Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/tile/mm/init.c
10817 views
1
/*
2
* Copyright (C) 1995 Linus Torvalds
3
* Copyright 2010 Tilera Corporation. All Rights Reserved.
4
*
5
* This program is free software; you can redistribute it and/or
6
* modify it under the terms of the GNU General Public License
7
* as published by the Free Software Foundation, version 2.
8
*
9
* This program is distributed in the hope that it will be useful, but
10
* WITHOUT ANY WARRANTY; without even the implied warranty of
11
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12
* NON INFRINGEMENT. See the GNU General Public License for
13
* more details.
14
*/
15
16
#include <linux/module.h>
17
#include <linux/signal.h>
18
#include <linux/sched.h>
19
#include <linux/kernel.h>
20
#include <linux/errno.h>
21
#include <linux/string.h>
22
#include <linux/types.h>
23
#include <linux/ptrace.h>
24
#include <linux/mman.h>
25
#include <linux/mm.h>
26
#include <linux/hugetlb.h>
27
#include <linux/swap.h>
28
#include <linux/smp.h>
29
#include <linux/init.h>
30
#include <linux/highmem.h>
31
#include <linux/pagemap.h>
32
#include <linux/poison.h>
33
#include <linux/bootmem.h>
34
#include <linux/slab.h>
35
#include <linux/proc_fs.h>
36
#include <linux/efi.h>
37
#include <linux/memory_hotplug.h>
38
#include <linux/uaccess.h>
39
#include <asm/mmu_context.h>
40
#include <asm/processor.h>
41
#include <asm/system.h>
42
#include <asm/pgtable.h>
43
#include <asm/pgalloc.h>
44
#include <asm/dma.h>
45
#include <asm/fixmap.h>
46
#include <asm/tlb.h>
47
#include <asm/tlbflush.h>
48
#include <asm/sections.h>
49
#include <asm/setup.h>
50
#include <asm/homecache.h>
51
#include <hv/hypervisor.h>
52
#include <arch/chip.h>
53
54
#include "migrate.h"
55
56
#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
57
58
#ifndef __tilegx__
59
unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
60
EXPORT_SYMBOL(VMALLOC_RESERVE);
61
#endif
62
63
/* Create an L2 page table */
64
static pte_t * __init alloc_pte(void)
65
{
66
return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
67
}
68
69
/*
70
* L2 page tables per controller. We allocate these all at once from
71
* the bootmem allocator and store them here. This saves on kernel L2
72
* page table memory, compared to allocating a full 64K page per L2
73
* page table, and also means that in cases where we use huge pages,
74
* we are guaranteed to later be able to shatter those huge pages and
75
* switch to using these page tables instead, without requiring
76
* further allocation. Each l2_ptes[] entry points to the first page
77
* table for the first hugepage-size piece of memory on the
78
* controller; other page tables are just indexed directly, i.e. the
79
* L2 page tables are contiguous in memory for each controller.
80
*/
81
static pte_t *l2_ptes[MAX_NUMNODES];
82
static int num_l2_ptes[MAX_NUMNODES];
83
84
static void init_prealloc_ptes(int node, int pages)
85
{
86
BUG_ON(pages & (HV_L2_ENTRIES-1));
87
if (pages) {
88
num_l2_ptes[node] = pages;
89
l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
90
HV_PAGE_TABLE_ALIGN, 0);
91
}
92
}
93
94
pte_t *get_prealloc_pte(unsigned long pfn)
95
{
96
int node = pfn_to_nid(pfn);
97
pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
98
BUG_ON(node >= MAX_NUMNODES);
99
BUG_ON(pfn >= num_l2_ptes[node]);
100
return &l2_ptes[node][pfn];
101
}
102
103
/*
104
* What caching do we expect pages from the heap to have when
105
* they are allocated during bootup? (Once we've installed the
106
* "real" swapper_pg_dir.)
107
*/
108
static int initial_heap_home(void)
109
{
110
#if CHIP_HAS_CBOX_HOME_MAP()
111
if (hash_default)
112
return PAGE_HOME_HASH;
113
#endif
114
return smp_processor_id();
115
}
116
117
/*
118
* Place a pointer to an L2 page table in a middle page
119
* directory entry.
120
*/
121
static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
122
{
123
phys_addr_t pa = __pa(page_table);
124
unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
125
pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
126
BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
127
pteval = pte_set_home(pteval, initial_heap_home());
128
*(pte_t *)pmd = pteval;
129
if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
130
BUG();
131
}
132
133
#ifdef __tilegx__
134
135
#if HV_L1_SIZE != HV_L2_SIZE
136
# error Rework assumption that L1 and L2 page tables are same size.
137
#endif
138
139
/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
140
static inline pmd_t *alloc_pmd(void)
141
{
142
return (pmd_t *)alloc_pte();
143
}
144
145
static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
146
{
147
assign_pte((pmd_t *)pud, (pte_t *)pmd);
148
}
149
150
#endif /* __tilegx__ */
151
152
/* Replace the given pmd with a full PTE table. */
153
void __init shatter_pmd(pmd_t *pmd)
154
{
155
pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
156
assign_pte(pmd, pte);
157
}
158
159
#ifdef CONFIG_HIGHMEM
160
/*
161
* This function initializes a certain range of kernel virtual memory
162
* with new bootmem page tables, everywhere page tables are missing in
163
* the given range.
164
*/
165
166
/*
167
* NOTE: The pagetables are allocated contiguous on the physical space
168
* so we can cache the place of the first one and move around without
169
* checking the pgd every time.
170
*/
171
static void __init page_table_range_init(unsigned long start,
172
unsigned long end, pgd_t *pgd_base)
173
{
174
pgd_t *pgd;
175
int pgd_idx;
176
unsigned long vaddr;
177
178
vaddr = start;
179
pgd_idx = pgd_index(vaddr);
180
pgd = pgd_base + pgd_idx;
181
182
for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
183
pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
184
if (pmd_none(*pmd))
185
assign_pte(pmd, alloc_pte());
186
vaddr += PMD_SIZE;
187
}
188
}
189
#endif /* CONFIG_HIGHMEM */
190
191
192
#if CHIP_HAS_CBOX_HOME_MAP()
193
194
static int __initdata ktext_hash = 1; /* .text pages */
195
static int __initdata kdata_hash = 1; /* .data and .bss pages */
196
int __write_once hash_default = 1; /* kernel allocator pages */
197
EXPORT_SYMBOL(hash_default);
198
int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
199
#endif /* CHIP_HAS_CBOX_HOME_MAP */
200
201
/*
202
* CPUs to use to for striping the pages of kernel data. If hash-for-home
203
* is available, this is only relevant if kcache_hash sets up the
204
* .data and .bss to be page-homed, and we don't want the default mode
205
* of using the full set of kernel cpus for the striping.
206
*/
207
static __initdata struct cpumask kdata_mask;
208
static __initdata int kdata_arg_seen;
209
210
int __write_once kdata_huge; /* if no homecaching, small pages */
211
212
213
/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
214
static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
215
{
216
prot = pte_set_home(prot, home);
217
#if CHIP_HAS_CBOX_HOME_MAP()
218
if (home == PAGE_HOME_IMMUTABLE) {
219
if (ktext_hash)
220
prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
221
else
222
prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
223
}
224
#endif
225
return prot;
226
}
227
228
/*
229
* For a given kernel data VA, how should it be cached?
230
* We return the complete pgprot_t with caching bits set.
231
*/
232
static pgprot_t __init init_pgprot(ulong address)
233
{
234
int cpu;
235
unsigned long page;
236
enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
237
238
#if CHIP_HAS_CBOX_HOME_MAP()
239
/* For kdata=huge, everything is just hash-for-home. */
240
if (kdata_huge)
241
return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
242
#endif
243
244
/* We map the aliased pages of permanent text inaccessible. */
245
if (address < (ulong) _sinittext - CODE_DELTA)
246
return PAGE_NONE;
247
248
/*
249
* We map read-only data non-coherent for performance. We could
250
* use neighborhood caching on TILE64, but it's not clear it's a win.
251
*/
252
if ((address >= (ulong) __start_rodata &&
253
address < (ulong) __end_rodata) ||
254
address == (ulong) empty_zero_page) {
255
return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
256
}
257
258
/* As a performance optimization, keep the boot init stack here. */
259
if (address >= (ulong)&init_thread_union &&
260
address < (ulong)&init_thread_union + THREAD_SIZE)
261
return construct_pgprot(PAGE_KERNEL, smp_processor_id());
262
263
#ifndef __tilegx__
264
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
265
/* Force the atomic_locks[] array page to be hash-for-home. */
266
if (address == (ulong) atomic_locks)
267
return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
268
#endif
269
#endif
270
271
/*
272
* Everything else that isn't data or bss is heap, so mark it
273
* with the initial heap home (hash-for-home, or this cpu). This
274
* includes any addresses after the loaded image and any address before
275
* _einitdata, since we already captured the case of text before
276
* _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
277
*
278
* All the LOWMEM pages that we mark this way will get their
279
* struct page homecache properly marked later, in set_page_homes().
280
* The HIGHMEM pages we leave with a default zero for their
281
* homes, but with a zero free_time we don't have to actually
282
* do a flush action the first time we use them, either.
283
*/
284
if (address >= (ulong) _end || address < (ulong) _einitdata)
285
return construct_pgprot(PAGE_KERNEL, initial_heap_home());
286
287
#if CHIP_HAS_CBOX_HOME_MAP()
288
/* Use hash-for-home if requested for data/bss. */
289
if (kdata_hash)
290
return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
291
#endif
292
293
/*
294
* Make the w1data homed like heap to start with, to avoid
295
* making it part of the page-striped data area when we're just
296
* going to convert it to read-only soon anyway.
297
*/
298
if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
299
return construct_pgprot(PAGE_KERNEL, initial_heap_home());
300
301
/*
302
* Otherwise we just hand out consecutive cpus. To avoid
303
* requiring this function to hold state, we just walk forward from
304
* _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
305
* the requested address, while walking cpu home around kdata_mask.
306
* This is typically no more than a dozen or so iterations.
307
*/
308
page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
309
BUG_ON(address < page || address >= (ulong)_end);
310
cpu = cpumask_first(&kdata_mask);
311
for (; page < address; page += PAGE_SIZE) {
312
if (page >= (ulong)&init_thread_union &&
313
page < (ulong)&init_thread_union + THREAD_SIZE)
314
continue;
315
if (page == (ulong)empty_zero_page)
316
continue;
317
#ifndef __tilegx__
318
#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
319
if (page == (ulong)atomic_locks)
320
continue;
321
#endif
322
#endif
323
cpu = cpumask_next(cpu, &kdata_mask);
324
if (cpu == NR_CPUS)
325
cpu = cpumask_first(&kdata_mask);
326
}
327
return construct_pgprot(PAGE_KERNEL, cpu);
328
}
329
330
/*
331
* This function sets up how we cache the kernel text. If we have
332
* hash-for-home support, normally that is used instead (see the
333
* kcache_hash boot flag for more information). But if we end up
334
* using a page-based caching technique, this option sets up the
335
* details of that. In addition, the "ktext=nocache" option may
336
* always be used to disable local caching of text pages, if desired.
337
*/
338
339
static int __initdata ktext_arg_seen;
340
static int __initdata ktext_small;
341
static int __initdata ktext_local;
342
static int __initdata ktext_all;
343
static int __initdata ktext_nondataplane;
344
static int __initdata ktext_nocache;
345
static struct cpumask __initdata ktext_mask;
346
347
static int __init setup_ktext(char *str)
348
{
349
if (str == NULL)
350
return -EINVAL;
351
352
/* If you have a leading "nocache", turn off ktext caching */
353
if (strncmp(str, "nocache", 7) == 0) {
354
ktext_nocache = 1;
355
pr_info("ktext: disabling local caching of kernel text\n");
356
str += 7;
357
if (*str == ',')
358
++str;
359
if (*str == '\0')
360
return 0;
361
}
362
363
ktext_arg_seen = 1;
364
365
/* Default setting on Tile64: use a huge page */
366
if (strcmp(str, "huge") == 0)
367
pr_info("ktext: using one huge locally cached page\n");
368
369
/* Pay TLB cost but get no cache benefit: cache small pages locally */
370
else if (strcmp(str, "local") == 0) {
371
ktext_small = 1;
372
ktext_local = 1;
373
pr_info("ktext: using small pages with local caching\n");
374
}
375
376
/* Neighborhood cache ktext pages on all cpus. */
377
else if (strcmp(str, "all") == 0) {
378
ktext_small = 1;
379
ktext_all = 1;
380
pr_info("ktext: using maximal caching neighborhood\n");
381
}
382
383
384
/* Neighborhood ktext pages on specified mask */
385
else if (cpulist_parse(str, &ktext_mask) == 0) {
386
char buf[NR_CPUS * 5];
387
cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
388
if (cpumask_weight(&ktext_mask) > 1) {
389
ktext_small = 1;
390
pr_info("ktext: using caching neighborhood %s "
391
"with small pages\n", buf);
392
} else {
393
pr_info("ktext: caching on cpu %s with one huge page\n",
394
buf);
395
}
396
}
397
398
else if (*str)
399
return -EINVAL;
400
401
return 0;
402
}
403
404
early_param("ktext", setup_ktext);
405
406
407
static inline pgprot_t ktext_set_nocache(pgprot_t prot)
408
{
409
if (!ktext_nocache)
410
prot = hv_pte_set_nc(prot);
411
#if CHIP_HAS_NC_AND_NOALLOC_BITS()
412
else
413
prot = hv_pte_set_no_alloc_l2(prot);
414
#endif
415
return prot;
416
}
417
418
#ifndef __tilegx__
419
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
420
{
421
return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
422
}
423
#else
424
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
425
{
426
pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
427
if (pud_none(*pud))
428
assign_pmd(pud, alloc_pmd());
429
return pmd_offset(pud, va);
430
}
431
#endif
432
433
/* Temporary page table we use for staging. */
434
static pgd_t pgtables[PTRS_PER_PGD]
435
__attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
436
437
/*
438
* This maps the physical memory to kernel virtual address space, a total
439
* of max_low_pfn pages, by creating page tables starting from address
440
* PAGE_OFFSET.
441
*
442
* This routine transitions us from using a set of compiled-in large
443
* pages to using some more precise caching, including removing access
444
* to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
445
* marking read-only data as locally cacheable, striping the remaining
446
* .data and .bss across all the available tiles, and removing access
447
* to pages above the top of RAM (thus ensuring a page fault from a bad
448
* virtual address rather than a hypervisor shoot down for accessing
449
* memory outside the assigned limits).
450
*/
451
static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
452
{
453
unsigned long address, pfn;
454
pmd_t *pmd;
455
pte_t *pte;
456
int pte_ofs;
457
const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
458
struct cpumask kstripe_mask;
459
int rc, i;
460
461
#if CHIP_HAS_CBOX_HOME_MAP()
462
if (ktext_arg_seen && ktext_hash) {
463
pr_warning("warning: \"ktext\" boot argument ignored"
464
" if \"kcache_hash\" sets up text hash-for-home\n");
465
ktext_small = 0;
466
}
467
468
if (kdata_arg_seen && kdata_hash) {
469
pr_warning("warning: \"kdata\" boot argument ignored"
470
" if \"kcache_hash\" sets up data hash-for-home\n");
471
}
472
473
if (kdata_huge && !hash_default) {
474
pr_warning("warning: disabling \"kdata=huge\"; requires"
475
" kcache_hash=all or =allbutstack\n");
476
kdata_huge = 0;
477
}
478
#endif
479
480
/*
481
* Set up a mask for cpus to use for kernel striping.
482
* This is normally all cpus, but minus dataplane cpus if any.
483
* If the dataplane covers the whole chip, we stripe over
484
* the whole chip too.
485
*/
486
cpumask_copy(&kstripe_mask, cpu_possible_mask);
487
if (!kdata_arg_seen)
488
kdata_mask = kstripe_mask;
489
490
/* Allocate and fill in L2 page tables */
491
for (i = 0; i < MAX_NUMNODES; ++i) {
492
#ifdef CONFIG_HIGHMEM
493
unsigned long end_pfn = node_lowmem_end_pfn[i];
494
#else
495
unsigned long end_pfn = node_end_pfn[i];
496
#endif
497
unsigned long end_huge_pfn = 0;
498
499
/* Pre-shatter the last huge page to allow per-cpu pages. */
500
if (kdata_huge)
501
end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
502
503
pfn = node_start_pfn[i];
504
505
/* Allocate enough memory to hold L2 page tables for node. */
506
init_prealloc_ptes(i, end_pfn - pfn);
507
508
address = (unsigned long) pfn_to_kaddr(pfn);
509
while (pfn < end_pfn) {
510
BUG_ON(address & (HPAGE_SIZE-1));
511
pmd = get_pmd(pgtables, address);
512
pte = get_prealloc_pte(pfn);
513
if (pfn < end_huge_pfn) {
514
pgprot_t prot = init_pgprot(address);
515
*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
516
for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
517
pfn++, pte_ofs++, address += PAGE_SIZE)
518
pte[pte_ofs] = pfn_pte(pfn, prot);
519
} else {
520
if (kdata_huge)
521
printk(KERN_DEBUG "pre-shattered huge"
522
" page at %#lx\n", address);
523
for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
524
pfn++, pte_ofs++, address += PAGE_SIZE) {
525
pgprot_t prot = init_pgprot(address);
526
pte[pte_ofs] = pfn_pte(pfn, prot);
527
}
528
assign_pte(pmd, pte);
529
}
530
}
531
}
532
533
/*
534
* Set or check ktext_map now that we have cpu_possible_mask
535
* and kstripe_mask to work with.
536
*/
537
if (ktext_all)
538
cpumask_copy(&ktext_mask, cpu_possible_mask);
539
else if (ktext_nondataplane)
540
ktext_mask = kstripe_mask;
541
else if (!cpumask_empty(&ktext_mask)) {
542
/* Sanity-check any mask that was requested */
543
struct cpumask bad;
544
cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
545
cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
546
if (!cpumask_empty(&bad)) {
547
char buf[NR_CPUS * 5];
548
cpulist_scnprintf(buf, sizeof(buf), &bad);
549
pr_info("ktext: not using unavailable cpus %s\n", buf);
550
}
551
if (cpumask_empty(&ktext_mask)) {
552
pr_warning("ktext: no valid cpus; caching on %d.\n",
553
smp_processor_id());
554
cpumask_copy(&ktext_mask,
555
cpumask_of(smp_processor_id()));
556
}
557
}
558
559
address = MEM_SV_INTRPT;
560
pmd = get_pmd(pgtables, address);
561
if (ktext_small) {
562
/* Allocate an L2 PTE for the kernel text */
563
int cpu = 0;
564
pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
565
PAGE_HOME_IMMUTABLE);
566
567
if (ktext_local) {
568
if (ktext_nocache)
569
prot = hv_pte_set_mode(prot,
570
HV_PTE_MODE_UNCACHED);
571
else
572
prot = hv_pte_set_mode(prot,
573
HV_PTE_MODE_CACHE_NO_L3);
574
} else {
575
prot = hv_pte_set_mode(prot,
576
HV_PTE_MODE_CACHE_TILE_L3);
577
cpu = cpumask_first(&ktext_mask);
578
579
prot = ktext_set_nocache(prot);
580
}
581
582
BUG_ON(address != (unsigned long)_stext);
583
pfn = 0; /* code starts at PA 0 */
584
pte = alloc_pte();
585
for (pte_ofs = 0; address < (unsigned long)_einittext;
586
pfn++, pte_ofs++, address += PAGE_SIZE) {
587
if (!ktext_local) {
588
prot = set_remote_cache_cpu(prot, cpu);
589
cpu = cpumask_next(cpu, &ktext_mask);
590
if (cpu == NR_CPUS)
591
cpu = cpumask_first(&ktext_mask);
592
}
593
pte[pte_ofs] = pfn_pte(pfn, prot);
594
}
595
assign_pte(pmd, pte);
596
} else {
597
pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
598
pteval = pte_mkhuge(pteval);
599
#if CHIP_HAS_CBOX_HOME_MAP()
600
if (ktext_hash) {
601
pteval = hv_pte_set_mode(pteval,
602
HV_PTE_MODE_CACHE_HASH_L3);
603
pteval = ktext_set_nocache(pteval);
604
} else
605
#endif /* CHIP_HAS_CBOX_HOME_MAP() */
606
if (cpumask_weight(&ktext_mask) == 1) {
607
pteval = set_remote_cache_cpu(pteval,
608
cpumask_first(&ktext_mask));
609
pteval = hv_pte_set_mode(pteval,
610
HV_PTE_MODE_CACHE_TILE_L3);
611
pteval = ktext_set_nocache(pteval);
612
} else if (ktext_nocache)
613
pteval = hv_pte_set_mode(pteval,
614
HV_PTE_MODE_UNCACHED);
615
else
616
pteval = hv_pte_set_mode(pteval,
617
HV_PTE_MODE_CACHE_NO_L3);
618
*(pte_t *)pmd = pteval;
619
}
620
621
/* Set swapper_pgprot here so it is flushed to memory right away. */
622
swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
623
624
/*
625
* Since we may be changing the caching of the stack and page
626
* table itself, we invoke an assembly helper to do the
627
* following steps:
628
*
629
* - flush the cache so we start with an empty slate
630
* - install pgtables[] as the real page table
631
* - flush the TLB so the new page table takes effect
632
*/
633
rc = flush_and_install_context(__pa(pgtables),
634
init_pgprot((unsigned long)pgtables),
635
__get_cpu_var(current_asid),
636
cpumask_bits(my_cpu_mask));
637
BUG_ON(rc != 0);
638
639
/* Copy the page table back to the normal swapper_pg_dir. */
640
memcpy(pgd_base, pgtables, sizeof(pgtables));
641
__install_page_table(pgd_base, __get_cpu_var(current_asid),
642
swapper_pgprot);
643
644
/*
645
* We just read swapper_pgprot and thus brought it into the cache,
646
* with its new home & caching mode. When we start the other CPUs,
647
* they're going to reference swapper_pgprot via their initial fake
648
* VA-is-PA mappings, which cache everything locally. At that
649
* time, if it's in our cache with a conflicting home, the
650
* simulator's coherence checker will complain. So, flush it out
651
* of our cache; we're not going to ever use it again anyway.
652
*/
653
__insn_finv(&swapper_pgprot);
654
}
655
656
/*
657
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
658
* is valid. The argument is a physical page number.
659
*
660
* On Tile, the only valid things for which we can just hand out unchecked
661
* PTEs are the kernel code and data. Anything else might change its
662
* homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
663
* Note that init_thread_union is released to heap soon after boot,
664
* so we include it in the init data.
665
*
666
* For TILE-Gx, we might want to consider allowing access to PA
667
* regions corresponding to PCI space, etc.
668
*/
669
int devmem_is_allowed(unsigned long pagenr)
670
{
671
return pagenr < kaddr_to_pfn(_end) &&
672
!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
673
pagenr < kaddr_to_pfn(_einitdata)) &&
674
!(pagenr >= kaddr_to_pfn(_sinittext) ||
675
pagenr <= kaddr_to_pfn(_einittext-1));
676
}
677
678
#ifdef CONFIG_HIGHMEM
679
static void __init permanent_kmaps_init(pgd_t *pgd_base)
680
{
681
pgd_t *pgd;
682
pud_t *pud;
683
pmd_t *pmd;
684
pte_t *pte;
685
unsigned long vaddr;
686
687
vaddr = PKMAP_BASE;
688
page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
689
690
pgd = swapper_pg_dir + pgd_index(vaddr);
691
pud = pud_offset(pgd, vaddr);
692
pmd = pmd_offset(pud, vaddr);
693
pte = pte_offset_kernel(pmd, vaddr);
694
pkmap_page_table = pte;
695
}
696
#endif /* CONFIG_HIGHMEM */
697
698
699
static void __init init_free_pfn_range(unsigned long start, unsigned long end)
700
{
701
unsigned long pfn;
702
struct page *page = pfn_to_page(start);
703
704
for (pfn = start; pfn < end; ) {
705
/* Optimize by freeing pages in large batches */
706
int order = __ffs(pfn);
707
int count, i;
708
struct page *p;
709
710
if (order >= MAX_ORDER)
711
order = MAX_ORDER-1;
712
count = 1 << order;
713
while (pfn + count > end) {
714
count >>= 1;
715
--order;
716
}
717
for (p = page, i = 0; i < count; ++i, ++p) {
718
__ClearPageReserved(p);
719
/*
720
* Hacky direct set to avoid unnecessary
721
* lock take/release for EVERY page here.
722
*/
723
p->_count.counter = 0;
724
p->_mapcount.counter = -1;
725
}
726
init_page_count(page);
727
__free_pages(page, order);
728
totalram_pages += count;
729
730
page += count;
731
pfn += count;
732
}
733
}
734
735
static void __init set_non_bootmem_pages_init(void)
736
{
737
struct zone *z;
738
for_each_zone(z) {
739
unsigned long start, end;
740
int nid = z->zone_pgdat->node_id;
741
int idx = zone_idx(z);
742
743
start = z->zone_start_pfn;
744
if (start == 0)
745
continue; /* bootmem */
746
end = start + z->spanned_pages;
747
if (idx == ZONE_NORMAL) {
748
BUG_ON(start != node_start_pfn[nid]);
749
start = node_free_pfn[nid];
750
}
751
#ifdef CONFIG_HIGHMEM
752
if (idx == ZONE_HIGHMEM)
753
totalhigh_pages += z->spanned_pages;
754
#endif
755
if (kdata_huge) {
756
unsigned long percpu_pfn = node_percpu_pfn[nid];
757
if (start < percpu_pfn && end > percpu_pfn)
758
end = percpu_pfn;
759
}
760
#ifdef CONFIG_PCI
761
if (start <= pci_reserve_start_pfn &&
762
end > pci_reserve_start_pfn) {
763
if (end > pci_reserve_end_pfn)
764
init_free_pfn_range(pci_reserve_end_pfn, end);
765
end = pci_reserve_start_pfn;
766
}
767
#endif
768
init_free_pfn_range(start, end);
769
}
770
}
771
772
/*
773
* paging_init() sets up the page tables - note that all of lowmem is
774
* already mapped by head.S.
775
*/
776
void __init paging_init(void)
777
{
778
#ifdef CONFIG_HIGHMEM
779
unsigned long vaddr, end;
780
#endif
781
#ifdef __tilegx__
782
pud_t *pud;
783
#endif
784
pgd_t *pgd_base = swapper_pg_dir;
785
786
kernel_physical_mapping_init(pgd_base);
787
788
#ifdef CONFIG_HIGHMEM
789
/*
790
* Fixed mappings, only the page table structure has to be
791
* created - mappings will be set by set_fixmap():
792
*/
793
vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
794
end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
795
page_table_range_init(vaddr, end, pgd_base);
796
permanent_kmaps_init(pgd_base);
797
#endif
798
799
#ifdef __tilegx__
800
/*
801
* Since GX allocates just one pmd_t array worth of vmalloc space,
802
* we go ahead and allocate it statically here, then share it
803
* globally. As a result we don't have to worry about any task
804
* changing init_mm once we get up and running, and there's no
805
* need for e.g. vmalloc_sync_all().
806
*/
807
BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
808
pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
809
assign_pmd(pud, alloc_pmd());
810
#endif
811
}
812
813
814
/*
815
* Walk the kernel page tables and derive the page_home() from
816
* the PTEs, so that set_pte() can properly validate the caching
817
* of all PTEs it sees.
818
*/
819
void __init set_page_homes(void)
820
{
821
}
822
823
static void __init set_max_mapnr_init(void)
824
{
825
#ifdef CONFIG_FLATMEM
826
max_mapnr = max_low_pfn;
827
#endif
828
}
829
830
void __init mem_init(void)
831
{
832
int codesize, datasize, initsize;
833
int i;
834
#ifndef __tilegx__
835
void *last;
836
#endif
837
838
#ifdef CONFIG_FLATMEM
839
if (!mem_map)
840
BUG();
841
#endif
842
843
#ifdef CONFIG_HIGHMEM
844
/* check that fixmap and pkmap do not overlap */
845
if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
846
pr_err("fixmap and kmap areas overlap"
847
" - this will crash\n");
848
pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
849
PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
850
FIXADDR_START);
851
BUG();
852
}
853
#endif
854
855
set_max_mapnr_init();
856
857
/* this will put all bootmem onto the freelists */
858
totalram_pages += free_all_bootmem();
859
860
/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
861
set_non_bootmem_pages_init();
862
863
codesize = (unsigned long)&_etext - (unsigned long)&_text;
864
datasize = (unsigned long)&_end - (unsigned long)&_sdata;
865
initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
866
initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
867
868
pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
869
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
870
num_physpages << (PAGE_SHIFT-10),
871
codesize >> 10,
872
datasize >> 10,
873
initsize >> 10,
874
(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
875
);
876
877
/*
878
* In debug mode, dump some interesting memory mappings.
879
*/
880
#ifdef CONFIG_HIGHMEM
881
printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
882
FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
883
printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
884
PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
885
#endif
886
#ifdef CONFIG_HUGEVMAP
887
printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
888
HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
889
#endif
890
printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
891
_VMALLOC_START, _VMALLOC_END - 1);
892
#ifdef __tilegx__
893
for (i = MAX_NUMNODES-1; i >= 0; --i) {
894
struct pglist_data *node = &node_data[i];
895
if (node->node_present_pages) {
896
unsigned long start = (unsigned long)
897
pfn_to_kaddr(node->node_start_pfn);
898
unsigned long end = start +
899
(node->node_present_pages << PAGE_SHIFT);
900
printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
901
i, start, end - 1);
902
}
903
}
904
#else
905
last = high_memory;
906
for (i = MAX_NUMNODES-1; i >= 0; --i) {
907
if ((unsigned long)vbase_map[i] != -1UL) {
908
printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
909
i, (unsigned long) (vbase_map[i]),
910
(unsigned long) (last-1));
911
last = vbase_map[i];
912
}
913
}
914
#endif
915
916
#ifndef __tilegx__
917
/*
918
* Convert from using one lock for all atomic operations to
919
* one per cpu.
920
*/
921
__init_atomic_per_cpu();
922
#endif
923
}
924
925
/*
926
* this is for the non-NUMA, single node SMP system case.
927
* Specifically, in the case of x86, we will always add
928
* memory to the highmem for now.
929
*/
930
#ifndef CONFIG_NEED_MULTIPLE_NODES
931
int arch_add_memory(u64 start, u64 size)
932
{
933
struct pglist_data *pgdata = &contig_page_data;
934
struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
935
unsigned long start_pfn = start >> PAGE_SHIFT;
936
unsigned long nr_pages = size >> PAGE_SHIFT;
937
938
return __add_pages(zone, start_pfn, nr_pages);
939
}
940
941
int remove_memory(u64 start, u64 size)
942
{
943
return -EINVAL;
944
}
945
#endif
946
947
struct kmem_cache *pgd_cache;
948
949
void __init pgtable_cache_init(void)
950
{
951
pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
952
if (!pgd_cache)
953
panic("pgtable_cache_init(): Cannot create pgd cache");
954
}
955
956
#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
957
/*
958
* The __w1data area holds data that is only written during initialization,
959
* and is read-only and thus freely cacheable thereafter. Fix the page
960
* table entries that cover that region accordingly.
961
*/
962
static void mark_w1data_ro(void)
963
{
964
/* Loop over page table entries */
965
unsigned long addr = (unsigned long)__w1data_begin;
966
BUG_ON((addr & (PAGE_SIZE-1)) != 0);
967
for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
968
unsigned long pfn = kaddr_to_pfn((void *)addr);
969
pte_t *ptep = virt_to_pte(NULL, addr);
970
BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
971
set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
972
}
973
}
974
#endif
975
976
#ifdef CONFIG_DEBUG_PAGEALLOC
977
static long __write_once initfree;
978
#else
979
static long __write_once initfree = 1;
980
#endif
981
982
/* Select whether to free (1) or mark unusable (0) the __init pages. */
983
static int __init set_initfree(char *str)
984
{
985
long val;
986
if (strict_strtol(str, 0, &val) == 0) {
987
initfree = val;
988
pr_info("initfree: %s free init pages\n",
989
initfree ? "will" : "won't");
990
}
991
return 1;
992
}
993
__setup("initfree=", set_initfree);
994
995
static void free_init_pages(char *what, unsigned long begin, unsigned long end)
996
{
997
unsigned long addr = (unsigned long) begin;
998
999
if (kdata_huge && !initfree) {
1000
pr_warning("Warning: ignoring initfree=0:"
1001
" incompatible with kdata=huge\n");
1002
initfree = 1;
1003
}
1004
end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1005
local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1006
for (addr = begin; addr < end; addr += PAGE_SIZE) {
1007
/*
1008
* Note we just reset the home here directly in the
1009
* page table. We know this is safe because our caller
1010
* just flushed the caches on all the other cpus,
1011
* and they won't be touching any of these pages.
1012
*/
1013
int pfn = kaddr_to_pfn((void *)addr);
1014
struct page *page = pfn_to_page(pfn);
1015
pte_t *ptep = virt_to_pte(NULL, addr);
1016
if (!initfree) {
1017
/*
1018
* If debugging page accesses then do not free
1019
* this memory but mark them not present - any
1020
* buggy init-section access will create a
1021
* kernel page fault:
1022
*/
1023
pte_clear(&init_mm, addr, ptep);
1024
continue;
1025
}
1026
__ClearPageReserved(page);
1027
init_page_count(page);
1028
if (pte_huge(*ptep))
1029
BUG_ON(!kdata_huge);
1030
else
1031
set_pte_at(&init_mm, addr, ptep,
1032
pfn_pte(pfn, PAGE_KERNEL));
1033
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1034
free_page(addr);
1035
totalram_pages++;
1036
}
1037
pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1038
}
1039
1040
void free_initmem(void)
1041
{
1042
const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1043
1044
/*
1045
* Evict the dirty initdata on the boot cpu, evict the w1data
1046
* wherever it's homed, and evict all the init code everywhere.
1047
* We are guaranteed that no one will touch the init pages any
1048
* more, and although other cpus may be touching the w1data,
1049
* we only actually change the caching on tile64, which won't
1050
* be keeping local copies in the other tiles' caches anyway.
1051
*/
1052
homecache_evict(&cpu_cacheable_map);
1053
1054
/* Free the data pages that we won't use again after init. */
1055
free_init_pages("unused kernel data",
1056
(unsigned long)_sinitdata,
1057
(unsigned long)_einitdata);
1058
1059
/*
1060
* Free the pages mapped from 0xc0000000 that correspond to code
1061
* pages from MEM_SV_INTRPT that we won't use again after init.
1062
*/
1063
free_init_pages("unused kernel text",
1064
(unsigned long)_sinittext - text_delta,
1065
(unsigned long)_einittext - text_delta);
1066
1067
#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1068
/*
1069
* Upgrade the .w1data section to globally cached.
1070
* We don't do this on tilepro, since the cache architecture
1071
* pretty much makes it irrelevant, and in any case we end
1072
* up having racing issues with other tiles that may touch
1073
* the data after we flush the cache but before we update
1074
* the PTEs and flush the TLBs, causing sharer shootdowns
1075
* later. Even though this is to clean data, it seems like
1076
* an unnecessary complication.
1077
*/
1078
mark_w1data_ro();
1079
#endif
1080
1081
/* Do a global TLB flush so everyone sees the changes. */
1082
flush_tlb_all();
1083
}
1084
1085