Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/unicore32/include/asm/pgtable.h
10818 views
1
/*
2
* linux/arch/unicore32/include/asm/pgtable.h
3
*
4
* Code specific to PKUnity SoC and UniCore ISA
5
*
6
* Copyright (C) 2001-2010 GUAN Xue-tao
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License version 2 as
10
* published by the Free Software Foundation.
11
*/
12
#ifndef __UNICORE_PGTABLE_H__
13
#define __UNICORE_PGTABLE_H__
14
15
#include <asm-generic/pgtable-nopmd.h>
16
#include <asm/cpu-single.h>
17
18
#include <asm/memory.h>
19
#include <asm/pgtable-hwdef.h>
20
21
/*
22
* Just any arbitrary offset to the start of the vmalloc VM area: the
23
* current 8MB value just means that there will be a 8MB "hole" after the
24
* physical memory until the kernel virtual memory starts. That means that
25
* any out-of-bounds memory accesses will hopefully be caught.
26
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
27
* area for the same reason. ;)
28
*
29
* Note that platforms may override VMALLOC_START, but they must provide
30
* VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
31
* which may not overlap IO space.
32
*/
33
#ifndef VMALLOC_START
34
#define VMALLOC_OFFSET SZ_8M
35
#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) \
36
& ~(VMALLOC_OFFSET-1))
37
#define VMALLOC_END (0xff000000UL)
38
#endif
39
40
#define PTRS_PER_PTE 1024
41
#define PTRS_PER_PGD 1024
42
43
/*
44
* PGDIR_SHIFT determines what a third-level page table entry can map
45
*/
46
#define PGDIR_SHIFT 22
47
48
#ifndef __ASSEMBLY__
49
extern void __pte_error(const char *file, int line, unsigned long val);
50
extern void __pgd_error(const char *file, int line, unsigned long val);
51
52
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
53
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
54
#endif /* !__ASSEMBLY__ */
55
56
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
57
#define PGDIR_MASK (~(PGDIR_SIZE-1))
58
59
/*
60
* This is the lowest virtual address we can permit any user space
61
* mapping to be mapped at. This is particularly important for
62
* non-high vector CPUs.
63
*/
64
#define FIRST_USER_ADDRESS PAGE_SIZE
65
66
#define FIRST_USER_PGD_NR 1
67
#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
68
69
/*
70
* section address mask and size definitions.
71
*/
72
#define SECTION_SHIFT 22
73
#define SECTION_SIZE (1UL << SECTION_SHIFT)
74
#define SECTION_MASK (~(SECTION_SIZE-1))
75
76
#ifndef __ASSEMBLY__
77
78
/*
79
* The pgprot_* and protection_map entries will be fixed up in runtime
80
* to include the cachable bits based on memory policy, as well as any
81
* architecture dependent bits.
82
*/
83
#define _PTE_DEFAULT (PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE)
84
85
extern pgprot_t pgprot_user;
86
extern pgprot_t pgprot_kernel;
87
88
#define PAGE_NONE pgprot_user
89
#define PAGE_SHARED __pgprot(pgprot_val(pgprot_user | PTE_READ \
90
| PTE_WRITE)
91
#define PAGE_SHARED_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
92
| PTE_WRITE \
93
| PTE_EXEC)
94
#define PAGE_COPY __pgprot(pgprot_val(pgprot_user | PTE_READ)
95
#define PAGE_COPY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
96
| PTE_EXEC)
97
#define PAGE_READONLY __pgprot(pgprot_val(pgprot_user | PTE_READ)
98
#define PAGE_READONLY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \
99
| PTE_EXEC)
100
#define PAGE_KERNEL pgprot_kernel
101
#define PAGE_KERNEL_EXEC __pgprot(pgprot_val(pgprot_kernel | PTE_EXEC))
102
103
#define __PAGE_NONE __pgprot(_PTE_DEFAULT)
104
#define __PAGE_SHARED __pgprot(_PTE_DEFAULT | PTE_READ \
105
| PTE_WRITE)
106
#define __PAGE_SHARED_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
107
| PTE_WRITE \
108
| PTE_EXEC)
109
#define __PAGE_COPY __pgprot(_PTE_DEFAULT | PTE_READ)
110
#define __PAGE_COPY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
111
| PTE_EXEC)
112
#define __PAGE_READONLY __pgprot(_PTE_DEFAULT | PTE_READ)
113
#define __PAGE_READONLY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \
114
| PTE_EXEC)
115
116
#endif /* __ASSEMBLY__ */
117
118
/*
119
* The table below defines the page protection levels that we insert into our
120
* Linux page table version. These get translated into the best that the
121
* architecture can perform. Note that on UniCore hardware:
122
* 1) We cannot do execute protection
123
* 2) If we could do execute protection, then read is implied
124
* 3) write implies read permissions
125
*/
126
#define __P000 __PAGE_NONE
127
#define __P001 __PAGE_READONLY
128
#define __P010 __PAGE_COPY
129
#define __P011 __PAGE_COPY
130
#define __P100 __PAGE_READONLY_EXEC
131
#define __P101 __PAGE_READONLY_EXEC
132
#define __P110 __PAGE_COPY_EXEC
133
#define __P111 __PAGE_COPY_EXEC
134
135
#define __S000 __PAGE_NONE
136
#define __S001 __PAGE_READONLY
137
#define __S010 __PAGE_SHARED
138
#define __S011 __PAGE_SHARED
139
#define __S100 __PAGE_READONLY_EXEC
140
#define __S101 __PAGE_READONLY_EXEC
141
#define __S110 __PAGE_SHARED_EXEC
142
#define __S111 __PAGE_SHARED_EXEC
143
144
#ifndef __ASSEMBLY__
145
/*
146
* ZERO_PAGE is a global shared page that is always zero: used
147
* for zero-mapped memory areas etc..
148
*/
149
extern struct page *empty_zero_page;
150
#define ZERO_PAGE(vaddr) (empty_zero_page)
151
152
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
153
#define pfn_pte(pfn, prot) (__pte(((pfn) << PAGE_SHIFT) \
154
| pgprot_val(prot)))
155
156
#define pte_none(pte) (!pte_val(pte))
157
#define pte_clear(mm, addr, ptep) set_pte(ptep, __pte(0))
158
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
159
#define pte_offset_kernel(dir, addr) (pmd_page_vaddr(*(dir)) \
160
+ __pte_index(addr))
161
162
#define pte_offset_map(dir, addr) (pmd_page_vaddr(*(dir)) \
163
+ __pte_index(addr))
164
#define pte_unmap(pte) do { } while (0)
165
166
#define set_pte(ptep, pte) cpu_set_pte(ptep, pte)
167
168
#define set_pte_at(mm, addr, ptep, pteval) \
169
do { \
170
set_pte(ptep, pteval); \
171
} while (0)
172
173
/*
174
* The following only work if pte_present() is true.
175
* Undefined behaviour if not..
176
*/
177
#define pte_present(pte) (pte_val(pte) & PTE_PRESENT)
178
#define pte_write(pte) (pte_val(pte) & PTE_WRITE)
179
#define pte_dirty(pte) (pte_val(pte) & PTE_DIRTY)
180
#define pte_young(pte) (pte_val(pte) & PTE_YOUNG)
181
#define pte_exec(pte) (pte_val(pte) & PTE_EXEC)
182
#define pte_special(pte) (0)
183
184
#define PTE_BIT_FUNC(fn, op) \
185
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
186
187
PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE);
188
PTE_BIT_FUNC(mkwrite, |= PTE_WRITE);
189
PTE_BIT_FUNC(mkclean, &= ~PTE_DIRTY);
190
PTE_BIT_FUNC(mkdirty, |= PTE_DIRTY);
191
PTE_BIT_FUNC(mkold, &= ~PTE_YOUNG);
192
PTE_BIT_FUNC(mkyoung, |= PTE_YOUNG);
193
194
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
195
196
/*
197
* Mark the prot value as uncacheable.
198
*/
199
#define pgprot_noncached(prot) \
200
__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
201
#define pgprot_writecombine(prot) \
202
__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
203
#define pgprot_dmacoherent(prot) \
204
__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
205
206
#define pmd_none(pmd) (!pmd_val(pmd))
207
#define pmd_present(pmd) (pmd_val(pmd) & PMD_PRESENT)
208
#define pmd_bad(pmd) (((pmd_val(pmd) & \
209
(PMD_PRESENT | PMD_TYPE_MASK)) \
210
!= (PMD_PRESENT | PMD_TYPE_TABLE)))
211
212
#define set_pmd(pmdpd, pmdval) \
213
do { \
214
*(pmdpd) = pmdval; \
215
} while (0)
216
217
#define pmd_clear(pmdp) \
218
do { \
219
set_pmd(pmdp, __pmd(0));\
220
clean_pmd_entry(pmdp); \
221
} while (0)
222
223
#define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK))
224
#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
225
226
/*
227
* Conversion functions: convert a page and protection to a page entry,
228
* and a page entry and page directory to the page they refer to.
229
*/
230
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
231
232
/* to find an entry in a page-table-directory */
233
#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
234
235
#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
236
237
/* to find an entry in a kernel page-table-directory */
238
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
239
240
/* Find an entry in the third-level page table.. */
241
#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
242
243
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
244
{
245
const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ;
246
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
247
return pte;
248
}
249
250
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
251
252
/*
253
* Encode and decode a swap entry. Swap entries are stored in the Linux
254
* page tables as follows:
255
*
256
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
257
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
258
* <--------------- offset --------------> <--- type --> 0 0 0 0 0
259
*
260
* This gives us up to 127 swap files and 32GB per swap file. Note that
261
* the offset field is always non-zero.
262
*/
263
#define __SWP_TYPE_SHIFT 5
264
#define __SWP_TYPE_BITS 7
265
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
266
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
267
268
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) \
269
& __SWP_TYPE_MASK)
270
#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
271
#define __swp_entry(type, offset) ((swp_entry_t) { \
272
((type) << __SWP_TYPE_SHIFT) | \
273
((offset) << __SWP_OFFSET_SHIFT) })
274
275
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
276
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
277
278
/*
279
* It is an error for the kernel to have more swap files than we can
280
* encode in the PTEs. This ensures that we know when MAX_SWAPFILES
281
* is increased beyond what we presently support.
282
*/
283
#define MAX_SWAPFILES_CHECK() \
284
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
285
286
/*
287
* Encode and decode a file entry. File entries are stored in the Linux
288
* page tables as follows:
289
*
290
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
291
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
292
* <----------------------- offset ----------------------> 1 0 0 0
293
*/
294
#define pte_file(pte) (pte_val(pte) & PTE_FILE)
295
#define pte_to_pgoff(x) (pte_val(x) >> 4)
296
#define pgoff_to_pte(x) __pte(((x) << 4) | PTE_FILE)
297
298
#define PTE_FILE_MAX_BITS 28
299
300
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
301
/* FIXME: this is not correct */
302
#define kern_addr_valid(addr) (1)
303
304
#include <asm-generic/pgtable.h>
305
306
/*
307
* remap a physical page `pfn' of size `size' with page protection `prot'
308
* into virtual address `from'
309
*/
310
#define io_remap_pfn_range(vma, from, pfn, size, prot) \
311
remap_pfn_range(vma, from, pfn, size, prot)
312
313
#define pgtable_cache_init() do { } while (0)
314
315
#endif /* !__ASSEMBLY__ */
316
317
#endif /* __UNICORE_PGTABLE_H__ */
318
319