Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/um/kernel/irq.c
10817 views
1
/*
2
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3
* Licensed under the GPL
4
* Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5
* Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6
*/
7
8
#include "linux/cpumask.h"
9
#include "linux/hardirq.h"
10
#include "linux/interrupt.h"
11
#include "linux/kernel_stat.h"
12
#include "linux/module.h"
13
#include "linux/sched.h"
14
#include "linux/seq_file.h"
15
#include "linux/slab.h"
16
#include "as-layout.h"
17
#include "kern_util.h"
18
#include "os.h"
19
20
/*
21
* This list is accessed under irq_lock, except in sigio_handler,
22
* where it is safe from being modified. IRQ handlers won't change it -
23
* if an IRQ source has vanished, it will be freed by free_irqs just
24
* before returning from sigio_handler. That will process a separate
25
* list of irqs to free, with its own locking, coming back here to
26
* remove list elements, taking the irq_lock to do so.
27
*/
28
static struct irq_fd *active_fds = NULL;
29
static struct irq_fd **last_irq_ptr = &active_fds;
30
31
extern void free_irqs(void);
32
33
void sigio_handler(int sig, struct uml_pt_regs *regs)
34
{
35
struct irq_fd *irq_fd;
36
int n;
37
38
if (smp_sigio_handler())
39
return;
40
41
while (1) {
42
n = os_waiting_for_events(active_fds);
43
if (n <= 0) {
44
if (n == -EINTR)
45
continue;
46
else break;
47
}
48
49
for (irq_fd = active_fds; irq_fd != NULL;
50
irq_fd = irq_fd->next) {
51
if (irq_fd->current_events != 0) {
52
irq_fd->current_events = 0;
53
do_IRQ(irq_fd->irq, regs);
54
}
55
}
56
}
57
58
free_irqs();
59
}
60
61
static DEFINE_SPINLOCK(irq_lock);
62
63
static int activate_fd(int irq, int fd, int type, void *dev_id)
64
{
65
struct pollfd *tmp_pfd;
66
struct irq_fd *new_fd, *irq_fd;
67
unsigned long flags;
68
int events, err, n;
69
70
err = os_set_fd_async(fd);
71
if (err < 0)
72
goto out;
73
74
err = -ENOMEM;
75
new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
76
if (new_fd == NULL)
77
goto out;
78
79
if (type == IRQ_READ)
80
events = UM_POLLIN | UM_POLLPRI;
81
else events = UM_POLLOUT;
82
*new_fd = ((struct irq_fd) { .next = NULL,
83
.id = dev_id,
84
.fd = fd,
85
.type = type,
86
.irq = irq,
87
.events = events,
88
.current_events = 0 } );
89
90
err = -EBUSY;
91
spin_lock_irqsave(&irq_lock, flags);
92
for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
93
if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
94
printk(KERN_ERR "Registering fd %d twice\n", fd);
95
printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
96
printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
97
dev_id);
98
goto out_unlock;
99
}
100
}
101
102
if (type == IRQ_WRITE)
103
fd = -1;
104
105
tmp_pfd = NULL;
106
n = 0;
107
108
while (1) {
109
n = os_create_pollfd(fd, events, tmp_pfd, n);
110
if (n == 0)
111
break;
112
113
/*
114
* n > 0
115
* It means we couldn't put new pollfd to current pollfds
116
* and tmp_fds is NULL or too small for new pollfds array.
117
* Needed size is equal to n as minimum.
118
*
119
* Here we have to drop the lock in order to call
120
* kmalloc, which might sleep.
121
* If something else came in and changed the pollfds array
122
* so we will not be able to put new pollfd struct to pollfds
123
* then we free the buffer tmp_fds and try again.
124
*/
125
spin_unlock_irqrestore(&irq_lock, flags);
126
kfree(tmp_pfd);
127
128
tmp_pfd = kmalloc(n, GFP_KERNEL);
129
if (tmp_pfd == NULL)
130
goto out_kfree;
131
132
spin_lock_irqsave(&irq_lock, flags);
133
}
134
135
*last_irq_ptr = new_fd;
136
last_irq_ptr = &new_fd->next;
137
138
spin_unlock_irqrestore(&irq_lock, flags);
139
140
/*
141
* This calls activate_fd, so it has to be outside the critical
142
* section.
143
*/
144
maybe_sigio_broken(fd, (type == IRQ_READ));
145
146
return 0;
147
148
out_unlock:
149
spin_unlock_irqrestore(&irq_lock, flags);
150
out_kfree:
151
kfree(new_fd);
152
out:
153
return err;
154
}
155
156
static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
157
{
158
unsigned long flags;
159
160
spin_lock_irqsave(&irq_lock, flags);
161
os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
162
spin_unlock_irqrestore(&irq_lock, flags);
163
}
164
165
struct irq_and_dev {
166
int irq;
167
void *dev;
168
};
169
170
static int same_irq_and_dev(struct irq_fd *irq, void *d)
171
{
172
struct irq_and_dev *data = d;
173
174
return ((irq->irq == data->irq) && (irq->id == data->dev));
175
}
176
177
static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
178
{
179
struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq,
180
.dev = dev });
181
182
free_irq_by_cb(same_irq_and_dev, &data);
183
}
184
185
static int same_fd(struct irq_fd *irq, void *fd)
186
{
187
return (irq->fd == *((int *)fd));
188
}
189
190
void free_irq_by_fd(int fd)
191
{
192
free_irq_by_cb(same_fd, &fd);
193
}
194
195
/* Must be called with irq_lock held */
196
static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
197
{
198
struct irq_fd *irq;
199
int i = 0;
200
int fdi;
201
202
for (irq = active_fds; irq != NULL; irq = irq->next) {
203
if ((irq->fd == fd) && (irq->irq == irqnum))
204
break;
205
i++;
206
}
207
if (irq == NULL) {
208
printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
209
fd);
210
goto out;
211
}
212
fdi = os_get_pollfd(i);
213
if ((fdi != -1) && (fdi != fd)) {
214
printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
215
"and pollfds, fd %d vs %d, need %d\n", irq->fd,
216
fdi, fd);
217
irq = NULL;
218
goto out;
219
}
220
*index_out = i;
221
out:
222
return irq;
223
}
224
225
void reactivate_fd(int fd, int irqnum)
226
{
227
struct irq_fd *irq;
228
unsigned long flags;
229
int i;
230
231
spin_lock_irqsave(&irq_lock, flags);
232
irq = find_irq_by_fd(fd, irqnum, &i);
233
if (irq == NULL) {
234
spin_unlock_irqrestore(&irq_lock, flags);
235
return;
236
}
237
os_set_pollfd(i, irq->fd);
238
spin_unlock_irqrestore(&irq_lock, flags);
239
240
add_sigio_fd(fd);
241
}
242
243
void deactivate_fd(int fd, int irqnum)
244
{
245
struct irq_fd *irq;
246
unsigned long flags;
247
int i;
248
249
spin_lock_irqsave(&irq_lock, flags);
250
irq = find_irq_by_fd(fd, irqnum, &i);
251
if (irq == NULL) {
252
spin_unlock_irqrestore(&irq_lock, flags);
253
return;
254
}
255
256
os_set_pollfd(i, -1);
257
spin_unlock_irqrestore(&irq_lock, flags);
258
259
ignore_sigio_fd(fd);
260
}
261
262
/*
263
* Called just before shutdown in order to provide a clean exec
264
* environment in case the system is rebooting. No locking because
265
* that would cause a pointless shutdown hang if something hadn't
266
* released the lock.
267
*/
268
int deactivate_all_fds(void)
269
{
270
struct irq_fd *irq;
271
int err;
272
273
for (irq = active_fds; irq != NULL; irq = irq->next) {
274
err = os_clear_fd_async(irq->fd);
275
if (err)
276
return err;
277
}
278
/* If there is a signal already queued, after unblocking ignore it */
279
os_set_ioignore();
280
281
return 0;
282
}
283
284
/*
285
* do_IRQ handles all normal device IRQs (the special
286
* SMP cross-CPU interrupts have their own specific
287
* handlers).
288
*/
289
unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
290
{
291
struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
292
irq_enter();
293
generic_handle_irq(irq);
294
irq_exit();
295
set_irq_regs(old_regs);
296
return 1;
297
}
298
299
int um_request_irq(unsigned int irq, int fd, int type,
300
irq_handler_t handler,
301
unsigned long irqflags, const char * devname,
302
void *dev_id)
303
{
304
int err;
305
306
if (fd != -1) {
307
err = activate_fd(irq, fd, type, dev_id);
308
if (err)
309
return err;
310
}
311
312
return request_irq(irq, handler, irqflags, devname, dev_id);
313
}
314
315
EXPORT_SYMBOL(um_request_irq);
316
EXPORT_SYMBOL(reactivate_fd);
317
318
/*
319
* irq_chip must define at least enable/disable and ack when
320
* the edge handler is used.
321
*/
322
static void dummy(struct irq_data *d)
323
{
324
}
325
326
/* This is used for everything else than the timer. */
327
static struct irq_chip normal_irq_type = {
328
.name = "SIGIO",
329
.release = free_irq_by_irq_and_dev,
330
.irq_disable = dummy,
331
.irq_enable = dummy,
332
.irq_ack = dummy,
333
};
334
335
static struct irq_chip SIGVTALRM_irq_type = {
336
.name = "SIGVTALRM",
337
.release = free_irq_by_irq_and_dev,
338
.irq_disable = dummy,
339
.irq_enable = dummy,
340
.irq_ack = dummy,
341
};
342
343
void __init init_IRQ(void)
344
{
345
int i;
346
347
irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
348
349
for (i = 1; i < NR_IRQS; i++)
350
irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
351
}
352
353
/*
354
* IRQ stack entry and exit:
355
*
356
* Unlike i386, UML doesn't receive IRQs on the normal kernel stack
357
* and switch over to the IRQ stack after some preparation. We use
358
* sigaltstack to receive signals on a separate stack from the start.
359
* These two functions make sure the rest of the kernel won't be too
360
* upset by being on a different stack. The IRQ stack has a
361
* thread_info structure at the bottom so that current et al continue
362
* to work.
363
*
364
* to_irq_stack copies the current task's thread_info to the IRQ stack
365
* thread_info and sets the tasks's stack to point to the IRQ stack.
366
*
367
* from_irq_stack copies the thread_info struct back (flags may have
368
* been modified) and resets the task's stack pointer.
369
*
370
* Tricky bits -
371
*
372
* What happens when two signals race each other? UML doesn't block
373
* signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
374
* could arrive while a previous one is still setting up the
375
* thread_info.
376
*
377
* There are three cases -
378
* The first interrupt on the stack - sets up the thread_info and
379
* handles the interrupt
380
* A nested interrupt interrupting the copying of the thread_info -
381
* can't handle the interrupt, as the stack is in an unknown state
382
* A nested interrupt not interrupting the copying of the
383
* thread_info - doesn't do any setup, just handles the interrupt
384
*
385
* The first job is to figure out whether we interrupted stack setup.
386
* This is done by xchging the signal mask with thread_info->pending.
387
* If the value that comes back is zero, then there is no setup in
388
* progress, and the interrupt can be handled. If the value is
389
* non-zero, then there is stack setup in progress. In order to have
390
* the interrupt handled, we leave our signal in the mask, and it will
391
* be handled by the upper handler after it has set up the stack.
392
*
393
* Next is to figure out whether we are the outer handler or a nested
394
* one. As part of setting up the stack, thread_info->real_thread is
395
* set to non-NULL (and is reset to NULL on exit). This is the
396
* nesting indicator. If it is non-NULL, then the stack is already
397
* set up and the handler can run.
398
*/
399
400
static unsigned long pending_mask;
401
402
unsigned long to_irq_stack(unsigned long *mask_out)
403
{
404
struct thread_info *ti;
405
unsigned long mask, old;
406
int nested;
407
408
mask = xchg(&pending_mask, *mask_out);
409
if (mask != 0) {
410
/*
411
* If any interrupts come in at this point, we want to
412
* make sure that their bits aren't lost by our
413
* putting our bit in. So, this loop accumulates bits
414
* until xchg returns the same value that we put in.
415
* When that happens, there were no new interrupts,
416
* and pending_mask contains a bit for each interrupt
417
* that came in.
418
*/
419
old = *mask_out;
420
do {
421
old |= mask;
422
mask = xchg(&pending_mask, old);
423
} while (mask != old);
424
return 1;
425
}
426
427
ti = current_thread_info();
428
nested = (ti->real_thread != NULL);
429
if (!nested) {
430
struct task_struct *task;
431
struct thread_info *tti;
432
433
task = cpu_tasks[ti->cpu].task;
434
tti = task_thread_info(task);
435
436
*ti = *tti;
437
ti->real_thread = tti;
438
task->stack = ti;
439
}
440
441
mask = xchg(&pending_mask, 0);
442
*mask_out |= mask | nested;
443
return 0;
444
}
445
446
unsigned long from_irq_stack(int nested)
447
{
448
struct thread_info *ti, *to;
449
unsigned long mask;
450
451
ti = current_thread_info();
452
453
pending_mask = 1;
454
455
to = ti->real_thread;
456
current->stack = to;
457
ti->real_thread = NULL;
458
*to = *ti;
459
460
mask = xchg(&pending_mask, 0);
461
return mask & ~1;
462
}
463
464
465