Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/um/os-Linux/signal.c
10817 views
1
/*
2
* Copyright (C) 2004 PathScale, Inc
3
* Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4
* Licensed under the GPL
5
*/
6
7
#include <stdlib.h>
8
#include <stdarg.h>
9
#include <errno.h>
10
#include <signal.h>
11
#include <strings.h>
12
#include "as-layout.h"
13
#include "kern_util.h"
14
#include "os.h"
15
#include "process.h"
16
#include "sysdep/barrier.h"
17
#include "sysdep/sigcontext.h"
18
#include "user.h"
19
20
/* Copied from linux/compiler-gcc.h since we can't include it directly */
21
#define barrier() __asm__ __volatile__("": : :"memory")
22
23
void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
24
[SIGTRAP] = relay_signal,
25
[SIGFPE] = relay_signal,
26
[SIGILL] = relay_signal,
27
[SIGWINCH] = winch,
28
[SIGBUS] = bus_handler,
29
[SIGSEGV] = segv_handler,
30
[SIGIO] = sigio_handler,
31
[SIGVTALRM] = timer_handler };
32
33
static void sig_handler_common(int sig, struct sigcontext *sc)
34
{
35
struct uml_pt_regs r;
36
int save_errno = errno;
37
38
r.is_user = 0;
39
if (sig == SIGSEGV) {
40
/* For segfaults, we want the data from the sigcontext. */
41
copy_sc(&r, sc);
42
GET_FAULTINFO_FROM_SC(r.faultinfo, sc);
43
}
44
45
/* enable signals if sig isn't IRQ signal */
46
if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
47
unblock_signals();
48
49
(*sig_info[sig])(sig, &r);
50
51
errno = save_errno;
52
}
53
54
/*
55
* These are the asynchronous signals. SIGPROF is excluded because we want to
56
* be able to profile all of UML, not just the non-critical sections. If
57
* profiling is not thread-safe, then that is not my problem. We can disable
58
* profiling when SMP is enabled in that case.
59
*/
60
#define SIGIO_BIT 0
61
#define SIGIO_MASK (1 << SIGIO_BIT)
62
63
#define SIGVTALRM_BIT 1
64
#define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
65
66
static int signals_enabled;
67
static unsigned int signals_pending;
68
69
void sig_handler(int sig, struct sigcontext *sc)
70
{
71
int enabled;
72
73
enabled = signals_enabled;
74
if (!enabled && (sig == SIGIO)) {
75
signals_pending |= SIGIO_MASK;
76
return;
77
}
78
79
block_signals();
80
81
sig_handler_common(sig, sc);
82
83
set_signals(enabled);
84
}
85
86
static void real_alarm_handler(struct sigcontext *sc)
87
{
88
struct uml_pt_regs regs;
89
90
if (sc != NULL)
91
copy_sc(&regs, sc);
92
regs.is_user = 0;
93
unblock_signals();
94
timer_handler(SIGVTALRM, &regs);
95
}
96
97
void alarm_handler(int sig, struct sigcontext *sc)
98
{
99
int enabled;
100
101
enabled = signals_enabled;
102
if (!signals_enabled) {
103
signals_pending |= SIGVTALRM_MASK;
104
return;
105
}
106
107
block_signals();
108
109
real_alarm_handler(sc);
110
set_signals(enabled);
111
}
112
113
void timer_init(void)
114
{
115
set_handler(SIGVTALRM, (__sighandler_t) alarm_handler,
116
SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1);
117
}
118
119
void set_sigstack(void *sig_stack, int size)
120
{
121
stack_t stack = ((stack_t) { .ss_flags = 0,
122
.ss_sp = (__ptr_t) sig_stack,
123
.ss_size = size - sizeof(void *) });
124
125
if (sigaltstack(&stack, NULL) != 0)
126
panic("enabling signal stack failed, errno = %d\n", errno);
127
}
128
129
static void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
130
131
void handle_signal(int sig, struct sigcontext *sc)
132
{
133
unsigned long pending = 1UL << sig;
134
135
do {
136
int nested, bail;
137
138
/*
139
* pending comes back with one bit set for each
140
* interrupt that arrived while setting up the stack,
141
* plus a bit for this interrupt, plus the zero bit is
142
* set if this is a nested interrupt.
143
* If bail is true, then we interrupted another
144
* handler setting up the stack. In this case, we
145
* have to return, and the upper handler will deal
146
* with this interrupt.
147
*/
148
bail = to_irq_stack(&pending);
149
if (bail)
150
return;
151
152
nested = pending & 1;
153
pending &= ~1;
154
155
while ((sig = ffs(pending)) != 0){
156
sig--;
157
pending &= ~(1 << sig);
158
(*handlers[sig])(sig, sc);
159
}
160
161
/*
162
* Again, pending comes back with a mask of signals
163
* that arrived while tearing down the stack. If this
164
* is non-zero, we just go back, set up the stack
165
* again, and handle the new interrupts.
166
*/
167
if (!nested)
168
pending = from_irq_stack(nested);
169
} while (pending);
170
}
171
172
extern void hard_handler(int sig);
173
174
void set_handler(int sig, void (*handler)(int), int flags, ...)
175
{
176
struct sigaction action;
177
va_list ap;
178
sigset_t sig_mask;
179
int mask;
180
181
handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
182
action.sa_handler = hard_handler;
183
184
sigemptyset(&action.sa_mask);
185
186
va_start(ap, flags);
187
while ((mask = va_arg(ap, int)) != -1)
188
sigaddset(&action.sa_mask, mask);
189
va_end(ap);
190
191
if (sig == SIGSEGV)
192
flags |= SA_NODEFER;
193
194
action.sa_flags = flags;
195
action.sa_restorer = NULL;
196
if (sigaction(sig, &action, NULL) < 0)
197
panic("sigaction failed - errno = %d\n", errno);
198
199
sigemptyset(&sig_mask);
200
sigaddset(&sig_mask, sig);
201
if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
202
panic("sigprocmask failed - errno = %d\n", errno);
203
}
204
205
int change_sig(int signal, int on)
206
{
207
sigset_t sigset;
208
209
sigemptyset(&sigset);
210
sigaddset(&sigset, signal);
211
if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
212
return -errno;
213
214
return 0;
215
}
216
217
void block_signals(void)
218
{
219
signals_enabled = 0;
220
/*
221
* This must return with signals disabled, so this barrier
222
* ensures that writes are flushed out before the return.
223
* This might matter if gcc figures out how to inline this and
224
* decides to shuffle this code into the caller.
225
*/
226
barrier();
227
}
228
229
void unblock_signals(void)
230
{
231
int save_pending;
232
233
if (signals_enabled == 1)
234
return;
235
236
/*
237
* We loop because the IRQ handler returns with interrupts off. So,
238
* interrupts may have arrived and we need to re-enable them and
239
* recheck signals_pending.
240
*/
241
while (1) {
242
/*
243
* Save and reset save_pending after enabling signals. This
244
* way, signals_pending won't be changed while we're reading it.
245
*/
246
signals_enabled = 1;
247
248
/*
249
* Setting signals_enabled and reading signals_pending must
250
* happen in this order.
251
*/
252
barrier();
253
254
save_pending = signals_pending;
255
if (save_pending == 0)
256
return;
257
258
signals_pending = 0;
259
260
/*
261
* We have pending interrupts, so disable signals, as the
262
* handlers expect them off when they are called. They will
263
* be enabled again above.
264
*/
265
266
signals_enabled = 0;
267
268
/*
269
* Deal with SIGIO first because the alarm handler might
270
* schedule, leaving the pending SIGIO stranded until we come
271
* back here.
272
*/
273
if (save_pending & SIGIO_MASK)
274
sig_handler_common(SIGIO, NULL);
275
276
if (save_pending & SIGVTALRM_MASK)
277
real_alarm_handler(NULL);
278
}
279
}
280
281
int get_signals(void)
282
{
283
return signals_enabled;
284
}
285
286
int set_signals(int enable)
287
{
288
int ret;
289
if (signals_enabled == enable)
290
return enable;
291
292
ret = signals_enabled;
293
if (enable)
294
unblock_signals();
295
else block_signals();
296
297
return ret;
298
}
299
300