Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/tile/mm/fault.c
10817 views
1
/*
2
* Copyright 2010 Tilera Corporation. All Rights Reserved.
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation, version 2.
7
*
8
* This program is distributed in the hope that it will be useful, but
9
* WITHOUT ANY WARRANTY; without even the implied warranty of
10
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11
* NON INFRINGEMENT. See the GNU General Public License for
12
* more details.
13
*
14
* From i386 code copyright (C) 1995 Linus Torvalds
15
*/
16
17
#include <linux/signal.h>
18
#include <linux/sched.h>
19
#include <linux/kernel.h>
20
#include <linux/errno.h>
21
#include <linux/string.h>
22
#include <linux/types.h>
23
#include <linux/ptrace.h>
24
#include <linux/mman.h>
25
#include <linux/mm.h>
26
#include <linux/smp.h>
27
#include <linux/interrupt.h>
28
#include <linux/init.h>
29
#include <linux/tty.h>
30
#include <linux/vt_kern.h> /* For unblank_screen() */
31
#include <linux/highmem.h>
32
#include <linux/module.h>
33
#include <linux/kprobes.h>
34
#include <linux/hugetlb.h>
35
#include <linux/syscalls.h>
36
#include <linux/uaccess.h>
37
38
#include <asm/system.h>
39
#include <asm/pgalloc.h>
40
#include <asm/sections.h>
41
#include <asm/traps.h>
42
#include <asm/syscalls.h>
43
44
#include <arch/interrupts.h>
45
46
static noinline void force_sig_info_fault(const char *type, int si_signo,
47
int si_code, unsigned long address,
48
int fault_num,
49
struct task_struct *tsk,
50
struct pt_regs *regs)
51
{
52
siginfo_t info;
53
54
if (unlikely(tsk->pid < 2)) {
55
panic("Signal %d (code %d) at %#lx sent to %s!",
56
si_signo, si_code & 0xffff, address,
57
tsk->pid ? "init" : "the idle task");
58
}
59
60
info.si_signo = si_signo;
61
info.si_errno = 0;
62
info.si_code = si_code;
63
info.si_addr = (void __user *)address;
64
info.si_trapno = fault_num;
65
trace_unhandled_signal(type, regs, address, si_signo);
66
force_sig_info(si_signo, &info, tsk);
67
}
68
69
#ifndef __tilegx__
70
/*
71
* Synthesize the fault a PL0 process would get by doing a word-load of
72
* an unaligned address or a high kernel address.
73
*/
74
SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
75
struct pt_regs *, regs)
76
{
77
if (address >= PAGE_OFFSET)
78
force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
79
address, INT_DTLB_MISS, current, regs);
80
else
81
force_sig_info_fault("atomic alignment fault", SIGBUS,
82
BUS_ADRALN, address,
83
INT_UNALIGN_DATA, current, regs);
84
85
/*
86
* Adjust pc to point at the actual instruction, which is unusual
87
* for syscalls normally, but is appropriate when we are claiming
88
* that a syscall swint1 caused a page fault or bus error.
89
*/
90
regs->pc -= 8;
91
92
/*
93
* Mark this as a caller-save interrupt, like a normal page fault,
94
* so that when we go through the signal handler path we will
95
* properly restore r0, r1, and r2 for the signal handler arguments.
96
*/
97
regs->flags |= PT_FLAGS_CALLER_SAVES;
98
99
return 0;
100
}
101
#endif
102
103
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104
{
105
unsigned index = pgd_index(address);
106
pgd_t *pgd_k;
107
pud_t *pud, *pud_k;
108
pmd_t *pmd, *pmd_k;
109
110
pgd += index;
111
pgd_k = init_mm.pgd + index;
112
113
if (!pgd_present(*pgd_k))
114
return NULL;
115
116
pud = pud_offset(pgd, address);
117
pud_k = pud_offset(pgd_k, address);
118
if (!pud_present(*pud_k))
119
return NULL;
120
121
pmd = pmd_offset(pud, address);
122
pmd_k = pmd_offset(pud_k, address);
123
if (!pmd_present(*pmd_k))
124
return NULL;
125
if (!pmd_present(*pmd)) {
126
set_pmd(pmd, *pmd_k);
127
arch_flush_lazy_mmu_mode();
128
} else
129
BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130
return pmd_k;
131
}
132
133
/*
134
* Handle a fault on the vmalloc or module mapping area
135
*/
136
static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137
{
138
pmd_t *pmd_k;
139
pte_t *pte_k;
140
141
/* Make sure we are in vmalloc area */
142
if (!(address >= VMALLOC_START && address < VMALLOC_END))
143
return -1;
144
145
/*
146
* Synchronize this task's top level page-table
147
* with the 'reference' page table.
148
*/
149
pmd_k = vmalloc_sync_one(pgd, address);
150
if (!pmd_k)
151
return -1;
152
if (pmd_huge(*pmd_k))
153
return 0; /* support TILE huge_vmap() API */
154
pte_k = pte_offset_kernel(pmd_k, address);
155
if (!pte_present(*pte_k))
156
return -1;
157
return 0;
158
}
159
160
/* Wait until this PTE has completed migration. */
161
static void wait_for_migration(pte_t *pte)
162
{
163
if (pte_migrating(*pte)) {
164
/*
165
* Wait until the migrater fixes up this pte.
166
* We scale the loop count by the clock rate so we'll wait for
167
* a few seconds here.
168
*/
169
int retries = 0;
170
int bound = get_clock_rate();
171
while (pte_migrating(*pte)) {
172
barrier();
173
if (++retries > bound)
174
panic("Hit migrating PTE (%#llx) and"
175
" page PFN %#lx still migrating",
176
pte->val, pte_pfn(*pte));
177
}
178
}
179
}
180
181
/*
182
* It's not generally safe to use "current" to get the page table pointer,
183
* since we might be running an oprofile interrupt in the middle of a
184
* task switch.
185
*/
186
static pgd_t *get_current_pgd(void)
187
{
188
HV_Context ctx = hv_inquire_context();
189
unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190
struct page *pgd_page = pfn_to_page(pgd_pfn);
191
BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
192
return (pgd_t *) __va(ctx.page_table);
193
}
194
195
/*
196
* We can receive a page fault from a migrating PTE at any time.
197
* Handle it by just waiting until the fault resolves.
198
*
199
* It's also possible to get a migrating kernel PTE that resolves
200
* itself during the downcall from hypervisor to Linux. We just check
201
* here to see if the PTE seems valid, and if so we retry it.
202
*
203
* NOTE! We MUST NOT take any locks for this case. We may be in an
204
* interrupt or a critical region, and must do as little as possible.
205
* Similarly, we can't use atomic ops here, since we may be handling a
206
* fault caused by an atomic op access.
207
*/
208
static int handle_migrating_pte(pgd_t *pgd, int fault_num,
209
unsigned long address,
210
int is_kernel_mode, int write)
211
{
212
pud_t *pud;
213
pmd_t *pmd;
214
pte_t *pte;
215
pte_t pteval;
216
217
if (pgd_addr_invalid(address))
218
return 0;
219
220
pgd += pgd_index(address);
221
pud = pud_offset(pgd, address);
222
if (!pud || !pud_present(*pud))
223
return 0;
224
pmd = pmd_offset(pud, address);
225
if (!pmd || !pmd_present(*pmd))
226
return 0;
227
pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
228
pte_offset_kernel(pmd, address);
229
pteval = *pte;
230
if (pte_migrating(pteval)) {
231
wait_for_migration(pte);
232
return 1;
233
}
234
235
if (!is_kernel_mode || !pte_present(pteval))
236
return 0;
237
if (fault_num == INT_ITLB_MISS) {
238
if (pte_exec(pteval))
239
return 1;
240
} else if (write) {
241
if (pte_write(pteval))
242
return 1;
243
} else {
244
if (pte_read(pteval))
245
return 1;
246
}
247
248
return 0;
249
}
250
251
/*
252
* This routine is responsible for faulting in user pages.
253
* It passes the work off to one of the appropriate routines.
254
* It returns true if the fault was successfully handled.
255
*/
256
static int handle_page_fault(struct pt_regs *regs,
257
int fault_num,
258
int is_page_fault,
259
unsigned long address,
260
int write)
261
{
262
struct task_struct *tsk;
263
struct mm_struct *mm;
264
struct vm_area_struct *vma;
265
unsigned long stack_offset;
266
int fault;
267
int si_code;
268
int is_kernel_mode;
269
pgd_t *pgd;
270
271
/* on TILE, protection faults are always writes */
272
if (!is_page_fault)
273
write = 1;
274
275
is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
276
277
tsk = validate_current();
278
279
/*
280
* Check to see if we might be overwriting the stack, and bail
281
* out if so. The page fault code is a relatively likely
282
* place to get trapped in an infinite regress, and once we
283
* overwrite the whole stack, it becomes very hard to recover.
284
*/
285
stack_offset = stack_pointer & (THREAD_SIZE-1);
286
if (stack_offset < THREAD_SIZE / 8) {
287
pr_alert("Potential stack overrun: sp %#lx\n",
288
stack_pointer);
289
show_regs(regs);
290
pr_alert("Killing current process %d/%s\n",
291
tsk->pid, tsk->comm);
292
do_group_exit(SIGKILL);
293
}
294
295
/*
296
* Early on, we need to check for migrating PTE entries;
297
* see homecache.c. If we find a migrating PTE, we wait until
298
* the backing page claims to be done migrating, then we proceed.
299
* For kernel PTEs, we rewrite the PTE and return and retry.
300
* Otherwise, we treat the fault like a normal "no PTE" fault,
301
* rather than trying to patch up the existing PTE.
302
*/
303
pgd = get_current_pgd();
304
if (handle_migrating_pte(pgd, fault_num, address,
305
is_kernel_mode, write))
306
return 1;
307
308
si_code = SEGV_MAPERR;
309
310
/*
311
* We fault-in kernel-space virtual memory on-demand. The
312
* 'reference' page table is init_mm.pgd.
313
*
314
* NOTE! We MUST NOT take any locks for this case. We may
315
* be in an interrupt or a critical region, and should
316
* only copy the information from the master page table,
317
* nothing more.
318
*
319
* This verifies that the fault happens in kernel space
320
* and that the fault was not a protection fault.
321
*/
322
if (unlikely(address >= TASK_SIZE &&
323
!is_arch_mappable_range(address, 0))) {
324
if (is_kernel_mode && is_page_fault &&
325
vmalloc_fault(pgd, address) >= 0)
326
return 1;
327
/*
328
* Don't take the mm semaphore here. If we fixup a prefetch
329
* fault we could otherwise deadlock.
330
*/
331
mm = NULL; /* happy compiler */
332
vma = NULL;
333
goto bad_area_nosemaphore;
334
}
335
336
/*
337
* If we're trying to touch user-space addresses, we must
338
* be either at PL0, or else with interrupts enabled in the
339
* kernel, so either way we can re-enable interrupts here.
340
*/
341
local_irq_enable();
342
343
mm = tsk->mm;
344
345
/*
346
* If we're in an interrupt, have no user context or are running in an
347
* atomic region then we must not take the fault.
348
*/
349
if (in_atomic() || !mm) {
350
vma = NULL; /* happy compiler */
351
goto bad_area_nosemaphore;
352
}
353
354
/*
355
* When running in the kernel we expect faults to occur only to
356
* addresses in user space. All other faults represent errors in the
357
* kernel and should generate an OOPS. Unfortunately, in the case of an
358
* erroneous fault occurring in a code path which already holds mmap_sem
359
* we will deadlock attempting to validate the fault against the
360
* address space. Luckily the kernel only validly references user
361
* space from well defined areas of code, which are listed in the
362
* exceptions table.
363
*
364
* As the vast majority of faults will be valid we will only perform
365
* the source reference check when there is a possibility of a deadlock.
366
* Attempt to lock the address space, if we cannot we then validate the
367
* source. If this is invalid we can skip the address space check,
368
* thus avoiding the deadlock.
369
*/
370
if (!down_read_trylock(&mm->mmap_sem)) {
371
if (is_kernel_mode &&
372
!search_exception_tables(regs->pc)) {
373
vma = NULL; /* happy compiler */
374
goto bad_area_nosemaphore;
375
}
376
down_read(&mm->mmap_sem);
377
}
378
379
vma = find_vma(mm, address);
380
if (!vma)
381
goto bad_area;
382
if (vma->vm_start <= address)
383
goto good_area;
384
if (!(vma->vm_flags & VM_GROWSDOWN))
385
goto bad_area;
386
if (regs->sp < PAGE_OFFSET) {
387
/*
388
* accessing the stack below sp is always a bug.
389
*/
390
if (address < regs->sp)
391
goto bad_area;
392
}
393
if (expand_stack(vma, address))
394
goto bad_area;
395
396
/*
397
* Ok, we have a good vm_area for this memory access, so
398
* we can handle it..
399
*/
400
good_area:
401
si_code = SEGV_ACCERR;
402
if (fault_num == INT_ITLB_MISS) {
403
if (!(vma->vm_flags & VM_EXEC))
404
goto bad_area;
405
} else if (write) {
406
#ifdef TEST_VERIFY_AREA
407
if (!is_page_fault && regs->cs == KERNEL_CS)
408
pr_err("WP fault at "REGFMT"\n", regs->eip);
409
#endif
410
if (!(vma->vm_flags & VM_WRITE))
411
goto bad_area;
412
} else {
413
if (!is_page_fault || !(vma->vm_flags & VM_READ))
414
goto bad_area;
415
}
416
417
survive:
418
/*
419
* If for any reason at all we couldn't handle the fault,
420
* make sure we exit gracefully rather than endlessly redo
421
* the fault.
422
*/
423
fault = handle_mm_fault(mm, vma, address, write);
424
if (unlikely(fault & VM_FAULT_ERROR)) {
425
if (fault & VM_FAULT_OOM)
426
goto out_of_memory;
427
else if (fault & VM_FAULT_SIGBUS)
428
goto do_sigbus;
429
BUG();
430
}
431
if (fault & VM_FAULT_MAJOR)
432
tsk->maj_flt++;
433
else
434
tsk->min_flt++;
435
436
#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
437
/*
438
* If this was an asynchronous fault,
439
* restart the appropriate engine.
440
*/
441
switch (fault_num) {
442
#if CHIP_HAS_TILE_DMA()
443
case INT_DMATLB_MISS:
444
case INT_DMATLB_MISS_DWNCL:
445
case INT_DMATLB_ACCESS:
446
case INT_DMATLB_ACCESS_DWNCL:
447
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
448
break;
449
#endif
450
#if CHIP_HAS_SN_PROC()
451
case INT_SNITLB_MISS:
452
case INT_SNITLB_MISS_DWNCL:
453
__insn_mtspr(SPR_SNCTL,
454
__insn_mfspr(SPR_SNCTL) &
455
~SPR_SNCTL__FRZPROC_MASK);
456
break;
457
#endif
458
}
459
#endif
460
461
up_read(&mm->mmap_sem);
462
return 1;
463
464
/*
465
* Something tried to access memory that isn't in our memory map..
466
* Fix it, but check if it's kernel or user first..
467
*/
468
bad_area:
469
up_read(&mm->mmap_sem);
470
471
bad_area_nosemaphore:
472
/* User mode accesses just cause a SIGSEGV */
473
if (!is_kernel_mode) {
474
/*
475
* It's possible to have interrupts off here.
476
*/
477
local_irq_enable();
478
479
force_sig_info_fault("segfault", SIGSEGV, si_code, address,
480
fault_num, tsk, regs);
481
return 0;
482
}
483
484
no_context:
485
/* Are we prepared to handle this kernel fault? */
486
if (fixup_exception(regs))
487
return 0;
488
489
/*
490
* Oops. The kernel tried to access some bad page. We'll have to
491
* terminate things with extreme prejudice.
492
*/
493
494
bust_spinlocks(1);
495
496
/* FIXME: no lookup_address() yet */
497
#ifdef SUPPORT_LOOKUP_ADDRESS
498
if (fault_num == INT_ITLB_MISS) {
499
pte_t *pte = lookup_address(address);
500
501
if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
502
pr_crit("kernel tried to execute"
503
" non-executable page - exploit attempt?"
504
" (uid: %d)\n", current->uid);
505
}
506
#endif
507
if (address < PAGE_SIZE)
508
pr_alert("Unable to handle kernel NULL pointer dereference\n");
509
else
510
pr_alert("Unable to handle kernel paging request\n");
511
pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
512
address, regs->pc);
513
514
show_regs(regs);
515
516
if (unlikely(tsk->pid < 2)) {
517
panic("Kernel page fault running %s!",
518
tsk->pid ? "init" : "the idle task");
519
}
520
521
/*
522
* More FIXME: we should probably copy the i386 here and
523
* implement a generic die() routine. Not today.
524
*/
525
#ifdef SUPPORT_DIE
526
die("Oops", regs);
527
#endif
528
bust_spinlocks(1);
529
530
do_group_exit(SIGKILL);
531
532
/*
533
* We ran out of memory, or some other thing happened to us that made
534
* us unable to handle the page fault gracefully.
535
*/
536
out_of_memory:
537
up_read(&mm->mmap_sem);
538
if (is_global_init(tsk)) {
539
yield();
540
down_read(&mm->mmap_sem);
541
goto survive;
542
}
543
pr_alert("VM: killing process %s\n", tsk->comm);
544
if (!is_kernel_mode)
545
do_group_exit(SIGKILL);
546
goto no_context;
547
548
do_sigbus:
549
up_read(&mm->mmap_sem);
550
551
/* Kernel mode? Handle exceptions or die */
552
if (is_kernel_mode)
553
goto no_context;
554
555
force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
556
fault_num, tsk, regs);
557
return 0;
558
}
559
560
#ifndef __tilegx__
561
562
/* We must release ICS before panicking or we won't get anywhere. */
563
#define ics_panic(fmt, ...) do { \
564
__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
565
panic(fmt, __VA_ARGS__); \
566
} while (0)
567
568
/*
569
* When we take an ITLB or DTLB fault or access violation in the
570
* supervisor while the critical section bit is set, the hypervisor is
571
* reluctant to write new values into the EX_CONTEXT_K_x registers,
572
* since that might indicate we have not yet squirreled the SPR
573
* contents away and can thus safely take a recursive interrupt.
574
* Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
575
*
576
* Note that this routine is called before homecache_tlb_defer_enter(),
577
* which means that we can properly unlock any atomics that might
578
* be used there (good), but also means we must be very sensitive
579
* to not touch any data structures that might be located in memory
580
* that could migrate, as we could be entering the kernel on a dataplane
581
* cpu that has been deferring kernel TLB updates. This means, for
582
* example, that we can't migrate init_mm or its pgd.
583
*/
584
struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
585
unsigned long address,
586
unsigned long info)
587
{
588
unsigned long pc = info & ~1;
589
int write = info & 1;
590
pgd_t *pgd = get_current_pgd();
591
592
/* Retval is 1 at first since we will handle the fault fully. */
593
struct intvec_state state = {
594
do_page_fault, fault_num, address, write, 1
595
};
596
597
/* Validate that we are plausibly in the right routine. */
598
if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
599
(fault_num != INT_DTLB_MISS &&
600
fault_num != INT_DTLB_ACCESS)) {
601
unsigned long old_pc = regs->pc;
602
regs->pc = pc;
603
ics_panic("Bad ICS page fault args:"
604
" old PC %#lx, fault %d/%d at %#lx\n",
605
old_pc, fault_num, write, address);
606
}
607
608
/* We might be faulting on a vmalloc page, so check that first. */
609
if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
610
return state;
611
612
/*
613
* If we faulted with ICS set in sys_cmpxchg, we are providing
614
* a user syscall service that should generate a signal on
615
* fault. We didn't set up a kernel stack on initial entry to
616
* sys_cmpxchg, but instead had one set up by the fault, which
617
* (because sys_cmpxchg never releases ICS) came to us via the
618
* SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
619
* still referencing the original user code. We release the
620
* atomic lock and rewrite pt_regs so that it appears that we
621
* came from user-space directly, and after we finish the
622
* fault we'll go back to user space and re-issue the swint.
623
* This way the backtrace information is correct if we need to
624
* emit a stack dump at any point while handling this.
625
*
626
* Must match register use in sys_cmpxchg().
627
*/
628
if (pc >= (unsigned long) sys_cmpxchg &&
629
pc < (unsigned long) __sys_cmpxchg_end) {
630
#ifdef CONFIG_SMP
631
/* Don't unlock before we could have locked. */
632
if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
633
int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
634
__atomic_fault_unlock(lock_ptr);
635
}
636
#endif
637
regs->sp = regs->regs[27];
638
}
639
640
/*
641
* We can also fault in the atomic assembly, in which
642
* case we use the exception table to do the first-level fixup.
643
* We may re-fixup again in the real fault handler if it
644
* turns out the faulting address is just bad, and not,
645
* for example, migrating.
646
*/
647
else if (pc >= (unsigned long) __start_atomic_asm_code &&
648
pc < (unsigned long) __end_atomic_asm_code) {
649
const struct exception_table_entry *fixup;
650
#ifdef CONFIG_SMP
651
/* Unlock the atomic lock. */
652
int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
653
__atomic_fault_unlock(lock_ptr);
654
#endif
655
fixup = search_exception_tables(pc);
656
if (!fixup)
657
ics_panic("ICS atomic fault not in table:"
658
" PC %#lx, fault %d", pc, fault_num);
659
regs->pc = fixup->fixup;
660
regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
661
}
662
663
/*
664
* Now that we have released the atomic lock (if necessary),
665
* it's safe to spin if the PTE that caused the fault was migrating.
666
*/
667
if (fault_num == INT_DTLB_ACCESS)
668
write = 1;
669
if (handle_migrating_pte(pgd, fault_num, address, 1, write))
670
return state;
671
672
/* Return zero so that we continue on with normal fault handling. */
673
state.retval = 0;
674
return state;
675
}
676
677
#endif /* !__tilegx__ */
678
679
/*
680
* This routine handles page faults. It determines the address, and the
681
* problem, and then passes it handle_page_fault() for normal DTLB and
682
* ITLB issues, and for DMA or SN processor faults when we are in user
683
* space. For the latter, if we're in kernel mode, we just save the
684
* interrupt away appropriately and return immediately. We can't do
685
* page faults for user code while in kernel mode.
686
*/
687
void do_page_fault(struct pt_regs *regs, int fault_num,
688
unsigned long address, unsigned long write)
689
{
690
int is_page_fault;
691
692
/* This case should have been handled by do_page_fault_ics(). */
693
BUG_ON(write & ~1);
694
695
#if CHIP_HAS_TILE_DMA()
696
/*
697
* If it's a DMA fault, suspend the transfer while we're
698
* handling the miss; we'll restart after it's handled. If we
699
* don't suspend, it's possible that this process could swap
700
* out and back in, and restart the engine since the DMA is
701
* still 'running'.
702
*/
703
if (fault_num == INT_DMATLB_MISS ||
704
fault_num == INT_DMATLB_ACCESS ||
705
fault_num == INT_DMATLB_MISS_DWNCL ||
706
fault_num == INT_DMATLB_ACCESS_DWNCL) {
707
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
708
while (__insn_mfspr(SPR_DMA_USER_STATUS) &
709
SPR_DMA_STATUS__BUSY_MASK)
710
;
711
}
712
#endif
713
714
/* Validate fault num and decide if this is a first-time page fault. */
715
switch (fault_num) {
716
case INT_ITLB_MISS:
717
case INT_DTLB_MISS:
718
#if CHIP_HAS_TILE_DMA()
719
case INT_DMATLB_MISS:
720
case INT_DMATLB_MISS_DWNCL:
721
#endif
722
#if CHIP_HAS_SN_PROC()
723
case INT_SNITLB_MISS:
724
case INT_SNITLB_MISS_DWNCL:
725
#endif
726
is_page_fault = 1;
727
break;
728
729
case INT_DTLB_ACCESS:
730
#if CHIP_HAS_TILE_DMA()
731
case INT_DMATLB_ACCESS:
732
case INT_DMATLB_ACCESS_DWNCL:
733
#endif
734
is_page_fault = 0;
735
break;
736
737
default:
738
panic("Bad fault number %d in do_page_fault", fault_num);
739
}
740
741
#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
742
if (EX1_PL(regs->ex1) != USER_PL) {
743
struct async_tlb *async;
744
switch (fault_num) {
745
#if CHIP_HAS_TILE_DMA()
746
case INT_DMATLB_MISS:
747
case INT_DMATLB_ACCESS:
748
case INT_DMATLB_MISS_DWNCL:
749
case INT_DMATLB_ACCESS_DWNCL:
750
async = &current->thread.dma_async_tlb;
751
break;
752
#endif
753
#if CHIP_HAS_SN_PROC()
754
case INT_SNITLB_MISS:
755
case INT_SNITLB_MISS_DWNCL:
756
async = &current->thread.sn_async_tlb;
757
break;
758
#endif
759
default:
760
async = NULL;
761
}
762
if (async) {
763
764
/*
765
* No vmalloc check required, so we can allow
766
* interrupts immediately at this point.
767
*/
768
local_irq_enable();
769
770
set_thread_flag(TIF_ASYNC_TLB);
771
if (async->fault_num != 0) {
772
panic("Second async fault %d;"
773
" old fault was %d (%#lx/%ld)",
774
fault_num, async->fault_num,
775
address, write);
776
}
777
BUG_ON(fault_num == 0);
778
async->fault_num = fault_num;
779
async->is_fault = is_page_fault;
780
async->is_write = write;
781
async->address = address;
782
return;
783
}
784
}
785
#endif
786
787
handle_page_fault(regs, fault_num, is_page_fault, address, write);
788
}
789
790
791
#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
792
/*
793
* Check an async_tlb structure to see if a deferred fault is waiting,
794
* and if so pass it to the page-fault code.
795
*/
796
static void handle_async_page_fault(struct pt_regs *regs,
797
struct async_tlb *async)
798
{
799
if (async->fault_num) {
800
/*
801
* Clear async->fault_num before calling the page-fault
802
* handler so that if we re-interrupt before returning
803
* from the function we have somewhere to put the
804
* information from the new interrupt.
805
*/
806
int fault_num = async->fault_num;
807
async->fault_num = 0;
808
handle_page_fault(regs, fault_num, async->is_fault,
809
async->address, async->is_write);
810
}
811
}
812
813
/*
814
* This routine effectively re-issues asynchronous page faults
815
* when we are returning to user space.
816
*/
817
void do_async_page_fault(struct pt_regs *regs)
818
{
819
/*
820
* Clear thread flag early. If we re-interrupt while processing
821
* code here, we will reset it and recall this routine before
822
* returning to user space.
823
*/
824
clear_thread_flag(TIF_ASYNC_TLB);
825
826
#if CHIP_HAS_TILE_DMA()
827
handle_async_page_fault(regs, &current->thread.dma_async_tlb);
828
#endif
829
#if CHIP_HAS_SN_PROC()
830
handle_async_page_fault(regs, &current->thread.sn_async_tlb);
831
#endif
832
}
833
#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
834
835
836
void vmalloc_sync_all(void)
837
{
838
#ifdef __tilegx__
839
/* Currently all L1 kernel pmd's are static and shared. */
840
BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
841
#else
842
/*
843
* Note that races in the updates of insync and start aren't
844
* problematic: insync can only get set bits added, and updates to
845
* start are only improving performance (without affecting correctness
846
* if undone).
847
*/
848
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
849
static unsigned long start = PAGE_OFFSET;
850
unsigned long address;
851
852
BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
853
for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
854
if (!test_bit(pgd_index(address), insync)) {
855
unsigned long flags;
856
struct list_head *pos;
857
858
spin_lock_irqsave(&pgd_lock, flags);
859
list_for_each(pos, &pgd_list)
860
if (!vmalloc_sync_one(list_to_pgd(pos),
861
address)) {
862
/* Must be at first entry in list. */
863
BUG_ON(pos != pgd_list.next);
864
break;
865
}
866
spin_unlock_irqrestore(&pgd_lock, flags);
867
if (pos != pgd_list.next)
868
set_bit(pgd_index(address), insync);
869
}
870
if (address == start && test_bit(pgd_index(address), insync))
871
start = address + PGDIR_SIZE;
872
}
873
#endif
874
}
875
876