Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/include/asm/bitops.h
10821 views
1
#ifndef _ASM_X86_BITOPS_H
2
#define _ASM_X86_BITOPS_H
3
4
/*
5
* Copyright 1992, Linus Torvalds.
6
*
7
* Note: inlines with more than a single statement should be marked
8
* __always_inline to avoid problems with older gcc's inlining heuristics.
9
*/
10
11
#ifndef _LINUX_BITOPS_H
12
#error only <linux/bitops.h> can be included directly
13
#endif
14
15
#include <linux/compiler.h>
16
#include <asm/alternative.h>
17
18
/*
19
* These have to be done with inline assembly: that way the bit-setting
20
* is guaranteed to be atomic. All bit operations return 0 if the bit
21
* was cleared before the operation and != 0 if it was not.
22
*
23
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
24
*/
25
26
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
27
/* Technically wrong, but this avoids compilation errors on some gcc
28
versions. */
29
#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
30
#else
31
#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
32
#endif
33
34
#define ADDR BITOP_ADDR(addr)
35
36
/*
37
* We do the locked ops that don't return the old value as
38
* a mask operation on a byte.
39
*/
40
#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
41
#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
42
#define CONST_MASK(nr) (1 << ((nr) & 7))
43
44
/**
45
* set_bit - Atomically set a bit in memory
46
* @nr: the bit to set
47
* @addr: the address to start counting from
48
*
49
* This function is atomic and may not be reordered. See __set_bit()
50
* if you do not require the atomic guarantees.
51
*
52
* Note: there are no guarantees that this function will not be reordered
53
* on non x86 architectures, so if you are writing portable code,
54
* make sure not to rely on its reordering guarantees.
55
*
56
* Note that @nr may be almost arbitrarily large; this function is not
57
* restricted to acting on a single-word quantity.
58
*/
59
static __always_inline void
60
set_bit(unsigned int nr, volatile unsigned long *addr)
61
{
62
if (IS_IMMEDIATE(nr)) {
63
asm volatile(LOCK_PREFIX "orb %1,%0"
64
: CONST_MASK_ADDR(nr, addr)
65
: "iq" ((u8)CONST_MASK(nr))
66
: "memory");
67
} else {
68
asm volatile(LOCK_PREFIX "bts %1,%0"
69
: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
70
}
71
}
72
73
/**
74
* __set_bit - Set a bit in memory
75
* @nr: the bit to set
76
* @addr: the address to start counting from
77
*
78
* Unlike set_bit(), this function is non-atomic and may be reordered.
79
* If it's called on the same region of memory simultaneously, the effect
80
* may be that only one operation succeeds.
81
*/
82
static inline void __set_bit(int nr, volatile unsigned long *addr)
83
{
84
asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
85
}
86
87
/**
88
* clear_bit - Clears a bit in memory
89
* @nr: Bit to clear
90
* @addr: Address to start counting from
91
*
92
* clear_bit() is atomic and may not be reordered. However, it does
93
* not contain a memory barrier, so if it is used for locking purposes,
94
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
95
* in order to ensure changes are visible on other processors.
96
*/
97
static __always_inline void
98
clear_bit(int nr, volatile unsigned long *addr)
99
{
100
if (IS_IMMEDIATE(nr)) {
101
asm volatile(LOCK_PREFIX "andb %1,%0"
102
: CONST_MASK_ADDR(nr, addr)
103
: "iq" ((u8)~CONST_MASK(nr)));
104
} else {
105
asm volatile(LOCK_PREFIX "btr %1,%0"
106
: BITOP_ADDR(addr)
107
: "Ir" (nr));
108
}
109
}
110
111
/*
112
* clear_bit_unlock - Clears a bit in memory
113
* @nr: Bit to clear
114
* @addr: Address to start counting from
115
*
116
* clear_bit() is atomic and implies release semantics before the memory
117
* operation. It can be used for an unlock.
118
*/
119
static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
120
{
121
barrier();
122
clear_bit(nr, addr);
123
}
124
125
static inline void __clear_bit(int nr, volatile unsigned long *addr)
126
{
127
asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
128
}
129
130
/*
131
* __clear_bit_unlock - Clears a bit in memory
132
* @nr: Bit to clear
133
* @addr: Address to start counting from
134
*
135
* __clear_bit() is non-atomic and implies release semantics before the memory
136
* operation. It can be used for an unlock if no other CPUs can concurrently
137
* modify other bits in the word.
138
*
139
* No memory barrier is required here, because x86 cannot reorder stores past
140
* older loads. Same principle as spin_unlock.
141
*/
142
static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
143
{
144
barrier();
145
__clear_bit(nr, addr);
146
}
147
148
#define smp_mb__before_clear_bit() barrier()
149
#define smp_mb__after_clear_bit() barrier()
150
151
/**
152
* __change_bit - Toggle a bit in memory
153
* @nr: the bit to change
154
* @addr: the address to start counting from
155
*
156
* Unlike change_bit(), this function is non-atomic and may be reordered.
157
* If it's called on the same region of memory simultaneously, the effect
158
* may be that only one operation succeeds.
159
*/
160
static inline void __change_bit(int nr, volatile unsigned long *addr)
161
{
162
asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
163
}
164
165
/**
166
* change_bit - Toggle a bit in memory
167
* @nr: Bit to change
168
* @addr: Address to start counting from
169
*
170
* change_bit() is atomic and may not be reordered.
171
* Note that @nr may be almost arbitrarily large; this function is not
172
* restricted to acting on a single-word quantity.
173
*/
174
static inline void change_bit(int nr, volatile unsigned long *addr)
175
{
176
if (IS_IMMEDIATE(nr)) {
177
asm volatile(LOCK_PREFIX "xorb %1,%0"
178
: CONST_MASK_ADDR(nr, addr)
179
: "iq" ((u8)CONST_MASK(nr)));
180
} else {
181
asm volatile(LOCK_PREFIX "btc %1,%0"
182
: BITOP_ADDR(addr)
183
: "Ir" (nr));
184
}
185
}
186
187
/**
188
* test_and_set_bit - Set a bit and return its old value
189
* @nr: Bit to set
190
* @addr: Address to count from
191
*
192
* This operation is atomic and cannot be reordered.
193
* It also implies a memory barrier.
194
*/
195
static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
196
{
197
int oldbit;
198
199
asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
200
"sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
201
202
return oldbit;
203
}
204
205
/**
206
* test_and_set_bit_lock - Set a bit and return its old value for lock
207
* @nr: Bit to set
208
* @addr: Address to count from
209
*
210
* This is the same as test_and_set_bit on x86.
211
*/
212
static __always_inline int
213
test_and_set_bit_lock(int nr, volatile unsigned long *addr)
214
{
215
return test_and_set_bit(nr, addr);
216
}
217
218
/**
219
* __test_and_set_bit - Set a bit and return its old value
220
* @nr: Bit to set
221
* @addr: Address to count from
222
*
223
* This operation is non-atomic and can be reordered.
224
* If two examples of this operation race, one can appear to succeed
225
* but actually fail. You must protect multiple accesses with a lock.
226
*/
227
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
228
{
229
int oldbit;
230
231
asm("bts %2,%1\n\t"
232
"sbb %0,%0"
233
: "=r" (oldbit), ADDR
234
: "Ir" (nr));
235
return oldbit;
236
}
237
238
/**
239
* test_and_clear_bit - Clear a bit and return its old value
240
* @nr: Bit to clear
241
* @addr: Address to count from
242
*
243
* This operation is atomic and cannot be reordered.
244
* It also implies a memory barrier.
245
*/
246
static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
247
{
248
int oldbit;
249
250
asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
251
"sbb %0,%0"
252
: "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
253
254
return oldbit;
255
}
256
257
/**
258
* __test_and_clear_bit - Clear a bit and return its old value
259
* @nr: Bit to clear
260
* @addr: Address to count from
261
*
262
* This operation is non-atomic and can be reordered.
263
* If two examples of this operation race, one can appear to succeed
264
* but actually fail. You must protect multiple accesses with a lock.
265
*/
266
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
267
{
268
int oldbit;
269
270
asm volatile("btr %2,%1\n\t"
271
"sbb %0,%0"
272
: "=r" (oldbit), ADDR
273
: "Ir" (nr));
274
return oldbit;
275
}
276
277
/* WARNING: non atomic and it can be reordered! */
278
static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
279
{
280
int oldbit;
281
282
asm volatile("btc %2,%1\n\t"
283
"sbb %0,%0"
284
: "=r" (oldbit), ADDR
285
: "Ir" (nr) : "memory");
286
287
return oldbit;
288
}
289
290
/**
291
* test_and_change_bit - Change a bit and return its old value
292
* @nr: Bit to change
293
* @addr: Address to count from
294
*
295
* This operation is atomic and cannot be reordered.
296
* It also implies a memory barrier.
297
*/
298
static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
299
{
300
int oldbit;
301
302
asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
303
"sbb %0,%0"
304
: "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
305
306
return oldbit;
307
}
308
309
static __always_inline int constant_test_bit(unsigned int nr, const volatile unsigned long *addr)
310
{
311
return ((1UL << (nr % BITS_PER_LONG)) &
312
(addr[nr / BITS_PER_LONG])) != 0;
313
}
314
315
static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
316
{
317
int oldbit;
318
319
asm volatile("bt %2,%1\n\t"
320
"sbb %0,%0"
321
: "=r" (oldbit)
322
: "m" (*(unsigned long *)addr), "Ir" (nr));
323
324
return oldbit;
325
}
326
327
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
328
/**
329
* test_bit - Determine whether a bit is set
330
* @nr: bit number to test
331
* @addr: Address to start counting from
332
*/
333
static int test_bit(int nr, const volatile unsigned long *addr);
334
#endif
335
336
#define test_bit(nr, addr) \
337
(__builtin_constant_p((nr)) \
338
? constant_test_bit((nr), (addr)) \
339
: variable_test_bit((nr), (addr)))
340
341
/**
342
* __ffs - find first set bit in word
343
* @word: The word to search
344
*
345
* Undefined if no bit exists, so code should check against 0 first.
346
*/
347
static inline unsigned long __ffs(unsigned long word)
348
{
349
asm("bsf %1,%0"
350
: "=r" (word)
351
: "rm" (word));
352
return word;
353
}
354
355
/**
356
* ffz - find first zero bit in word
357
* @word: The word to search
358
*
359
* Undefined if no zero exists, so code should check against ~0UL first.
360
*/
361
static inline unsigned long ffz(unsigned long word)
362
{
363
asm("bsf %1,%0"
364
: "=r" (word)
365
: "r" (~word));
366
return word;
367
}
368
369
/*
370
* __fls: find last set bit in word
371
* @word: The word to search
372
*
373
* Undefined if no set bit exists, so code should check against 0 first.
374
*/
375
static inline unsigned long __fls(unsigned long word)
376
{
377
asm("bsr %1,%0"
378
: "=r" (word)
379
: "rm" (word));
380
return word;
381
}
382
383
#ifdef __KERNEL__
384
/**
385
* ffs - find first set bit in word
386
* @x: the word to search
387
*
388
* This is defined the same way as the libc and compiler builtin ffs
389
* routines, therefore differs in spirit from the other bitops.
390
*
391
* ffs(value) returns 0 if value is 0 or the position of the first
392
* set bit if value is nonzero. The first (least significant) bit
393
* is at position 1.
394
*/
395
static inline int ffs(int x)
396
{
397
int r;
398
#ifdef CONFIG_X86_CMOV
399
asm("bsfl %1,%0\n\t"
400
"cmovzl %2,%0"
401
: "=r" (r) : "rm" (x), "r" (-1));
402
#else
403
asm("bsfl %1,%0\n\t"
404
"jnz 1f\n\t"
405
"movl $-1,%0\n"
406
"1:" : "=r" (r) : "rm" (x));
407
#endif
408
return r + 1;
409
}
410
411
/**
412
* fls - find last set bit in word
413
* @x: the word to search
414
*
415
* This is defined in a similar way as the libc and compiler builtin
416
* ffs, but returns the position of the most significant set bit.
417
*
418
* fls(value) returns 0 if value is 0 or the position of the last
419
* set bit if value is nonzero. The last (most significant) bit is
420
* at position 32.
421
*/
422
static inline int fls(int x)
423
{
424
int r;
425
#ifdef CONFIG_X86_CMOV
426
asm("bsrl %1,%0\n\t"
427
"cmovzl %2,%0"
428
: "=&r" (r) : "rm" (x), "rm" (-1));
429
#else
430
asm("bsrl %1,%0\n\t"
431
"jnz 1f\n\t"
432
"movl $-1,%0\n"
433
"1:" : "=r" (r) : "rm" (x));
434
#endif
435
return r + 1;
436
}
437
#endif /* __KERNEL__ */
438
439
#undef ADDR
440
441
#ifdef __KERNEL__
442
443
#include <asm-generic/bitops/find.h>
444
445
#include <asm-generic/bitops/sched.h>
446
447
#define ARCH_HAS_FAST_MULTIPLIER 1
448
449
#include <asm/arch_hweight.h>
450
451
#include <asm-generic/bitops/const_hweight.h>
452
453
#endif /* __KERNEL__ */
454
455
#include <asm-generic/bitops/fls64.h>
456
457
#ifdef __KERNEL__
458
459
#include <asm-generic/bitops/le.h>
460
461
#define ext2_set_bit_atomic(lock, nr, addr) \
462
test_and_set_bit((nr), (unsigned long *)(addr))
463
#define ext2_clear_bit_atomic(lock, nr, addr) \
464
test_and_clear_bit((nr), (unsigned long *)(addr))
465
466
#endif /* __KERNEL__ */
467
#endif /* _ASM_X86_BITOPS_H */
468
469