end of the dest vector. Strictly speaking,
338
* we don't need to back up to the start of a cache line, but it's free
339
* and tidy, so why not?
340
*/
341
EX: { sw r0, r15; addi r0, r0, 4; andi r13, r0, -64 } /* store(WORD_3) */
342
#endif
343
/* Store second L1D line. */
344
EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
345
EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */
346
EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */
347
EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */
348
349
EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */
350
EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */
351
EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */
352
353
/* Store third L1D line. */
354
EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */
355
EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */
356
EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */
357
EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */
358
359
/* Store rest of fourth L1D line. */
360
EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */
361
{
362
EX: sw r0, r8 /* store(WORD_13) */
363
addi r0, r0, 4
364
/* Will r2 be > 64 after we subtract 64 below? */
365
shri r4, r2, 7
366
}
367
{
368
EX: sw r0, r11 /* store(WORD_14) */
369
addi r0, r0, 8
370
/* Record 64 bytes successfully copied. */
371
addi r2, r2, -64
372
}
373
374
{ jrp lr; move lr, r27 }
375
376
/* Convey to the backtrace library that the stack frame is size
377
* zero, and the real return address is on the stack rather than
378
* in 'lr'.
379
*/
380
{ info 8 }
381
382
.align 64
383
.Lcopy_unaligned_maybe_many:
384
/* Skip the setup overhead if we aren't copying many bytes. */
385
{ slti_u r8, r2, 20; sub r4, zero, r0 }
386
{ bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
387
{ bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
388
389
/*
390
*
391
* unaligned 4 byte at a time copy handler.
392
*
393
*/
394
395
/* Copy single bytes until r0 == 0 mod 4, so we can store words. */
396
.Lalign_dest_loop:
397
EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
398
EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
399
{ bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
400
401
/* If source and dest are now *both* aligned, do an aligned copy. */
402
{ bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
403
404
.Ldest_is_word_aligned:
405
406
#if CHIP_HAS_DWORD_ALIGN()
407
EX: { andi r8, r0, 63; lwadd_na r6, r1, 4}
408
{ slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
409
410
/* This copies unaligned words until either there are fewer
411
* than 4 bytes left to copy, or until the destination pointer
412
* is cache-aligned, whichever comes first.
413
*
414
* On entry:
415
* - r0 is the next store address.
416
* - r1 points 4 bytes past the load address corresponding to r0.
417
* - r2 >= 4
418
* - r6 is the next aligned word loaded.
419
*/
420
.Lcopy_unaligned_src_words:
421
EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
422
/* stall */
423
{ dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
424
EX: { swadd r0, r6, 4; addi r2, r2, -4 }
425
{ bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
426
{ bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
427
428
/* On entry:
429
* - r0 is the next store address.
430
* - r1 points 4 bytes past the load address corresponding to r0.
431
* - r2 >= 4 (# of bytes left to store).
432
* - r6 is the next aligned src word value.
433
* - r9 = (r2 < 64U).
434
* - r18 points one byte past the end of source memory.
435
*/
436
.Ldest_is_L2_line_aligned:
437
438
{
439
/* Not a full cache line remains. */
440
bnz r9, .Lcleanup_unaligned_words
441
move r7, r6
442
}
443
444
/* r2 >= 64 */
445
446
/* Kick off two prefetches, but don't go past the end. */
447
{ addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
448
{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
449
{ mvz r3, r8, r1; addi r8, r3, 64 }
450
{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
451
{ mvz r3, r8, r1; movei r17, 0 }
452
453
.Lcopy_unaligned_line:
454
/* Prefetch another line. */
455
{ prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
456
/* Fire off a load of the last word we are about to copy. */
457
EX: { lw_na r15, r15; slt_u r8, r3, r18 }
458
459
EX: { mvz r3, r8, r1; wh64 r0 }
460
461
/* This loop runs twice.
462
*
463
* On entry:
464
* - r17 is even before the first iteration, and odd before
465
* the second. It is incremented inside the loop. Encountering
466
* an even value at the end of the loop makes it stop.
467
*/
468
.Lcopy_half_an_unaligned_line:
469
EX: {
470
/* Stall until the last byte is ready. In the steady state this
471
* guarantees all words to load below will be in the L2 cache, which
472
* avoids shunting the loads to the RTF.
473
*/
474
move zero, r15
475
lwadd_na r7, r1, 16
476
}
477
EX: { lwadd_na r11, r1, 12 }
478
EX: { lwadd_na r14, r1, -24 }
479
EX: { lwadd_na r8, r1, 4 }
480
EX: { lwadd_na r9, r1, 4 }
481
EX: {
482
lwadd_na r10, r1, 8
483
/* r16 = (r2 < 64), after we subtract 32 from r2 below. */
484
slti_u r16, r2, 64 + 32
485
}
486
EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 }
487
EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
488
EX: { swadd r0, r6, 4; dword_align r7, r8, r1 }
489
EX: { swadd r0, r7, 4; dword_align r8, r9, r1 }
490
EX: { swadd r0, r8, 4; dword_align r9, r10, r1 }
491
EX: { swadd r0, r9, 4; dword_align r10, r11, r1 }
492
EX: { swadd r0, r10, 4; dword_align r11, r12, r1 }
493
EX: { swadd r0, r11, 4; dword_align r12, r13, r1 }
494
EX: { swadd r0, r12, 4; dword_align r13, r14, r1 }
495
EX: { swadd r0, r13, 4; addi r2, r2, -32 }
496
{ move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
497
498
{ bzt r16, .Lcopy_unaligned_line; move r7, r6 }
499
500
/* On entry:
501
* - r0 is the next store address.
502
* - r1 points 4 bytes past the load address corresponding to r0.
503
* - r2 >= 0 (# of bytes left to store).
504
* - r7 is the next aligned src word value.
505
*/
506
.Lcleanup_unaligned_words:
507
/* Handle any trailing bytes. */
508
{ bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
509
{ bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
510
511
/* Move r1 back to the point where it corresponds to r0. */
512
{ addi r1, r1, -4 }
513
514
#else /* !CHIP_HAS_DWORD_ALIGN() */
515
516
/* Compute right/left shift counts and load initial source words. */
517
{ andi r5, r1, -4; andi r3, r1, 3 }
518
EX: { lw r6, r5; addi r5, r5, 4; shli r3, r3, 3 }
519
EX: { lw r7, r5; addi r5, r5, 4; sub r4, zero, r3 }
520
521
/* Load and store one word at a time, using shifts and ORs
522
* to correct for the misaligned src.
523
*/
524
.Lcopy_unaligned_src_loop:
525
{ shr r6, r6, r3; shl r8, r7, r4 }
526
EX: { lw r7, r5; or r8, r8, r6; move r6, r7 }
527
EX: { sw r0, r8; addi r0, r0, 4; addi r2, r2, -4 }
528
{ addi r5, r5, 4; slti_u r8, r2, 8 }
529
{ bzt r8, .Lcopy_unaligned_src_loop; addi r1, r1, 4 }
530
531
{ bz r2, .Lcopy_unaligned_done }
532
#endif /* !CHIP_HAS_DWORD_ALIGN() */
533
534
/* Fall through */
535
536
/*
537
*
538
* 1 byte at a time copy handler.
539
*
540
*/
541
542
.Lcopy_unaligned_few:
543
EX: { lb_u r3, r1; addi r1, r1, 1 }
544
EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
545
{ bnzt r2, .Lcopy_unaligned_few }
546
547
.Lcopy_unaligned_done:
548
549
/* For memcpy return original dest address, else zero. */
550
{ mz r0, r29, r23; jrp lr }
551
552
.Lend_memcpy_common:
553
.size memcpy_common, .Lend_memcpy_common - memcpy_common
554
555
.section .fixup,"ax"
556
memcpy_common_fixup:
557
.type memcpy_common_fixup, @function
558
559
/* Skip any bytes we already successfully copied.
560
* r2 (num remaining) is correct, but r0 (dst) and r1 (src)
561
* may not be quite right because of unrolling and prefetching.
562
* So we need to recompute their values as the address just
563
* after the last byte we are sure was successfully loaded and
564
* then stored.
565
*/
566
567
/* Determine how many bytes we successfully copied. */
568
{ sub r3, r25, r2 }
569
570
/* Add this to the original r0 and r1 to get their new values. */
571
{ add r0, r23, r3; add r1, r24, r3 }
572
573
{ bzt r29, memcpy_fixup_loop }
574
{ blzt r29, copy_to_user_fixup_loop }
575
576
copy_from_user_fixup_loop:
577
/* Try copying the rest one byte at a time, expecting a load fault. */
578
.Lcfu: { lb_u r3, r1; addi r1, r1, 1 }
579
{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
580
{ bnzt r2, copy_from_user_fixup_loop }
581
582
.Lcopy_from_user_fixup_zero_remainder:
583
{ bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */
584
/* byte-at-a-time loop faulted, so zero the rest. */
585
{ move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ }
586
1: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 }
587
{ bnzt r3, 1b }
588
2: move lr, r27
589
{ move r0, r2; jrp lr }
590
591
copy_to_user_fixup_loop:
592
/* Try copying the rest one byte at a time, expecting a store fault. */
593
{ lb_u r3, r1; addi r1, r1, 1 }
594
.Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
595
{ bnzt r2, copy_to_user_fixup_loop }
596
.Lcopy_to_user_fixup_done:
597
move lr, r27
598
{ move r0, r2; jrp lr }
599
600
memcpy_fixup_loop:
601
/* Try copying the rest one byte at a time. We expect a disastrous
602
* fault to happen since we are in fixup code, but let it happen.
603
*/
604
{ lb_u r3, r1; addi r1, r1, 1 }
605
{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
606
{ bnzt r2, memcpy_fixup_loop }
607
/* This should be unreachable, we should have faulted again.
608
* But be paranoid and handle it in case some interrupt changed
609
* the TLB or something.
610
*/
611
move lr, r27
612
{ move r0, r23; jrp lr }
613
614
.size memcpy_common_fixup, . - memcpy_common_fixup
615
616
.section __ex_table,"a"
617
.word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
618
.word .Lctu, .Lcopy_to_user_fixup_done
619
620