Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/unicore32/include/asm/cacheflush.h
10818 views
1
/*
2
* linux/arch/unicore32/include/asm/cacheflush.h
3
*
4
* Code specific to PKUnity SoC and UniCore ISA
5
*
6
* Copyright (C) 2001-2010 GUAN Xue-tao
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License version 2 as
10
* published by the Free Software Foundation.
11
*/
12
#ifndef __UNICORE_CACHEFLUSH_H__
13
#define __UNICORE_CACHEFLUSH_H__
14
15
#include <linux/mm.h>
16
17
#include <asm/shmparam.h>
18
19
#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
20
21
/*
22
* This flag is used to indicate that the page pointed to by a pte is clean
23
* and does not require cleaning before returning it to the user.
24
*/
25
#define PG_dcache_clean PG_arch_1
26
27
/*
28
* MM Cache Management
29
* ===================
30
*
31
* The arch/unicore32/mm/cache.S files implement these methods.
32
*
33
* Start addresses are inclusive and end addresses are exclusive;
34
* start addresses should be rounded down, end addresses up.
35
*
36
* See Documentation/cachetlb.txt for more information.
37
* Please note that the implementation of these, and the required
38
* effects are cache-type (VIVT/VIPT/PIPT) specific.
39
*
40
* flush_icache_all()
41
*
42
* Unconditionally clean and invalidate the entire icache.
43
* Currently only needed for cache-v6.S and cache-v7.S, see
44
* __flush_icache_all for the generic implementation.
45
*
46
* flush_kern_all()
47
*
48
* Unconditionally clean and invalidate the entire cache.
49
*
50
* flush_user_all()
51
*
52
* Clean and invalidate all user space cache entries
53
* before a change of page tables.
54
*
55
* flush_user_range(start, end, flags)
56
*
57
* Clean and invalidate a range of cache entries in the
58
* specified address space before a change of page tables.
59
* - start - user start address (inclusive, page aligned)
60
* - end - user end address (exclusive, page aligned)
61
* - flags - vma->vm_flags field
62
*
63
* coherent_kern_range(start, end)
64
*
65
* Ensure coherency between the Icache and the Dcache in the
66
* region described by start, end. If you have non-snooping
67
* Harvard caches, you need to implement this function.
68
* - start - virtual start address
69
* - end - virtual end address
70
*
71
* coherent_user_range(start, end)
72
*
73
* Ensure coherency between the Icache and the Dcache in the
74
* region described by start, end. If you have non-snooping
75
* Harvard caches, you need to implement this function.
76
* - start - virtual start address
77
* - end - virtual end address
78
*
79
* flush_kern_dcache_area(kaddr, size)
80
*
81
* Ensure that the data held in page is written back.
82
* - kaddr - page address
83
* - size - region size
84
*
85
* DMA Cache Coherency
86
* ===================
87
*
88
* dma_flush_range(start, end)
89
*
90
* Clean and invalidate the specified virtual address range.
91
* - start - virtual start address
92
* - end - virtual end address
93
*/
94
95
extern void __cpuc_flush_icache_all(void);
96
extern void __cpuc_flush_kern_all(void);
97
extern void __cpuc_flush_user_all(void);
98
extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
99
extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
100
extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
101
extern void __cpuc_flush_dcache_area(void *, size_t);
102
extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size);
103
104
/*
105
* These are private to the dma-mapping API. Do not use directly.
106
* Their sole purpose is to ensure that data held in the cache
107
* is visible to DMA, or data written by DMA to system memory is
108
* visible to the CPU.
109
*/
110
extern void __cpuc_dma_clean_range(unsigned long, unsigned long);
111
extern void __cpuc_dma_flush_range(unsigned long, unsigned long);
112
113
/*
114
* Copy user data from/to a page which is mapped into a different
115
* processes address space. Really, we want to allow our "user
116
* space" model to handle this.
117
*/
118
extern void copy_to_user_page(struct vm_area_struct *, struct page *,
119
unsigned long, void *, const void *, unsigned long);
120
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
121
do { \
122
memcpy(dst, src, len); \
123
} while (0)
124
125
/*
126
* Convert calls to our calling convention.
127
*/
128
/* Invalidate I-cache */
129
static inline void __flush_icache_all(void)
130
{
131
asm("movc p0.c5, %0, #20;\n"
132
"nop; nop; nop; nop; nop; nop; nop; nop\n"
133
:
134
: "r" (0));
135
}
136
137
#define flush_cache_all() __cpuc_flush_kern_all()
138
139
extern void flush_cache_mm(struct mm_struct *mm);
140
extern void flush_cache_range(struct vm_area_struct *vma,
141
unsigned long start, unsigned long end);
142
extern void flush_cache_page(struct vm_area_struct *vma,
143
unsigned long user_addr, unsigned long pfn);
144
145
#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
146
147
/*
148
* flush_cache_user_range is used when we want to ensure that the
149
* Harvard caches are synchronised for the user space address range.
150
* This is used for the UniCore private sys_cacheflush system call.
151
*/
152
#define flush_cache_user_range(vma, start, end) \
153
__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
154
155
/*
156
* Perform necessary cache operations to ensure that data previously
157
* stored within this range of addresses can be executed by the CPU.
158
*/
159
#define flush_icache_range(s, e) __cpuc_coherent_kern_range(s, e)
160
161
/*
162
* Perform necessary cache operations to ensure that the TLB will
163
* see data written in the specified area.
164
*/
165
#define clean_dcache_area(start, size) cpu_dcache_clean_area(start, size)
166
167
/*
168
* flush_dcache_page is used when the kernel has written to the page
169
* cache page at virtual address page->virtual.
170
*
171
* If this page isn't mapped (ie, page_mapping == NULL), or it might
172
* have userspace mappings, then we _must_ always clean + invalidate
173
* the dcache entries associated with the kernel mapping.
174
*
175
* Otherwise we can defer the operation, and clean the cache when we are
176
* about to change to user space. This is the same method as used on SPARC64.
177
* See update_mmu_cache for the user space part.
178
*/
179
#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
180
extern void flush_dcache_page(struct page *);
181
182
#define flush_dcache_mmap_lock(mapping) \
183
spin_lock_irq(&(mapping)->tree_lock)
184
#define flush_dcache_mmap_unlock(mapping) \
185
spin_unlock_irq(&(mapping)->tree_lock)
186
187
#define flush_icache_user_range(vma, page, addr, len) \
188
flush_dcache_page(page)
189
190
/*
191
* We don't appear to need to do anything here. In fact, if we did, we'd
192
* duplicate cache flushing elsewhere performed by flush_dcache_page().
193
*/
194
#define flush_icache_page(vma, page) do { } while (0)
195
196
/*
197
* flush_cache_vmap() is used when creating mappings (eg, via vmap,
198
* vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
199
* caches, since the direct-mappings of these pages may contain cached
200
* data, we need to do a full cache flush to ensure that writebacks
201
* don't corrupt data placed into these pages via the new mappings.
202
*/
203
static inline void flush_cache_vmap(unsigned long start, unsigned long end)
204
{
205
}
206
207
static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
208
{
209
}
210
211
#endif
212
213