Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/unicore32/mm/mmu.c
10817 views
1
/*
2
* linux/arch/unicore32/mm/mmu.c
3
*
4
* Code specific to PKUnity SoC and UniCore ISA
5
*
6
* Copyright (C) 2001-2010 GUAN Xue-tao
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License version 2 as
10
* published by the Free Software Foundation.
11
*/
12
#include <linux/module.h>
13
#include <linux/kernel.h>
14
#include <linux/errno.h>
15
#include <linux/init.h>
16
#include <linux/mman.h>
17
#include <linux/nodemask.h>
18
#include <linux/memblock.h>
19
#include <linux/fs.h>
20
#include <linux/bootmem.h>
21
#include <linux/io.h>
22
23
#include <asm/cputype.h>
24
#include <asm/sections.h>
25
#include <asm/setup.h>
26
#include <asm/sizes.h>
27
#include <asm/tlb.h>
28
29
#include <mach/map.h>
30
31
#include "mm.h"
32
33
/*
34
* empty_zero_page is a special page that is used for
35
* zero-initialized data and COW.
36
*/
37
struct page *empty_zero_page;
38
EXPORT_SYMBOL(empty_zero_page);
39
40
/*
41
* The pmd table for the upper-most set of pages.
42
*/
43
pmd_t *top_pmd;
44
45
pgprot_t pgprot_user;
46
EXPORT_SYMBOL(pgprot_user);
47
48
pgprot_t pgprot_kernel;
49
EXPORT_SYMBOL(pgprot_kernel);
50
51
static int __init noalign_setup(char *__unused)
52
{
53
cr_alignment &= ~CR_A;
54
cr_no_alignment &= ~CR_A;
55
set_cr(cr_alignment);
56
return 1;
57
}
58
__setup("noalign", noalign_setup);
59
60
void adjust_cr(unsigned long mask, unsigned long set)
61
{
62
unsigned long flags;
63
64
mask &= ~CR_A;
65
66
set &= mask;
67
68
local_irq_save(flags);
69
70
cr_no_alignment = (cr_no_alignment & ~mask) | set;
71
cr_alignment = (cr_alignment & ~mask) | set;
72
73
set_cr((get_cr() & ~mask) | set);
74
75
local_irq_restore(flags);
76
}
77
78
struct map_desc {
79
unsigned long virtual;
80
unsigned long pfn;
81
unsigned long length;
82
unsigned int type;
83
};
84
85
#define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
86
PTE_DIRTY | PTE_READ | PTE_WRITE)
87
#define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
88
PMD_SECT_READ | PMD_SECT_WRITE)
89
90
static struct mem_type mem_types[] = {
91
[MT_DEVICE] = { /* Strongly ordered */
92
.prot_pte = PROT_PTE_DEVICE,
93
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
94
.prot_sect = PROT_SECT_DEVICE,
95
},
96
/*
97
* MT_KUSER: pte for vecpage -- cacheable,
98
* and sect for unigfx mmap -- noncacheable
99
*/
100
[MT_KUSER] = {
101
.prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
102
PTE_CACHEABLE | PTE_READ | PTE_EXEC,
103
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
104
.prot_sect = PROT_SECT_DEVICE,
105
},
106
[MT_HIGH_VECTORS] = {
107
.prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
108
PTE_CACHEABLE | PTE_READ | PTE_WRITE |
109
PTE_EXEC,
110
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
111
},
112
[MT_MEMORY] = {
113
.prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
114
PTE_WRITE | PTE_EXEC,
115
.prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
116
.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
117
PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
118
},
119
[MT_ROM] = {
120
.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
121
PMD_SECT_READ,
122
},
123
};
124
125
const struct mem_type *get_mem_type(unsigned int type)
126
{
127
return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
128
}
129
EXPORT_SYMBOL(get_mem_type);
130
131
/*
132
* Adjust the PMD section entries according to the CPU in use.
133
*/
134
static void __init build_mem_type_table(void)
135
{
136
pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
137
pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
138
PTE_DIRTY | PTE_READ | PTE_WRITE |
139
PTE_EXEC | PTE_CACHEABLE);
140
}
141
142
#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
143
144
static void __init *early_alloc(unsigned long sz)
145
{
146
void *ptr = __va(memblock_alloc(sz, sz));
147
memset(ptr, 0, sz);
148
return ptr;
149
}
150
151
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
152
unsigned long prot)
153
{
154
if (pmd_none(*pmd)) {
155
pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
156
__pmd_populate(pmd, __pa(pte) | prot);
157
}
158
BUG_ON(pmd_bad(*pmd));
159
return pte_offset_kernel(pmd, addr);
160
}
161
162
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
163
unsigned long end, unsigned long pfn,
164
const struct mem_type *type)
165
{
166
pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
167
do {
168
set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
169
pfn++;
170
} while (pte++, addr += PAGE_SIZE, addr != end);
171
}
172
173
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
174
unsigned long end, unsigned long phys,
175
const struct mem_type *type)
176
{
177
pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
178
179
/*
180
* Try a section mapping - end, addr and phys must all be aligned
181
* to a section boundary.
182
*/
183
if (((addr | end | phys) & ~SECTION_MASK) == 0) {
184
pmd_t *p = pmd;
185
186
do {
187
set_pmd(pmd, __pmd(phys | type->prot_sect));
188
phys += SECTION_SIZE;
189
} while (pmd++, addr += SECTION_SIZE, addr != end);
190
191
flush_pmd_entry(p);
192
} else {
193
/*
194
* No need to loop; pte's aren't interested in the
195
* individual L1 entries.
196
*/
197
alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
198
}
199
}
200
201
/*
202
* Create the page directory entries and any necessary
203
* page tables for the mapping specified by `md'. We
204
* are able to cope here with varying sizes and address
205
* offsets, and we take full advantage of sections.
206
*/
207
static void __init create_mapping(struct map_desc *md)
208
{
209
unsigned long phys, addr, length, end;
210
const struct mem_type *type;
211
pgd_t *pgd;
212
213
if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
214
printk(KERN_WARNING "BUG: not creating mapping for "
215
"0x%08llx at 0x%08lx in user region\n",
216
__pfn_to_phys((u64)md->pfn), md->virtual);
217
return;
218
}
219
220
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
221
md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
222
printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
223
"overlaps vmalloc space\n",
224
__pfn_to_phys((u64)md->pfn), md->virtual);
225
}
226
227
type = &mem_types[md->type];
228
229
addr = md->virtual & PAGE_MASK;
230
phys = (unsigned long)__pfn_to_phys(md->pfn);
231
length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
232
233
if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
234
printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
235
"be mapped using pages, ignoring.\n",
236
__pfn_to_phys(md->pfn), addr);
237
return;
238
}
239
240
pgd = pgd_offset_k(addr);
241
end = addr + length;
242
do {
243
unsigned long next = pgd_addr_end(addr, end);
244
245
alloc_init_section(pgd, addr, next, phys, type);
246
247
phys += next - addr;
248
addr = next;
249
} while (pgd++, addr != end);
250
}
251
252
static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
253
254
/*
255
* vmalloc=size forces the vmalloc area to be exactly 'size'
256
* bytes. This can be used to increase (or decrease) the vmalloc
257
* area - the default is 128m.
258
*/
259
static int __init early_vmalloc(char *arg)
260
{
261
unsigned long vmalloc_reserve = memparse(arg, NULL);
262
263
if (vmalloc_reserve < SZ_16M) {
264
vmalloc_reserve = SZ_16M;
265
printk(KERN_WARNING
266
"vmalloc area too small, limiting to %luMB\n",
267
vmalloc_reserve >> 20);
268
}
269
270
if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
271
vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
272
printk(KERN_WARNING
273
"vmalloc area is too big, limiting to %luMB\n",
274
vmalloc_reserve >> 20);
275
}
276
277
vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
278
return 0;
279
}
280
early_param("vmalloc", early_vmalloc);
281
282
static phys_addr_t lowmem_limit __initdata = SZ_1G;
283
284
static void __init sanity_check_meminfo(void)
285
{
286
int i, j;
287
288
lowmem_limit = __pa(vmalloc_min - 1) + 1;
289
memblock_set_current_limit(lowmem_limit);
290
291
for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
292
struct membank *bank = &meminfo.bank[j];
293
*bank = meminfo.bank[i];
294
j++;
295
}
296
meminfo.nr_banks = j;
297
}
298
299
static inline void prepare_page_table(void)
300
{
301
unsigned long addr;
302
phys_addr_t end;
303
304
/*
305
* Clear out all the mappings below the kernel image.
306
*/
307
for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
308
pmd_clear(pmd_off_k(addr));
309
310
for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
311
pmd_clear(pmd_off_k(addr));
312
313
/*
314
* Find the end of the first block of lowmem.
315
*/
316
end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
317
if (end >= lowmem_limit)
318
end = lowmem_limit;
319
320
/*
321
* Clear out all the kernel space mappings, except for the first
322
* memory bank, up to the end of the vmalloc region.
323
*/
324
for (addr = __phys_to_virt(end);
325
addr < VMALLOC_END; addr += PGDIR_SIZE)
326
pmd_clear(pmd_off_k(addr));
327
}
328
329
/*
330
* Reserve the special regions of memory
331
*/
332
void __init uc32_mm_memblock_reserve(void)
333
{
334
/*
335
* Reserve the page tables. These are already in use,
336
* and can only be in node 0.
337
*/
338
memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
339
}
340
341
/*
342
* Set up device the mappings. Since we clear out the page tables for all
343
* mappings above VMALLOC_END, we will remove any debug device mappings.
344
* This means you have to be careful how you debug this function, or any
345
* called function. This means you can't use any function or debugging
346
* method which may touch any device, otherwise the kernel _will_ crash.
347
*/
348
static void __init devicemaps_init(void)
349
{
350
struct map_desc map;
351
unsigned long addr;
352
void *vectors;
353
354
/*
355
* Allocate the vector page early.
356
*/
357
vectors = early_alloc(PAGE_SIZE);
358
359
for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
360
pmd_clear(pmd_off_k(addr));
361
362
/*
363
* Create a mapping for the machine vectors at the high-vectors
364
* location (0xffff0000). If we aren't using high-vectors, also
365
* create a mapping at the low-vectors virtual address.
366
*/
367
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
368
map.virtual = VECTORS_BASE;
369
map.length = PAGE_SIZE;
370
map.type = MT_HIGH_VECTORS;
371
create_mapping(&map);
372
373
/*
374
* Create a mapping for the kuser page at the special
375
* location (0xbfff0000) to the same vectors location.
376
*/
377
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
378
map.virtual = KUSER_VECPAGE_BASE;
379
map.length = PAGE_SIZE;
380
map.type = MT_KUSER;
381
create_mapping(&map);
382
383
/*
384
* Finally flush the caches and tlb to ensure that we're in a
385
* consistent state wrt the writebuffer. This also ensures that
386
* any write-allocated cache lines in the vector page are written
387
* back. After this point, we can start to touch devices again.
388
*/
389
local_flush_tlb_all();
390
flush_cache_all();
391
}
392
393
static void __init map_lowmem(void)
394
{
395
struct memblock_region *reg;
396
397
/* Map all the lowmem memory banks. */
398
for_each_memblock(memory, reg) {
399
phys_addr_t start = reg->base;
400
phys_addr_t end = start + reg->size;
401
struct map_desc map;
402
403
if (end > lowmem_limit)
404
end = lowmem_limit;
405
if (start >= end)
406
break;
407
408
map.pfn = __phys_to_pfn(start);
409
map.virtual = __phys_to_virt(start);
410
map.length = end - start;
411
map.type = MT_MEMORY;
412
413
create_mapping(&map);
414
}
415
}
416
417
/*
418
* paging_init() sets up the page tables, initialises the zone memory
419
* maps, and sets up the zero page, bad page and bad page tables.
420
*/
421
void __init paging_init(void)
422
{
423
void *zero_page;
424
425
build_mem_type_table();
426
sanity_check_meminfo();
427
prepare_page_table();
428
map_lowmem();
429
devicemaps_init();
430
431
top_pmd = pmd_off_k(0xffff0000);
432
433
/* allocate the zero page. */
434
zero_page = early_alloc(PAGE_SIZE);
435
436
bootmem_init();
437
438
empty_zero_page = virt_to_page(zero_page);
439
__flush_dcache_page(NULL, empty_zero_page);
440
}
441
442
/*
443
* In order to soft-boot, we need to insert a 1:1 mapping in place of
444
* the user-mode pages. This will then ensure that we have predictable
445
* results when turning the mmu off
446
*/
447
void setup_mm_for_reboot(char mode)
448
{
449
unsigned long base_pmdval;
450
pgd_t *pgd;
451
int i;
452
453
/*
454
* We need to access to user-mode page tables here. For kernel threads
455
* we don't have any user-mode mappings so we use the context that we
456
* "borrowed".
457
*/
458
pgd = current->active_mm->pgd;
459
460
base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
461
462
for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
463
unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
464
pmd_t *pmd;
465
466
pmd = pmd_off(pgd, i << PGDIR_SHIFT);
467
set_pmd(pmd, __pmd(pmdval));
468
flush_pmd_entry(pmd);
469
}
470
471
local_flush_tlb_all();
472
}
473
474
/*
475
* Take care of architecture specific things when placing a new PTE into
476
* a page table, or changing an existing PTE. Basically, there are two
477
* things that we need to take care of:
478
*
479
* 1. If PG_dcache_clean is not set for the page, we need to ensure
480
* that any cache entries for the kernels virtual memory
481
* range are written back to the page.
482
* 2. If we have multiple shared mappings of the same space in
483
* an object, we need to deal with the cache aliasing issues.
484
*
485
* Note that the pte lock will be held.
486
*/
487
void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
488
pte_t *ptep)
489
{
490
unsigned long pfn = pte_pfn(*ptep);
491
struct address_space *mapping;
492
struct page *page;
493
494
if (!pfn_valid(pfn))
495
return;
496
497
/*
498
* The zero page is never written to, so never has any dirty
499
* cache lines, and therefore never needs to be flushed.
500
*/
501
page = pfn_to_page(pfn);
502
if (page == ZERO_PAGE(0))
503
return;
504
505
mapping = page_mapping(page);
506
if (!test_and_set_bit(PG_dcache_clean, &page->flags))
507
__flush_dcache_page(mapping, page);
508
if (mapping)
509
if (vma->vm_flags & VM_EXEC)
510
__flush_icache_all();
511
}
512
513