Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kernel/amd_iommu.c
10817 views
1
/*
2
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3
* Author: Joerg Roedel <[email protected]>
4
* Leo Duran <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 as published
8
* by the Free Software Foundation.
9
*
10
* This program is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
* GNU General Public License for more details.
14
*
15
* You should have received a copy of the GNU General Public License
16
* along with this program; if not, write to the Free Software
17
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
*/
19
20
#include <linux/pci.h>
21
#include <linux/pci-ats.h>
22
#include <linux/bitmap.h>
23
#include <linux/slab.h>
24
#include <linux/debugfs.h>
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/iommu-helper.h>
28
#include <linux/iommu.h>
29
#include <linux/delay.h>
30
#include <asm/proto.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/dma.h>
34
#include <asm/amd_iommu_proto.h>
35
#include <asm/amd_iommu_types.h>
36
#include <asm/amd_iommu.h>
37
38
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
39
40
#define LOOP_TIMEOUT 100000
41
42
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
43
44
/* A list of preallocated protection domains */
45
static LIST_HEAD(iommu_pd_list);
46
static DEFINE_SPINLOCK(iommu_pd_list_lock);
47
48
/*
49
* Domain for untranslated devices - only allocated
50
* if iommu=pt passed on kernel cmd line.
51
*/
52
static struct protection_domain *pt_domain;
53
54
static struct iommu_ops amd_iommu_ops;
55
56
/*
57
* general struct to manage commands send to an IOMMU
58
*/
59
struct iommu_cmd {
60
u32 data[4];
61
};
62
63
static void update_domain(struct protection_domain *domain);
64
65
/****************************************************************************
66
*
67
* Helper functions
68
*
69
****************************************************************************/
70
71
static inline u16 get_device_id(struct device *dev)
72
{
73
struct pci_dev *pdev = to_pci_dev(dev);
74
75
return calc_devid(pdev->bus->number, pdev->devfn);
76
}
77
78
static struct iommu_dev_data *get_dev_data(struct device *dev)
79
{
80
return dev->archdata.iommu;
81
}
82
83
/*
84
* In this function the list of preallocated protection domains is traversed to
85
* find the domain for a specific device
86
*/
87
static struct dma_ops_domain *find_protection_domain(u16 devid)
88
{
89
struct dma_ops_domain *entry, *ret = NULL;
90
unsigned long flags;
91
u16 alias = amd_iommu_alias_table[devid];
92
93
if (list_empty(&iommu_pd_list))
94
return NULL;
95
96
spin_lock_irqsave(&iommu_pd_list_lock, flags);
97
98
list_for_each_entry(entry, &iommu_pd_list, list) {
99
if (entry->target_dev == devid ||
100
entry->target_dev == alias) {
101
ret = entry;
102
break;
103
}
104
}
105
106
spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
107
108
return ret;
109
}
110
111
/*
112
* This function checks if the driver got a valid device from the caller to
113
* avoid dereferencing invalid pointers.
114
*/
115
static bool check_device(struct device *dev)
116
{
117
u16 devid;
118
119
if (!dev || !dev->dma_mask)
120
return false;
121
122
/* No device or no PCI device */
123
if (dev->bus != &pci_bus_type)
124
return false;
125
126
devid = get_device_id(dev);
127
128
/* Out of our scope? */
129
if (devid > amd_iommu_last_bdf)
130
return false;
131
132
if (amd_iommu_rlookup_table[devid] == NULL)
133
return false;
134
135
return true;
136
}
137
138
static int iommu_init_device(struct device *dev)
139
{
140
struct iommu_dev_data *dev_data;
141
struct pci_dev *pdev;
142
u16 devid, alias;
143
144
if (dev->archdata.iommu)
145
return 0;
146
147
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
148
if (!dev_data)
149
return -ENOMEM;
150
151
dev_data->dev = dev;
152
153
devid = get_device_id(dev);
154
alias = amd_iommu_alias_table[devid];
155
pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
156
if (pdev)
157
dev_data->alias = &pdev->dev;
158
else {
159
kfree(dev_data);
160
return -ENOTSUPP;
161
}
162
163
atomic_set(&dev_data->bind, 0);
164
165
dev->archdata.iommu = dev_data;
166
167
168
return 0;
169
}
170
171
static void iommu_ignore_device(struct device *dev)
172
{
173
u16 devid, alias;
174
175
devid = get_device_id(dev);
176
alias = amd_iommu_alias_table[devid];
177
178
memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
179
memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
180
181
amd_iommu_rlookup_table[devid] = NULL;
182
amd_iommu_rlookup_table[alias] = NULL;
183
}
184
185
static void iommu_uninit_device(struct device *dev)
186
{
187
kfree(dev->archdata.iommu);
188
}
189
190
void __init amd_iommu_uninit_devices(void)
191
{
192
struct pci_dev *pdev = NULL;
193
194
for_each_pci_dev(pdev) {
195
196
if (!check_device(&pdev->dev))
197
continue;
198
199
iommu_uninit_device(&pdev->dev);
200
}
201
}
202
203
int __init amd_iommu_init_devices(void)
204
{
205
struct pci_dev *pdev = NULL;
206
int ret = 0;
207
208
for_each_pci_dev(pdev) {
209
210
if (!check_device(&pdev->dev))
211
continue;
212
213
ret = iommu_init_device(&pdev->dev);
214
if (ret == -ENOTSUPP)
215
iommu_ignore_device(&pdev->dev);
216
else if (ret)
217
goto out_free;
218
}
219
220
return 0;
221
222
out_free:
223
224
amd_iommu_uninit_devices();
225
226
return ret;
227
}
228
#ifdef CONFIG_AMD_IOMMU_STATS
229
230
/*
231
* Initialization code for statistics collection
232
*/
233
234
DECLARE_STATS_COUNTER(compl_wait);
235
DECLARE_STATS_COUNTER(cnt_map_single);
236
DECLARE_STATS_COUNTER(cnt_unmap_single);
237
DECLARE_STATS_COUNTER(cnt_map_sg);
238
DECLARE_STATS_COUNTER(cnt_unmap_sg);
239
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
240
DECLARE_STATS_COUNTER(cnt_free_coherent);
241
DECLARE_STATS_COUNTER(cross_page);
242
DECLARE_STATS_COUNTER(domain_flush_single);
243
DECLARE_STATS_COUNTER(domain_flush_all);
244
DECLARE_STATS_COUNTER(alloced_io_mem);
245
DECLARE_STATS_COUNTER(total_map_requests);
246
247
static struct dentry *stats_dir;
248
static struct dentry *de_fflush;
249
250
static void amd_iommu_stats_add(struct __iommu_counter *cnt)
251
{
252
if (stats_dir == NULL)
253
return;
254
255
cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
256
&cnt->value);
257
}
258
259
static void amd_iommu_stats_init(void)
260
{
261
stats_dir = debugfs_create_dir("amd-iommu", NULL);
262
if (stats_dir == NULL)
263
return;
264
265
de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
266
(u32 *)&amd_iommu_unmap_flush);
267
268
amd_iommu_stats_add(&compl_wait);
269
amd_iommu_stats_add(&cnt_map_single);
270
amd_iommu_stats_add(&cnt_unmap_single);
271
amd_iommu_stats_add(&cnt_map_sg);
272
amd_iommu_stats_add(&cnt_unmap_sg);
273
amd_iommu_stats_add(&cnt_alloc_coherent);
274
amd_iommu_stats_add(&cnt_free_coherent);
275
amd_iommu_stats_add(&cross_page);
276
amd_iommu_stats_add(&domain_flush_single);
277
amd_iommu_stats_add(&domain_flush_all);
278
amd_iommu_stats_add(&alloced_io_mem);
279
amd_iommu_stats_add(&total_map_requests);
280
}
281
282
#endif
283
284
/****************************************************************************
285
*
286
* Interrupt handling functions
287
*
288
****************************************************************************/
289
290
static void dump_dte_entry(u16 devid)
291
{
292
int i;
293
294
for (i = 0; i < 8; ++i)
295
pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
296
amd_iommu_dev_table[devid].data[i]);
297
}
298
299
static void dump_command(unsigned long phys_addr)
300
{
301
struct iommu_cmd *cmd = phys_to_virt(phys_addr);
302
int i;
303
304
for (i = 0; i < 4; ++i)
305
pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
306
}
307
308
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
309
{
310
u32 *event = __evt;
311
int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
312
int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
313
int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
314
int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
315
u64 address = (u64)(((u64)event[3]) << 32) | event[2];
316
317
printk(KERN_ERR "AMD-Vi: Event logged [");
318
319
switch (type) {
320
case EVENT_TYPE_ILL_DEV:
321
printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
322
"address=0x%016llx flags=0x%04x]\n",
323
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
324
address, flags);
325
dump_dte_entry(devid);
326
break;
327
case EVENT_TYPE_IO_FAULT:
328
printk("IO_PAGE_FAULT device=%02x:%02x.%x "
329
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
330
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
331
domid, address, flags);
332
break;
333
case EVENT_TYPE_DEV_TAB_ERR:
334
printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
335
"address=0x%016llx flags=0x%04x]\n",
336
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337
address, flags);
338
break;
339
case EVENT_TYPE_PAGE_TAB_ERR:
340
printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
341
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
342
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343
domid, address, flags);
344
break;
345
case EVENT_TYPE_ILL_CMD:
346
printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
347
dump_command(address);
348
break;
349
case EVENT_TYPE_CMD_HARD_ERR:
350
printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
351
"flags=0x%04x]\n", address, flags);
352
break;
353
case EVENT_TYPE_IOTLB_INV_TO:
354
printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
355
"address=0x%016llx]\n",
356
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
357
address);
358
break;
359
case EVENT_TYPE_INV_DEV_REQ:
360
printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
361
"address=0x%016llx flags=0x%04x]\n",
362
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
363
address, flags);
364
break;
365
default:
366
printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
367
}
368
}
369
370
static void iommu_poll_events(struct amd_iommu *iommu)
371
{
372
u32 head, tail;
373
unsigned long flags;
374
375
spin_lock_irqsave(&iommu->lock, flags);
376
377
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
378
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
379
380
while (head != tail) {
381
iommu_print_event(iommu, iommu->evt_buf + head);
382
head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
383
}
384
385
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
386
387
spin_unlock_irqrestore(&iommu->lock, flags);
388
}
389
390
irqreturn_t amd_iommu_int_thread(int irq, void *data)
391
{
392
struct amd_iommu *iommu;
393
394
for_each_iommu(iommu)
395
iommu_poll_events(iommu);
396
397
return IRQ_HANDLED;
398
}
399
400
irqreturn_t amd_iommu_int_handler(int irq, void *data)
401
{
402
return IRQ_WAKE_THREAD;
403
}
404
405
/****************************************************************************
406
*
407
* IOMMU command queuing functions
408
*
409
****************************************************************************/
410
411
static int wait_on_sem(volatile u64 *sem)
412
{
413
int i = 0;
414
415
while (*sem == 0 && i < LOOP_TIMEOUT) {
416
udelay(1);
417
i += 1;
418
}
419
420
if (i == LOOP_TIMEOUT) {
421
pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
422
return -EIO;
423
}
424
425
return 0;
426
}
427
428
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
429
struct iommu_cmd *cmd,
430
u32 tail)
431
{
432
u8 *target;
433
434
target = iommu->cmd_buf + tail;
435
tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
436
437
/* Copy command to buffer */
438
memcpy(target, cmd, sizeof(*cmd));
439
440
/* Tell the IOMMU about it */
441
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
442
}
443
444
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
445
{
446
WARN_ON(address & 0x7ULL);
447
448
memset(cmd, 0, sizeof(*cmd));
449
cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
450
cmd->data[1] = upper_32_bits(__pa(address));
451
cmd->data[2] = 1;
452
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
453
}
454
455
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
456
{
457
memset(cmd, 0, sizeof(*cmd));
458
cmd->data[0] = devid;
459
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
460
}
461
462
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
463
size_t size, u16 domid, int pde)
464
{
465
u64 pages;
466
int s;
467
468
pages = iommu_num_pages(address, size, PAGE_SIZE);
469
s = 0;
470
471
if (pages > 1) {
472
/*
473
* If we have to flush more than one page, flush all
474
* TLB entries for this domain
475
*/
476
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
477
s = 1;
478
}
479
480
address &= PAGE_MASK;
481
482
memset(cmd, 0, sizeof(*cmd));
483
cmd->data[1] |= domid;
484
cmd->data[2] = lower_32_bits(address);
485
cmd->data[3] = upper_32_bits(address);
486
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
487
if (s) /* size bit - we flush more than one 4kb page */
488
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
489
if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
490
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
491
}
492
493
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
494
u64 address, size_t size)
495
{
496
u64 pages;
497
int s;
498
499
pages = iommu_num_pages(address, size, PAGE_SIZE);
500
s = 0;
501
502
if (pages > 1) {
503
/*
504
* If we have to flush more than one page, flush all
505
* TLB entries for this domain
506
*/
507
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
508
s = 1;
509
}
510
511
address &= PAGE_MASK;
512
513
memset(cmd, 0, sizeof(*cmd));
514
cmd->data[0] = devid;
515
cmd->data[0] |= (qdep & 0xff) << 24;
516
cmd->data[1] = devid;
517
cmd->data[2] = lower_32_bits(address);
518
cmd->data[3] = upper_32_bits(address);
519
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
520
if (s)
521
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
522
}
523
524
static void build_inv_all(struct iommu_cmd *cmd)
525
{
526
memset(cmd, 0, sizeof(*cmd));
527
CMD_SET_TYPE(cmd, CMD_INV_ALL);
528
}
529
530
/*
531
* Writes the command to the IOMMUs command buffer and informs the
532
* hardware about the new command.
533
*/
534
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
535
{
536
u32 left, tail, head, next_tail;
537
unsigned long flags;
538
539
WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
540
541
again:
542
spin_lock_irqsave(&iommu->lock, flags);
543
544
head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
545
tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
546
next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
547
left = (head - next_tail) % iommu->cmd_buf_size;
548
549
if (left <= 2) {
550
struct iommu_cmd sync_cmd;
551
volatile u64 sem = 0;
552
int ret;
553
554
build_completion_wait(&sync_cmd, (u64)&sem);
555
copy_cmd_to_buffer(iommu, &sync_cmd, tail);
556
557
spin_unlock_irqrestore(&iommu->lock, flags);
558
559
if ((ret = wait_on_sem(&sem)) != 0)
560
return ret;
561
562
goto again;
563
}
564
565
copy_cmd_to_buffer(iommu, cmd, tail);
566
567
/* We need to sync now to make sure all commands are processed */
568
iommu->need_sync = true;
569
570
spin_unlock_irqrestore(&iommu->lock, flags);
571
572
return 0;
573
}
574
575
/*
576
* This function queues a completion wait command into the command
577
* buffer of an IOMMU
578
*/
579
static int iommu_completion_wait(struct amd_iommu *iommu)
580
{
581
struct iommu_cmd cmd;
582
volatile u64 sem = 0;
583
int ret;
584
585
if (!iommu->need_sync)
586
return 0;
587
588
build_completion_wait(&cmd, (u64)&sem);
589
590
ret = iommu_queue_command(iommu, &cmd);
591
if (ret)
592
return ret;
593
594
return wait_on_sem(&sem);
595
}
596
597
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
598
{
599
struct iommu_cmd cmd;
600
601
build_inv_dte(&cmd, devid);
602
603
return iommu_queue_command(iommu, &cmd);
604
}
605
606
static void iommu_flush_dte_all(struct amd_iommu *iommu)
607
{
608
u32 devid;
609
610
for (devid = 0; devid <= 0xffff; ++devid)
611
iommu_flush_dte(iommu, devid);
612
613
iommu_completion_wait(iommu);
614
}
615
616
/*
617
* This function uses heavy locking and may disable irqs for some time. But
618
* this is no issue because it is only called during resume.
619
*/
620
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
621
{
622
u32 dom_id;
623
624
for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
625
struct iommu_cmd cmd;
626
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
627
dom_id, 1);
628
iommu_queue_command(iommu, &cmd);
629
}
630
631
iommu_completion_wait(iommu);
632
}
633
634
static void iommu_flush_all(struct amd_iommu *iommu)
635
{
636
struct iommu_cmd cmd;
637
638
build_inv_all(&cmd);
639
640
iommu_queue_command(iommu, &cmd);
641
iommu_completion_wait(iommu);
642
}
643
644
void iommu_flush_all_caches(struct amd_iommu *iommu)
645
{
646
if (iommu_feature(iommu, FEATURE_IA)) {
647
iommu_flush_all(iommu);
648
} else {
649
iommu_flush_dte_all(iommu);
650
iommu_flush_tlb_all(iommu);
651
}
652
}
653
654
/*
655
* Command send function for flushing on-device TLB
656
*/
657
static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
658
{
659
struct pci_dev *pdev = to_pci_dev(dev);
660
struct amd_iommu *iommu;
661
struct iommu_cmd cmd;
662
u16 devid;
663
int qdep;
664
665
qdep = pci_ats_queue_depth(pdev);
666
devid = get_device_id(dev);
667
iommu = amd_iommu_rlookup_table[devid];
668
669
build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
670
671
return iommu_queue_command(iommu, &cmd);
672
}
673
674
/*
675
* Command send function for invalidating a device table entry
676
*/
677
static int device_flush_dte(struct device *dev)
678
{
679
struct amd_iommu *iommu;
680
struct pci_dev *pdev;
681
u16 devid;
682
int ret;
683
684
pdev = to_pci_dev(dev);
685
devid = get_device_id(dev);
686
iommu = amd_iommu_rlookup_table[devid];
687
688
ret = iommu_flush_dte(iommu, devid);
689
if (ret)
690
return ret;
691
692
if (pci_ats_enabled(pdev))
693
ret = device_flush_iotlb(dev, 0, ~0UL);
694
695
return ret;
696
}
697
698
/*
699
* TLB invalidation function which is called from the mapping functions.
700
* It invalidates a single PTE if the range to flush is within a single
701
* page. Otherwise it flushes the whole TLB of the IOMMU.
702
*/
703
static void __domain_flush_pages(struct protection_domain *domain,
704
u64 address, size_t size, int pde)
705
{
706
struct iommu_dev_data *dev_data;
707
struct iommu_cmd cmd;
708
int ret = 0, i;
709
710
build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
711
712
for (i = 0; i < amd_iommus_present; ++i) {
713
if (!domain->dev_iommu[i])
714
continue;
715
716
/*
717
* Devices of this domain are behind this IOMMU
718
* We need a TLB flush
719
*/
720
ret |= iommu_queue_command(amd_iommus[i], &cmd);
721
}
722
723
list_for_each_entry(dev_data, &domain->dev_list, list) {
724
struct pci_dev *pdev = to_pci_dev(dev_data->dev);
725
726
if (!pci_ats_enabled(pdev))
727
continue;
728
729
ret |= device_flush_iotlb(dev_data->dev, address, size);
730
}
731
732
WARN_ON(ret);
733
}
734
735
static void domain_flush_pages(struct protection_domain *domain,
736
u64 address, size_t size)
737
{
738
__domain_flush_pages(domain, address, size, 0);
739
}
740
741
/* Flush the whole IO/TLB for a given protection domain */
742
static void domain_flush_tlb(struct protection_domain *domain)
743
{
744
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
745
}
746
747
/* Flush the whole IO/TLB for a given protection domain - including PDE */
748
static void domain_flush_tlb_pde(struct protection_domain *domain)
749
{
750
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
751
}
752
753
static void domain_flush_complete(struct protection_domain *domain)
754
{
755
int i;
756
757
for (i = 0; i < amd_iommus_present; ++i) {
758
if (!domain->dev_iommu[i])
759
continue;
760
761
/*
762
* Devices of this domain are behind this IOMMU
763
* We need to wait for completion of all commands.
764
*/
765
iommu_completion_wait(amd_iommus[i]);
766
}
767
}
768
769
770
/*
771
* This function flushes the DTEs for all devices in domain
772
*/
773
static void domain_flush_devices(struct protection_domain *domain)
774
{
775
struct iommu_dev_data *dev_data;
776
unsigned long flags;
777
778
spin_lock_irqsave(&domain->lock, flags);
779
780
list_for_each_entry(dev_data, &domain->dev_list, list)
781
device_flush_dte(dev_data->dev);
782
783
spin_unlock_irqrestore(&domain->lock, flags);
784
}
785
786
/****************************************************************************
787
*
788
* The functions below are used the create the page table mappings for
789
* unity mapped regions.
790
*
791
****************************************************************************/
792
793
/*
794
* This function is used to add another level to an IO page table. Adding
795
* another level increases the size of the address space by 9 bits to a size up
796
* to 64 bits.
797
*/
798
static bool increase_address_space(struct protection_domain *domain,
799
gfp_t gfp)
800
{
801
u64 *pte;
802
803
if (domain->mode == PAGE_MODE_6_LEVEL)
804
/* address space already 64 bit large */
805
return false;
806
807
pte = (void *)get_zeroed_page(gfp);
808
if (!pte)
809
return false;
810
811
*pte = PM_LEVEL_PDE(domain->mode,
812
virt_to_phys(domain->pt_root));
813
domain->pt_root = pte;
814
domain->mode += 1;
815
domain->updated = true;
816
817
return true;
818
}
819
820
static u64 *alloc_pte(struct protection_domain *domain,
821
unsigned long address,
822
unsigned long page_size,
823
u64 **pte_page,
824
gfp_t gfp)
825
{
826
int level, end_lvl;
827
u64 *pte, *page;
828
829
BUG_ON(!is_power_of_2(page_size));
830
831
while (address > PM_LEVEL_SIZE(domain->mode))
832
increase_address_space(domain, gfp);
833
834
level = domain->mode - 1;
835
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
836
address = PAGE_SIZE_ALIGN(address, page_size);
837
end_lvl = PAGE_SIZE_LEVEL(page_size);
838
839
while (level > end_lvl) {
840
if (!IOMMU_PTE_PRESENT(*pte)) {
841
page = (u64 *)get_zeroed_page(gfp);
842
if (!page)
843
return NULL;
844
*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
845
}
846
847
/* No level skipping support yet */
848
if (PM_PTE_LEVEL(*pte) != level)
849
return NULL;
850
851
level -= 1;
852
853
pte = IOMMU_PTE_PAGE(*pte);
854
855
if (pte_page && level == end_lvl)
856
*pte_page = pte;
857
858
pte = &pte[PM_LEVEL_INDEX(level, address)];
859
}
860
861
return pte;
862
}
863
864
/*
865
* This function checks if there is a PTE for a given dma address. If
866
* there is one, it returns the pointer to it.
867
*/
868
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
869
{
870
int level;
871
u64 *pte;
872
873
if (address > PM_LEVEL_SIZE(domain->mode))
874
return NULL;
875
876
level = domain->mode - 1;
877
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
878
879
while (level > 0) {
880
881
/* Not Present */
882
if (!IOMMU_PTE_PRESENT(*pte))
883
return NULL;
884
885
/* Large PTE */
886
if (PM_PTE_LEVEL(*pte) == 0x07) {
887
unsigned long pte_mask, __pte;
888
889
/*
890
* If we have a series of large PTEs, make
891
* sure to return a pointer to the first one.
892
*/
893
pte_mask = PTE_PAGE_SIZE(*pte);
894
pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
895
__pte = ((unsigned long)pte) & pte_mask;
896
897
return (u64 *)__pte;
898
}
899
900
/* No level skipping support yet */
901
if (PM_PTE_LEVEL(*pte) != level)
902
return NULL;
903
904
level -= 1;
905
906
/* Walk to the next level */
907
pte = IOMMU_PTE_PAGE(*pte);
908
pte = &pte[PM_LEVEL_INDEX(level, address)];
909
}
910
911
return pte;
912
}
913
914
/*
915
* Generic mapping functions. It maps a physical address into a DMA
916
* address space. It allocates the page table pages if necessary.
917
* In the future it can be extended to a generic mapping function
918
* supporting all features of AMD IOMMU page tables like level skipping
919
* and full 64 bit address spaces.
920
*/
921
static int iommu_map_page(struct protection_domain *dom,
922
unsigned long bus_addr,
923
unsigned long phys_addr,
924
int prot,
925
unsigned long page_size)
926
{
927
u64 __pte, *pte;
928
int i, count;
929
930
if (!(prot & IOMMU_PROT_MASK))
931
return -EINVAL;
932
933
bus_addr = PAGE_ALIGN(bus_addr);
934
phys_addr = PAGE_ALIGN(phys_addr);
935
count = PAGE_SIZE_PTE_COUNT(page_size);
936
pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
937
938
for (i = 0; i < count; ++i)
939
if (IOMMU_PTE_PRESENT(pte[i]))
940
return -EBUSY;
941
942
if (page_size > PAGE_SIZE) {
943
__pte = PAGE_SIZE_PTE(phys_addr, page_size);
944
__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
945
} else
946
__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
947
948
if (prot & IOMMU_PROT_IR)
949
__pte |= IOMMU_PTE_IR;
950
if (prot & IOMMU_PROT_IW)
951
__pte |= IOMMU_PTE_IW;
952
953
for (i = 0; i < count; ++i)
954
pte[i] = __pte;
955
956
update_domain(dom);
957
958
return 0;
959
}
960
961
static unsigned long iommu_unmap_page(struct protection_domain *dom,
962
unsigned long bus_addr,
963
unsigned long page_size)
964
{
965
unsigned long long unmap_size, unmapped;
966
u64 *pte;
967
968
BUG_ON(!is_power_of_2(page_size));
969
970
unmapped = 0;
971
972
while (unmapped < page_size) {
973
974
pte = fetch_pte(dom, bus_addr);
975
976
if (!pte) {
977
/*
978
* No PTE for this address
979
* move forward in 4kb steps
980
*/
981
unmap_size = PAGE_SIZE;
982
} else if (PM_PTE_LEVEL(*pte) == 0) {
983
/* 4kb PTE found for this address */
984
unmap_size = PAGE_SIZE;
985
*pte = 0ULL;
986
} else {
987
int count, i;
988
989
/* Large PTE found which maps this address */
990
unmap_size = PTE_PAGE_SIZE(*pte);
991
count = PAGE_SIZE_PTE_COUNT(unmap_size);
992
for (i = 0; i < count; i++)
993
pte[i] = 0ULL;
994
}
995
996
bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
997
unmapped += unmap_size;
998
}
999
1000
BUG_ON(!is_power_of_2(unmapped));
1001
1002
return unmapped;
1003
}
1004
1005
/*
1006
* This function checks if a specific unity mapping entry is needed for
1007
* this specific IOMMU.
1008
*/
1009
static int iommu_for_unity_map(struct amd_iommu *iommu,
1010
struct unity_map_entry *entry)
1011
{
1012
u16 bdf, i;
1013
1014
for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1015
bdf = amd_iommu_alias_table[i];
1016
if (amd_iommu_rlookup_table[bdf] == iommu)
1017
return 1;
1018
}
1019
1020
return 0;
1021
}
1022
1023
/*
1024
* This function actually applies the mapping to the page table of the
1025
* dma_ops domain.
1026
*/
1027
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1028
struct unity_map_entry *e)
1029
{
1030
u64 addr;
1031
int ret;
1032
1033
for (addr = e->address_start; addr < e->address_end;
1034
addr += PAGE_SIZE) {
1035
ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1036
PAGE_SIZE);
1037
if (ret)
1038
return ret;
1039
/*
1040
* if unity mapping is in aperture range mark the page
1041
* as allocated in the aperture
1042
*/
1043
if (addr < dma_dom->aperture_size)
1044
__set_bit(addr >> PAGE_SHIFT,
1045
dma_dom->aperture[0]->bitmap);
1046
}
1047
1048
return 0;
1049
}
1050
1051
/*
1052
* Init the unity mappings for a specific IOMMU in the system
1053
*
1054
* Basically iterates over all unity mapping entries and applies them to
1055
* the default domain DMA of that IOMMU if necessary.
1056
*/
1057
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1058
{
1059
struct unity_map_entry *entry;
1060
int ret;
1061
1062
list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1063
if (!iommu_for_unity_map(iommu, entry))
1064
continue;
1065
ret = dma_ops_unity_map(iommu->default_dom, entry);
1066
if (ret)
1067
return ret;
1068
}
1069
1070
return 0;
1071
}
1072
1073
/*
1074
* Inits the unity mappings required for a specific device
1075
*/
1076
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1077
u16 devid)
1078
{
1079
struct unity_map_entry *e;
1080
int ret;
1081
1082
list_for_each_entry(e, &amd_iommu_unity_map, list) {
1083
if (!(devid >= e->devid_start && devid <= e->devid_end))
1084
continue;
1085
ret = dma_ops_unity_map(dma_dom, e);
1086
if (ret)
1087
return ret;
1088
}
1089
1090
return 0;
1091
}
1092
1093
/****************************************************************************
1094
*
1095
* The next functions belong to the address allocator for the dma_ops
1096
* interface functions. They work like the allocators in the other IOMMU
1097
* drivers. Its basically a bitmap which marks the allocated pages in
1098
* the aperture. Maybe it could be enhanced in the future to a more
1099
* efficient allocator.
1100
*
1101
****************************************************************************/
1102
1103
/*
1104
* The address allocator core functions.
1105
*
1106
* called with domain->lock held
1107
*/
1108
1109
/*
1110
* Used to reserve address ranges in the aperture (e.g. for exclusion
1111
* ranges.
1112
*/
1113
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1114
unsigned long start_page,
1115
unsigned int pages)
1116
{
1117
unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1118
1119
if (start_page + pages > last_page)
1120
pages = last_page - start_page;
1121
1122
for (i = start_page; i < start_page + pages; ++i) {
1123
int index = i / APERTURE_RANGE_PAGES;
1124
int page = i % APERTURE_RANGE_PAGES;
1125
__set_bit(page, dom->aperture[index]->bitmap);
1126
}
1127
}
1128
1129
/*
1130
* This function is used to add a new aperture range to an existing
1131
* aperture in case of dma_ops domain allocation or address allocation
1132
* failure.
1133
*/
1134
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1135
bool populate, gfp_t gfp)
1136
{
1137
int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1138
struct amd_iommu *iommu;
1139
unsigned long i;
1140
1141
#ifdef CONFIG_IOMMU_STRESS
1142
populate = false;
1143
#endif
1144
1145
if (index >= APERTURE_MAX_RANGES)
1146
return -ENOMEM;
1147
1148
dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1149
if (!dma_dom->aperture[index])
1150
return -ENOMEM;
1151
1152
dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1153
if (!dma_dom->aperture[index]->bitmap)
1154
goto out_free;
1155
1156
dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1157
1158
if (populate) {
1159
unsigned long address = dma_dom->aperture_size;
1160
int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1161
u64 *pte, *pte_page;
1162
1163
for (i = 0; i < num_ptes; ++i) {
1164
pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1165
&pte_page, gfp);
1166
if (!pte)
1167
goto out_free;
1168
1169
dma_dom->aperture[index]->pte_pages[i] = pte_page;
1170
1171
address += APERTURE_RANGE_SIZE / 64;
1172
}
1173
}
1174
1175
dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1176
1177
/* Initialize the exclusion range if necessary */
1178
for_each_iommu(iommu) {
1179
if (iommu->exclusion_start &&
1180
iommu->exclusion_start >= dma_dom->aperture[index]->offset
1181
&& iommu->exclusion_start < dma_dom->aperture_size) {
1182
unsigned long startpage;
1183
int pages = iommu_num_pages(iommu->exclusion_start,
1184
iommu->exclusion_length,
1185
PAGE_SIZE);
1186
startpage = iommu->exclusion_start >> PAGE_SHIFT;
1187
dma_ops_reserve_addresses(dma_dom, startpage, pages);
1188
}
1189
}
1190
1191
/*
1192
* Check for areas already mapped as present in the new aperture
1193
* range and mark those pages as reserved in the allocator. Such
1194
* mappings may already exist as a result of requested unity
1195
* mappings for devices.
1196
*/
1197
for (i = dma_dom->aperture[index]->offset;
1198
i < dma_dom->aperture_size;
1199
i += PAGE_SIZE) {
1200
u64 *pte = fetch_pte(&dma_dom->domain, i);
1201
if (!pte || !IOMMU_PTE_PRESENT(*pte))
1202
continue;
1203
1204
dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1205
}
1206
1207
update_domain(&dma_dom->domain);
1208
1209
return 0;
1210
1211
out_free:
1212
update_domain(&dma_dom->domain);
1213
1214
free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1215
1216
kfree(dma_dom->aperture[index]);
1217
dma_dom->aperture[index] = NULL;
1218
1219
return -ENOMEM;
1220
}
1221
1222
static unsigned long dma_ops_area_alloc(struct device *dev,
1223
struct dma_ops_domain *dom,
1224
unsigned int pages,
1225
unsigned long align_mask,
1226
u64 dma_mask,
1227
unsigned long start)
1228
{
1229
unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1230
int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1231
int i = start >> APERTURE_RANGE_SHIFT;
1232
unsigned long boundary_size;
1233
unsigned long address = -1;
1234
unsigned long limit;
1235
1236
next_bit >>= PAGE_SHIFT;
1237
1238
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1239
PAGE_SIZE) >> PAGE_SHIFT;
1240
1241
for (;i < max_index; ++i) {
1242
unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1243
1244
if (dom->aperture[i]->offset >= dma_mask)
1245
break;
1246
1247
limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1248
dma_mask >> PAGE_SHIFT);
1249
1250
address = iommu_area_alloc(dom->aperture[i]->bitmap,
1251
limit, next_bit, pages, 0,
1252
boundary_size, align_mask);
1253
if (address != -1) {
1254
address = dom->aperture[i]->offset +
1255
(address << PAGE_SHIFT);
1256
dom->next_address = address + (pages << PAGE_SHIFT);
1257
break;
1258
}
1259
1260
next_bit = 0;
1261
}
1262
1263
return address;
1264
}
1265
1266
static unsigned long dma_ops_alloc_addresses(struct device *dev,
1267
struct dma_ops_domain *dom,
1268
unsigned int pages,
1269
unsigned long align_mask,
1270
u64 dma_mask)
1271
{
1272
unsigned long address;
1273
1274
#ifdef CONFIG_IOMMU_STRESS
1275
dom->next_address = 0;
1276
dom->need_flush = true;
1277
#endif
1278
1279
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1280
dma_mask, dom->next_address);
1281
1282
if (address == -1) {
1283
dom->next_address = 0;
1284
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1285
dma_mask, 0);
1286
dom->need_flush = true;
1287
}
1288
1289
if (unlikely(address == -1))
1290
address = DMA_ERROR_CODE;
1291
1292
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1293
1294
return address;
1295
}
1296
1297
/*
1298
* The address free function.
1299
*
1300
* called with domain->lock held
1301
*/
1302
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1303
unsigned long address,
1304
unsigned int pages)
1305
{
1306
unsigned i = address >> APERTURE_RANGE_SHIFT;
1307
struct aperture_range *range = dom->aperture[i];
1308
1309
BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1310
1311
#ifdef CONFIG_IOMMU_STRESS
1312
if (i < 4)
1313
return;
1314
#endif
1315
1316
if (address >= dom->next_address)
1317
dom->need_flush = true;
1318
1319
address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1320
1321
bitmap_clear(range->bitmap, address, pages);
1322
1323
}
1324
1325
/****************************************************************************
1326
*
1327
* The next functions belong to the domain allocation. A domain is
1328
* allocated for every IOMMU as the default domain. If device isolation
1329
* is enabled, every device get its own domain. The most important thing
1330
* about domains is the page table mapping the DMA address space they
1331
* contain.
1332
*
1333
****************************************************************************/
1334
1335
/*
1336
* This function adds a protection domain to the global protection domain list
1337
*/
1338
static void add_domain_to_list(struct protection_domain *domain)
1339
{
1340
unsigned long flags;
1341
1342
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1343
list_add(&domain->list, &amd_iommu_pd_list);
1344
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1345
}
1346
1347
/*
1348
* This function removes a protection domain to the global
1349
* protection domain list
1350
*/
1351
static void del_domain_from_list(struct protection_domain *domain)
1352
{
1353
unsigned long flags;
1354
1355
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1356
list_del(&domain->list);
1357
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1358
}
1359
1360
static u16 domain_id_alloc(void)
1361
{
1362
unsigned long flags;
1363
int id;
1364
1365
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1366
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1367
BUG_ON(id == 0);
1368
if (id > 0 && id < MAX_DOMAIN_ID)
1369
__set_bit(id, amd_iommu_pd_alloc_bitmap);
1370
else
1371
id = 0;
1372
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1373
1374
return id;
1375
}
1376
1377
static void domain_id_free(int id)
1378
{
1379
unsigned long flags;
1380
1381
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1382
if (id > 0 && id < MAX_DOMAIN_ID)
1383
__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1384
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1385
}
1386
1387
static void free_pagetable(struct protection_domain *domain)
1388
{
1389
int i, j;
1390
u64 *p1, *p2, *p3;
1391
1392
p1 = domain->pt_root;
1393
1394
if (!p1)
1395
return;
1396
1397
for (i = 0; i < 512; ++i) {
1398
if (!IOMMU_PTE_PRESENT(p1[i]))
1399
continue;
1400
1401
p2 = IOMMU_PTE_PAGE(p1[i]);
1402
for (j = 0; j < 512; ++j) {
1403
if (!IOMMU_PTE_PRESENT(p2[j]))
1404
continue;
1405
p3 = IOMMU_PTE_PAGE(p2[j]);
1406
free_page((unsigned long)p3);
1407
}
1408
1409
free_page((unsigned long)p2);
1410
}
1411
1412
free_page((unsigned long)p1);
1413
1414
domain->pt_root = NULL;
1415
}
1416
1417
/*
1418
* Free a domain, only used if something went wrong in the
1419
* allocation path and we need to free an already allocated page table
1420
*/
1421
static void dma_ops_domain_free(struct dma_ops_domain *dom)
1422
{
1423
int i;
1424
1425
if (!dom)
1426
return;
1427
1428
del_domain_from_list(&dom->domain);
1429
1430
free_pagetable(&dom->domain);
1431
1432
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1433
if (!dom->aperture[i])
1434
continue;
1435
free_page((unsigned long)dom->aperture[i]->bitmap);
1436
kfree(dom->aperture[i]);
1437
}
1438
1439
kfree(dom);
1440
}
1441
1442
/*
1443
* Allocates a new protection domain usable for the dma_ops functions.
1444
* It also initializes the page table and the address allocator data
1445
* structures required for the dma_ops interface
1446
*/
1447
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1448
{
1449
struct dma_ops_domain *dma_dom;
1450
1451
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1452
if (!dma_dom)
1453
return NULL;
1454
1455
spin_lock_init(&dma_dom->domain.lock);
1456
1457
dma_dom->domain.id = domain_id_alloc();
1458
if (dma_dom->domain.id == 0)
1459
goto free_dma_dom;
1460
INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1461
dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1462
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1463
dma_dom->domain.flags = PD_DMA_OPS_MASK;
1464
dma_dom->domain.priv = dma_dom;
1465
if (!dma_dom->domain.pt_root)
1466
goto free_dma_dom;
1467
1468
dma_dom->need_flush = false;
1469
dma_dom->target_dev = 0xffff;
1470
1471
add_domain_to_list(&dma_dom->domain);
1472
1473
if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1474
goto free_dma_dom;
1475
1476
/*
1477
* mark the first page as allocated so we never return 0 as
1478
* a valid dma-address. So we can use 0 as error value
1479
*/
1480
dma_dom->aperture[0]->bitmap[0] = 1;
1481
dma_dom->next_address = 0;
1482
1483
1484
return dma_dom;
1485
1486
free_dma_dom:
1487
dma_ops_domain_free(dma_dom);
1488
1489
return NULL;
1490
}
1491
1492
/*
1493
* little helper function to check whether a given protection domain is a
1494
* dma_ops domain
1495
*/
1496
static bool dma_ops_domain(struct protection_domain *domain)
1497
{
1498
return domain->flags & PD_DMA_OPS_MASK;
1499
}
1500
1501
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1502
{
1503
u64 pte_root = virt_to_phys(domain->pt_root);
1504
u32 flags = 0;
1505
1506
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1507
<< DEV_ENTRY_MODE_SHIFT;
1508
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1509
1510
if (ats)
1511
flags |= DTE_FLAG_IOTLB;
1512
1513
amd_iommu_dev_table[devid].data[3] |= flags;
1514
amd_iommu_dev_table[devid].data[2] = domain->id;
1515
amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1516
amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1517
}
1518
1519
static void clear_dte_entry(u16 devid)
1520
{
1521
/* remove entry from the device table seen by the hardware */
1522
amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1523
amd_iommu_dev_table[devid].data[1] = 0;
1524
amd_iommu_dev_table[devid].data[2] = 0;
1525
1526
amd_iommu_apply_erratum_63(devid);
1527
}
1528
1529
static void do_attach(struct device *dev, struct protection_domain *domain)
1530
{
1531
struct iommu_dev_data *dev_data;
1532
struct amd_iommu *iommu;
1533
struct pci_dev *pdev;
1534
bool ats = false;
1535
u16 devid;
1536
1537
devid = get_device_id(dev);
1538
iommu = amd_iommu_rlookup_table[devid];
1539
dev_data = get_dev_data(dev);
1540
pdev = to_pci_dev(dev);
1541
1542
if (amd_iommu_iotlb_sup)
1543
ats = pci_ats_enabled(pdev);
1544
1545
/* Update data structures */
1546
dev_data->domain = domain;
1547
list_add(&dev_data->list, &domain->dev_list);
1548
set_dte_entry(devid, domain, ats);
1549
1550
/* Do reference counting */
1551
domain->dev_iommu[iommu->index] += 1;
1552
domain->dev_cnt += 1;
1553
1554
/* Flush the DTE entry */
1555
device_flush_dte(dev);
1556
}
1557
1558
static void do_detach(struct device *dev)
1559
{
1560
struct iommu_dev_data *dev_data;
1561
struct amd_iommu *iommu;
1562
u16 devid;
1563
1564
devid = get_device_id(dev);
1565
iommu = amd_iommu_rlookup_table[devid];
1566
dev_data = get_dev_data(dev);
1567
1568
/* decrease reference counters */
1569
dev_data->domain->dev_iommu[iommu->index] -= 1;
1570
dev_data->domain->dev_cnt -= 1;
1571
1572
/* Update data structures */
1573
dev_data->domain = NULL;
1574
list_del(&dev_data->list);
1575
clear_dte_entry(devid);
1576
1577
/* Flush the DTE entry */
1578
device_flush_dte(dev);
1579
}
1580
1581
/*
1582
* If a device is not yet associated with a domain, this function does
1583
* assigns it visible for the hardware
1584
*/
1585
static int __attach_device(struct device *dev,
1586
struct protection_domain *domain)
1587
{
1588
struct iommu_dev_data *dev_data, *alias_data;
1589
int ret;
1590
1591
dev_data = get_dev_data(dev);
1592
alias_data = get_dev_data(dev_data->alias);
1593
1594
if (!alias_data)
1595
return -EINVAL;
1596
1597
/* lock domain */
1598
spin_lock(&domain->lock);
1599
1600
/* Some sanity checks */
1601
ret = -EBUSY;
1602
if (alias_data->domain != NULL &&
1603
alias_data->domain != domain)
1604
goto out_unlock;
1605
1606
if (dev_data->domain != NULL &&
1607
dev_data->domain != domain)
1608
goto out_unlock;
1609
1610
/* Do real assignment */
1611
if (dev_data->alias != dev) {
1612
alias_data = get_dev_data(dev_data->alias);
1613
if (alias_data->domain == NULL)
1614
do_attach(dev_data->alias, domain);
1615
1616
atomic_inc(&alias_data->bind);
1617
}
1618
1619
if (dev_data->domain == NULL)
1620
do_attach(dev, domain);
1621
1622
atomic_inc(&dev_data->bind);
1623
1624
ret = 0;
1625
1626
out_unlock:
1627
1628
/* ready */
1629
spin_unlock(&domain->lock);
1630
1631
return ret;
1632
}
1633
1634
/*
1635
* If a device is not yet associated with a domain, this function does
1636
* assigns it visible for the hardware
1637
*/
1638
static int attach_device(struct device *dev,
1639
struct protection_domain *domain)
1640
{
1641
struct pci_dev *pdev = to_pci_dev(dev);
1642
unsigned long flags;
1643
int ret;
1644
1645
if (amd_iommu_iotlb_sup)
1646
pci_enable_ats(pdev, PAGE_SHIFT);
1647
1648
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1649
ret = __attach_device(dev, domain);
1650
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1651
1652
/*
1653
* We might boot into a crash-kernel here. The crashed kernel
1654
* left the caches in the IOMMU dirty. So we have to flush
1655
* here to evict all dirty stuff.
1656
*/
1657
domain_flush_tlb_pde(domain);
1658
1659
return ret;
1660
}
1661
1662
/*
1663
* Removes a device from a protection domain (unlocked)
1664
*/
1665
static void __detach_device(struct device *dev)
1666
{
1667
struct iommu_dev_data *dev_data = get_dev_data(dev);
1668
struct iommu_dev_data *alias_data;
1669
struct protection_domain *domain;
1670
unsigned long flags;
1671
1672
BUG_ON(!dev_data->domain);
1673
1674
domain = dev_data->domain;
1675
1676
spin_lock_irqsave(&domain->lock, flags);
1677
1678
if (dev_data->alias != dev) {
1679
alias_data = get_dev_data(dev_data->alias);
1680
if (atomic_dec_and_test(&alias_data->bind))
1681
do_detach(dev_data->alias);
1682
}
1683
1684
if (atomic_dec_and_test(&dev_data->bind))
1685
do_detach(dev);
1686
1687
spin_unlock_irqrestore(&domain->lock, flags);
1688
1689
/*
1690
* If we run in passthrough mode the device must be assigned to the
1691
* passthrough domain if it is detached from any other domain.
1692
* Make sure we can deassign from the pt_domain itself.
1693
*/
1694
if (iommu_pass_through &&
1695
(dev_data->domain == NULL && domain != pt_domain))
1696
__attach_device(dev, pt_domain);
1697
}
1698
1699
/*
1700
* Removes a device from a protection domain (with devtable_lock held)
1701
*/
1702
static void detach_device(struct device *dev)
1703
{
1704
struct pci_dev *pdev = to_pci_dev(dev);
1705
unsigned long flags;
1706
1707
/* lock device table */
1708
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1709
__detach_device(dev);
1710
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1711
1712
if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev))
1713
pci_disable_ats(pdev);
1714
}
1715
1716
/*
1717
* Find out the protection domain structure for a given PCI device. This
1718
* will give us the pointer to the page table root for example.
1719
*/
1720
static struct protection_domain *domain_for_device(struct device *dev)
1721
{
1722
struct protection_domain *dom;
1723
struct iommu_dev_data *dev_data, *alias_data;
1724
unsigned long flags;
1725
u16 devid;
1726
1727
devid = get_device_id(dev);
1728
dev_data = get_dev_data(dev);
1729
alias_data = get_dev_data(dev_data->alias);
1730
if (!alias_data)
1731
return NULL;
1732
1733
read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1734
dom = dev_data->domain;
1735
if (dom == NULL &&
1736
alias_data->domain != NULL) {
1737
__attach_device(dev, alias_data->domain);
1738
dom = alias_data->domain;
1739
}
1740
1741
read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1742
1743
return dom;
1744
}
1745
1746
static int device_change_notifier(struct notifier_block *nb,
1747
unsigned long action, void *data)
1748
{
1749
struct device *dev = data;
1750
u16 devid;
1751
struct protection_domain *domain;
1752
struct dma_ops_domain *dma_domain;
1753
struct amd_iommu *iommu;
1754
unsigned long flags;
1755
1756
if (!check_device(dev))
1757
return 0;
1758
1759
devid = get_device_id(dev);
1760
iommu = amd_iommu_rlookup_table[devid];
1761
1762
switch (action) {
1763
case BUS_NOTIFY_UNBOUND_DRIVER:
1764
1765
domain = domain_for_device(dev);
1766
1767
if (!domain)
1768
goto out;
1769
if (iommu_pass_through)
1770
break;
1771
detach_device(dev);
1772
break;
1773
case BUS_NOTIFY_ADD_DEVICE:
1774
1775
iommu_init_device(dev);
1776
1777
domain = domain_for_device(dev);
1778
1779
/* allocate a protection domain if a device is added */
1780
dma_domain = find_protection_domain(devid);
1781
if (dma_domain)
1782
goto out;
1783
dma_domain = dma_ops_domain_alloc();
1784
if (!dma_domain)
1785
goto out;
1786
dma_domain->target_dev = devid;
1787
1788
spin_lock_irqsave(&iommu_pd_list_lock, flags);
1789
list_add_tail(&dma_domain->list, &iommu_pd_list);
1790
spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1791
1792
break;
1793
case BUS_NOTIFY_DEL_DEVICE:
1794
1795
iommu_uninit_device(dev);
1796
1797
default:
1798
goto out;
1799
}
1800
1801
device_flush_dte(dev);
1802
iommu_completion_wait(iommu);
1803
1804
out:
1805
return 0;
1806
}
1807
1808
static struct notifier_block device_nb = {
1809
.notifier_call = device_change_notifier,
1810
};
1811
1812
void amd_iommu_init_notifier(void)
1813
{
1814
bus_register_notifier(&pci_bus_type, &device_nb);
1815
}
1816
1817
/*****************************************************************************
1818
*
1819
* The next functions belong to the dma_ops mapping/unmapping code.
1820
*
1821
*****************************************************************************/
1822
1823
/*
1824
* In the dma_ops path we only have the struct device. This function
1825
* finds the corresponding IOMMU, the protection domain and the
1826
* requestor id for a given device.
1827
* If the device is not yet associated with a domain this is also done
1828
* in this function.
1829
*/
1830
static struct protection_domain *get_domain(struct device *dev)
1831
{
1832
struct protection_domain *domain;
1833
struct dma_ops_domain *dma_dom;
1834
u16 devid = get_device_id(dev);
1835
1836
if (!check_device(dev))
1837
return ERR_PTR(-EINVAL);
1838
1839
domain = domain_for_device(dev);
1840
if (domain != NULL && !dma_ops_domain(domain))
1841
return ERR_PTR(-EBUSY);
1842
1843
if (domain != NULL)
1844
return domain;
1845
1846
/* Device not bount yet - bind it */
1847
dma_dom = find_protection_domain(devid);
1848
if (!dma_dom)
1849
dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1850
attach_device(dev, &dma_dom->domain);
1851
DUMP_printk("Using protection domain %d for device %s\n",
1852
dma_dom->domain.id, dev_name(dev));
1853
1854
return &dma_dom->domain;
1855
}
1856
1857
static void update_device_table(struct protection_domain *domain)
1858
{
1859
struct iommu_dev_data *dev_data;
1860
1861
list_for_each_entry(dev_data, &domain->dev_list, list) {
1862
struct pci_dev *pdev = to_pci_dev(dev_data->dev);
1863
u16 devid = get_device_id(dev_data->dev);
1864
set_dte_entry(devid, domain, pci_ats_enabled(pdev));
1865
}
1866
}
1867
1868
static void update_domain(struct protection_domain *domain)
1869
{
1870
if (!domain->updated)
1871
return;
1872
1873
update_device_table(domain);
1874
1875
domain_flush_devices(domain);
1876
domain_flush_tlb_pde(domain);
1877
1878
domain->updated = false;
1879
}
1880
1881
/*
1882
* This function fetches the PTE for a given address in the aperture
1883
*/
1884
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1885
unsigned long address)
1886
{
1887
struct aperture_range *aperture;
1888
u64 *pte, *pte_page;
1889
1890
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1891
if (!aperture)
1892
return NULL;
1893
1894
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1895
if (!pte) {
1896
pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1897
GFP_ATOMIC);
1898
aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1899
} else
1900
pte += PM_LEVEL_INDEX(0, address);
1901
1902
update_domain(&dom->domain);
1903
1904
return pte;
1905
}
1906
1907
/*
1908
* This is the generic map function. It maps one 4kb page at paddr to
1909
* the given address in the DMA address space for the domain.
1910
*/
1911
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1912
unsigned long address,
1913
phys_addr_t paddr,
1914
int direction)
1915
{
1916
u64 *pte, __pte;
1917
1918
WARN_ON(address > dom->aperture_size);
1919
1920
paddr &= PAGE_MASK;
1921
1922
pte = dma_ops_get_pte(dom, address);
1923
if (!pte)
1924
return DMA_ERROR_CODE;
1925
1926
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1927
1928
if (direction == DMA_TO_DEVICE)
1929
__pte |= IOMMU_PTE_IR;
1930
else if (direction == DMA_FROM_DEVICE)
1931
__pte |= IOMMU_PTE_IW;
1932
else if (direction == DMA_BIDIRECTIONAL)
1933
__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1934
1935
WARN_ON(*pte);
1936
1937
*pte = __pte;
1938
1939
return (dma_addr_t)address;
1940
}
1941
1942
/*
1943
* The generic unmapping function for on page in the DMA address space.
1944
*/
1945
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1946
unsigned long address)
1947
{
1948
struct aperture_range *aperture;
1949
u64 *pte;
1950
1951
if (address >= dom->aperture_size)
1952
return;
1953
1954
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1955
if (!aperture)
1956
return;
1957
1958
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1959
if (!pte)
1960
return;
1961
1962
pte += PM_LEVEL_INDEX(0, address);
1963
1964
WARN_ON(!*pte);
1965
1966
*pte = 0ULL;
1967
}
1968
1969
/*
1970
* This function contains common code for mapping of a physically
1971
* contiguous memory region into DMA address space. It is used by all
1972
* mapping functions provided with this IOMMU driver.
1973
* Must be called with the domain lock held.
1974
*/
1975
static dma_addr_t __map_single(struct device *dev,
1976
struct dma_ops_domain *dma_dom,
1977
phys_addr_t paddr,
1978
size_t size,
1979
int dir,
1980
bool align,
1981
u64 dma_mask)
1982
{
1983
dma_addr_t offset = paddr & ~PAGE_MASK;
1984
dma_addr_t address, start, ret;
1985
unsigned int pages;
1986
unsigned long align_mask = 0;
1987
int i;
1988
1989
pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1990
paddr &= PAGE_MASK;
1991
1992
INC_STATS_COUNTER(total_map_requests);
1993
1994
if (pages > 1)
1995
INC_STATS_COUNTER(cross_page);
1996
1997
if (align)
1998
align_mask = (1UL << get_order(size)) - 1;
1999
2000
retry:
2001
address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2002
dma_mask);
2003
if (unlikely(address == DMA_ERROR_CODE)) {
2004
/*
2005
* setting next_address here will let the address
2006
* allocator only scan the new allocated range in the
2007
* first run. This is a small optimization.
2008
*/
2009
dma_dom->next_address = dma_dom->aperture_size;
2010
2011
if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2012
goto out;
2013
2014
/*
2015
* aperture was successfully enlarged by 128 MB, try
2016
* allocation again
2017
*/
2018
goto retry;
2019
}
2020
2021
start = address;
2022
for (i = 0; i < pages; ++i) {
2023
ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2024
if (ret == DMA_ERROR_CODE)
2025
goto out_unmap;
2026
2027
paddr += PAGE_SIZE;
2028
start += PAGE_SIZE;
2029
}
2030
address += offset;
2031
2032
ADD_STATS_COUNTER(alloced_io_mem, size);
2033
2034
if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2035
domain_flush_tlb(&dma_dom->domain);
2036
dma_dom->need_flush = false;
2037
} else if (unlikely(amd_iommu_np_cache))
2038
domain_flush_pages(&dma_dom->domain, address, size);
2039
2040
out:
2041
return address;
2042
2043
out_unmap:
2044
2045
for (--i; i >= 0; --i) {
2046
start -= PAGE_SIZE;
2047
dma_ops_domain_unmap(dma_dom, start);
2048
}
2049
2050
dma_ops_free_addresses(dma_dom, address, pages);
2051
2052
return DMA_ERROR_CODE;
2053
}
2054
2055
/*
2056
* Does the reverse of the __map_single function. Must be called with
2057
* the domain lock held too
2058
*/
2059
static void __unmap_single(struct dma_ops_domain *dma_dom,
2060
dma_addr_t dma_addr,
2061
size_t size,
2062
int dir)
2063
{
2064
dma_addr_t flush_addr;
2065
dma_addr_t i, start;
2066
unsigned int pages;
2067
2068
if ((dma_addr == DMA_ERROR_CODE) ||
2069
(dma_addr + size > dma_dom->aperture_size))
2070
return;
2071
2072
flush_addr = dma_addr;
2073
pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2074
dma_addr &= PAGE_MASK;
2075
start = dma_addr;
2076
2077
for (i = 0; i < pages; ++i) {
2078
dma_ops_domain_unmap(dma_dom, start);
2079
start += PAGE_SIZE;
2080
}
2081
2082
SUB_STATS_COUNTER(alloced_io_mem, size);
2083
2084
dma_ops_free_addresses(dma_dom, dma_addr, pages);
2085
2086
if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2087
domain_flush_pages(&dma_dom->domain, flush_addr, size);
2088
dma_dom->need_flush = false;
2089
}
2090
}
2091
2092
/*
2093
* The exported map_single function for dma_ops.
2094
*/
2095
static dma_addr_t map_page(struct device *dev, struct page *page,
2096
unsigned long offset, size_t size,
2097
enum dma_data_direction dir,
2098
struct dma_attrs *attrs)
2099
{
2100
unsigned long flags;
2101
struct protection_domain *domain;
2102
dma_addr_t addr;
2103
u64 dma_mask;
2104
phys_addr_t paddr = page_to_phys(page) + offset;
2105
2106
INC_STATS_COUNTER(cnt_map_single);
2107
2108
domain = get_domain(dev);
2109
if (PTR_ERR(domain) == -EINVAL)
2110
return (dma_addr_t)paddr;
2111
else if (IS_ERR(domain))
2112
return DMA_ERROR_CODE;
2113
2114
dma_mask = *dev->dma_mask;
2115
2116
spin_lock_irqsave(&domain->lock, flags);
2117
2118
addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2119
dma_mask);
2120
if (addr == DMA_ERROR_CODE)
2121
goto out;
2122
2123
domain_flush_complete(domain);
2124
2125
out:
2126
spin_unlock_irqrestore(&domain->lock, flags);
2127
2128
return addr;
2129
}
2130
2131
/*
2132
* The exported unmap_single function for dma_ops.
2133
*/
2134
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2135
enum dma_data_direction dir, struct dma_attrs *attrs)
2136
{
2137
unsigned long flags;
2138
struct protection_domain *domain;
2139
2140
INC_STATS_COUNTER(cnt_unmap_single);
2141
2142
domain = get_domain(dev);
2143
if (IS_ERR(domain))
2144
return;
2145
2146
spin_lock_irqsave(&domain->lock, flags);
2147
2148
__unmap_single(domain->priv, dma_addr, size, dir);
2149
2150
domain_flush_complete(domain);
2151
2152
spin_unlock_irqrestore(&domain->lock, flags);
2153
}
2154
2155
/*
2156
* This is a special map_sg function which is used if we should map a
2157
* device which is not handled by an AMD IOMMU in the system.
2158
*/
2159
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2160
int nelems, int dir)
2161
{
2162
struct scatterlist *s;
2163
int i;
2164
2165
for_each_sg(sglist, s, nelems, i) {
2166
s->dma_address = (dma_addr_t)sg_phys(s);
2167
s->dma_length = s->length;
2168
}
2169
2170
return nelems;
2171
}
2172
2173
/*
2174
* The exported map_sg function for dma_ops (handles scatter-gather
2175
* lists).
2176
*/
2177
static int map_sg(struct device *dev, struct scatterlist *sglist,
2178
int nelems, enum dma_data_direction dir,
2179
struct dma_attrs *attrs)
2180
{
2181
unsigned long flags;
2182
struct protection_domain *domain;
2183
int i;
2184
struct scatterlist *s;
2185
phys_addr_t paddr;
2186
int mapped_elems = 0;
2187
u64 dma_mask;
2188
2189
INC_STATS_COUNTER(cnt_map_sg);
2190
2191
domain = get_domain(dev);
2192
if (PTR_ERR(domain) == -EINVAL)
2193
return map_sg_no_iommu(dev, sglist, nelems, dir);
2194
else if (IS_ERR(domain))
2195
return 0;
2196
2197
dma_mask = *dev->dma_mask;
2198
2199
spin_lock_irqsave(&domain->lock, flags);
2200
2201
for_each_sg(sglist, s, nelems, i) {
2202
paddr = sg_phys(s);
2203
2204
s->dma_address = __map_single(dev, domain->priv,
2205
paddr, s->length, dir, false,
2206
dma_mask);
2207
2208
if (s->dma_address) {
2209
s->dma_length = s->length;
2210
mapped_elems++;
2211
} else
2212
goto unmap;
2213
}
2214
2215
domain_flush_complete(domain);
2216
2217
out:
2218
spin_unlock_irqrestore(&domain->lock, flags);
2219
2220
return mapped_elems;
2221
unmap:
2222
for_each_sg(sglist, s, mapped_elems, i) {
2223
if (s->dma_address)
2224
__unmap_single(domain->priv, s->dma_address,
2225
s->dma_length, dir);
2226
s->dma_address = s->dma_length = 0;
2227
}
2228
2229
mapped_elems = 0;
2230
2231
goto out;
2232
}
2233
2234
/*
2235
* The exported map_sg function for dma_ops (handles scatter-gather
2236
* lists).
2237
*/
2238
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2239
int nelems, enum dma_data_direction dir,
2240
struct dma_attrs *attrs)
2241
{
2242
unsigned long flags;
2243
struct protection_domain *domain;
2244
struct scatterlist *s;
2245
int i;
2246
2247
INC_STATS_COUNTER(cnt_unmap_sg);
2248
2249
domain = get_domain(dev);
2250
if (IS_ERR(domain))
2251
return;
2252
2253
spin_lock_irqsave(&domain->lock, flags);
2254
2255
for_each_sg(sglist, s, nelems, i) {
2256
__unmap_single(domain->priv, s->dma_address,
2257
s->dma_length, dir);
2258
s->dma_address = s->dma_length = 0;
2259
}
2260
2261
domain_flush_complete(domain);
2262
2263
spin_unlock_irqrestore(&domain->lock, flags);
2264
}
2265
2266
/*
2267
* The exported alloc_coherent function for dma_ops.
2268
*/
2269
static void *alloc_coherent(struct device *dev, size_t size,
2270
dma_addr_t *dma_addr, gfp_t flag)
2271
{
2272
unsigned long flags;
2273
void *virt_addr;
2274
struct protection_domain *domain;
2275
phys_addr_t paddr;
2276
u64 dma_mask = dev->coherent_dma_mask;
2277
2278
INC_STATS_COUNTER(cnt_alloc_coherent);
2279
2280
domain = get_domain(dev);
2281
if (PTR_ERR(domain) == -EINVAL) {
2282
virt_addr = (void *)__get_free_pages(flag, get_order(size));
2283
*dma_addr = __pa(virt_addr);
2284
return virt_addr;
2285
} else if (IS_ERR(domain))
2286
return NULL;
2287
2288
dma_mask = dev->coherent_dma_mask;
2289
flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2290
flag |= __GFP_ZERO;
2291
2292
virt_addr = (void *)__get_free_pages(flag, get_order(size));
2293
if (!virt_addr)
2294
return NULL;
2295
2296
paddr = virt_to_phys(virt_addr);
2297
2298
if (!dma_mask)
2299
dma_mask = *dev->dma_mask;
2300
2301
spin_lock_irqsave(&domain->lock, flags);
2302
2303
*dma_addr = __map_single(dev, domain->priv, paddr,
2304
size, DMA_BIDIRECTIONAL, true, dma_mask);
2305
2306
if (*dma_addr == DMA_ERROR_CODE) {
2307
spin_unlock_irqrestore(&domain->lock, flags);
2308
goto out_free;
2309
}
2310
2311
domain_flush_complete(domain);
2312
2313
spin_unlock_irqrestore(&domain->lock, flags);
2314
2315
return virt_addr;
2316
2317
out_free:
2318
2319
free_pages((unsigned long)virt_addr, get_order(size));
2320
2321
return NULL;
2322
}
2323
2324
/*
2325
* The exported free_coherent function for dma_ops.
2326
*/
2327
static void free_coherent(struct device *dev, size_t size,
2328
void *virt_addr, dma_addr_t dma_addr)
2329
{
2330
unsigned long flags;
2331
struct protection_domain *domain;
2332
2333
INC_STATS_COUNTER(cnt_free_coherent);
2334
2335
domain = get_domain(dev);
2336
if (IS_ERR(domain))
2337
goto free_mem;
2338
2339
spin_lock_irqsave(&domain->lock, flags);
2340
2341
__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2342
2343
domain_flush_complete(domain);
2344
2345
spin_unlock_irqrestore(&domain->lock, flags);
2346
2347
free_mem:
2348
free_pages((unsigned long)virt_addr, get_order(size));
2349
}
2350
2351
/*
2352
* This function is called by the DMA layer to find out if we can handle a
2353
* particular device. It is part of the dma_ops.
2354
*/
2355
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2356
{
2357
return check_device(dev);
2358
}
2359
2360
/*
2361
* The function for pre-allocating protection domains.
2362
*
2363
* If the driver core informs the DMA layer if a driver grabs a device
2364
* we don't need to preallocate the protection domains anymore.
2365
* For now we have to.
2366
*/
2367
static void prealloc_protection_domains(void)
2368
{
2369
struct pci_dev *dev = NULL;
2370
struct dma_ops_domain *dma_dom;
2371
u16 devid;
2372
2373
for_each_pci_dev(dev) {
2374
2375
/* Do we handle this device? */
2376
if (!check_device(&dev->dev))
2377
continue;
2378
2379
/* Is there already any domain for it? */
2380
if (domain_for_device(&dev->dev))
2381
continue;
2382
2383
devid = get_device_id(&dev->dev);
2384
2385
dma_dom = dma_ops_domain_alloc();
2386
if (!dma_dom)
2387
continue;
2388
init_unity_mappings_for_device(dma_dom, devid);
2389
dma_dom->target_dev = devid;
2390
2391
attach_device(&dev->dev, &dma_dom->domain);
2392
2393
list_add_tail(&dma_dom->list, &iommu_pd_list);
2394
}
2395
}
2396
2397
static struct dma_map_ops amd_iommu_dma_ops = {
2398
.alloc_coherent = alloc_coherent,
2399
.free_coherent = free_coherent,
2400
.map_page = map_page,
2401
.unmap_page = unmap_page,
2402
.map_sg = map_sg,
2403
.unmap_sg = unmap_sg,
2404
.dma_supported = amd_iommu_dma_supported,
2405
};
2406
2407
static unsigned device_dma_ops_init(void)
2408
{
2409
struct pci_dev *pdev = NULL;
2410
unsigned unhandled = 0;
2411
2412
for_each_pci_dev(pdev) {
2413
if (!check_device(&pdev->dev)) {
2414
unhandled += 1;
2415
continue;
2416
}
2417
2418
pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2419
}
2420
2421
return unhandled;
2422
}
2423
2424
/*
2425
* The function which clues the AMD IOMMU driver into dma_ops.
2426
*/
2427
2428
void __init amd_iommu_init_api(void)
2429
{
2430
register_iommu(&amd_iommu_ops);
2431
}
2432
2433
int __init amd_iommu_init_dma_ops(void)
2434
{
2435
struct amd_iommu *iommu;
2436
int ret, unhandled;
2437
2438
/*
2439
* first allocate a default protection domain for every IOMMU we
2440
* found in the system. Devices not assigned to any other
2441
* protection domain will be assigned to the default one.
2442
*/
2443
for_each_iommu(iommu) {
2444
iommu->default_dom = dma_ops_domain_alloc();
2445
if (iommu->default_dom == NULL)
2446
return -ENOMEM;
2447
iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2448
ret = iommu_init_unity_mappings(iommu);
2449
if (ret)
2450
goto free_domains;
2451
}
2452
2453
/*
2454
* Pre-allocate the protection domains for each device.
2455
*/
2456
prealloc_protection_domains();
2457
2458
iommu_detected = 1;
2459
swiotlb = 0;
2460
2461
/* Make the driver finally visible to the drivers */
2462
unhandled = device_dma_ops_init();
2463
if (unhandled && max_pfn > MAX_DMA32_PFN) {
2464
/* There are unhandled devices - initialize swiotlb for them */
2465
swiotlb = 1;
2466
}
2467
2468
amd_iommu_stats_init();
2469
2470
return 0;
2471
2472
free_domains:
2473
2474
for_each_iommu(iommu) {
2475
if (iommu->default_dom)
2476
dma_ops_domain_free(iommu->default_dom);
2477
}
2478
2479
return ret;
2480
}
2481
2482
/*****************************************************************************
2483
*
2484
* The following functions belong to the exported interface of AMD IOMMU
2485
*
2486
* This interface allows access to lower level functions of the IOMMU
2487
* like protection domain handling and assignement of devices to domains
2488
* which is not possible with the dma_ops interface.
2489
*
2490
*****************************************************************************/
2491
2492
static void cleanup_domain(struct protection_domain *domain)
2493
{
2494
struct iommu_dev_data *dev_data, *next;
2495
unsigned long flags;
2496
2497
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2498
2499
list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2500
struct device *dev = dev_data->dev;
2501
2502
__detach_device(dev);
2503
atomic_set(&dev_data->bind, 0);
2504
}
2505
2506
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2507
}
2508
2509
static void protection_domain_free(struct protection_domain *domain)
2510
{
2511
if (!domain)
2512
return;
2513
2514
del_domain_from_list(domain);
2515
2516
if (domain->id)
2517
domain_id_free(domain->id);
2518
2519
kfree(domain);
2520
}
2521
2522
static struct protection_domain *protection_domain_alloc(void)
2523
{
2524
struct protection_domain *domain;
2525
2526
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2527
if (!domain)
2528
return NULL;
2529
2530
spin_lock_init(&domain->lock);
2531
mutex_init(&domain->api_lock);
2532
domain->id = domain_id_alloc();
2533
if (!domain->id)
2534
goto out_err;
2535
INIT_LIST_HEAD(&domain->dev_list);
2536
2537
add_domain_to_list(domain);
2538
2539
return domain;
2540
2541
out_err:
2542
kfree(domain);
2543
2544
return NULL;
2545
}
2546
2547
static int amd_iommu_domain_init(struct iommu_domain *dom)
2548
{
2549
struct protection_domain *domain;
2550
2551
domain = protection_domain_alloc();
2552
if (!domain)
2553
goto out_free;
2554
2555
domain->mode = PAGE_MODE_3_LEVEL;
2556
domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2557
if (!domain->pt_root)
2558
goto out_free;
2559
2560
dom->priv = domain;
2561
2562
return 0;
2563
2564
out_free:
2565
protection_domain_free(domain);
2566
2567
return -ENOMEM;
2568
}
2569
2570
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2571
{
2572
struct protection_domain *domain = dom->priv;
2573
2574
if (!domain)
2575
return;
2576
2577
if (domain->dev_cnt > 0)
2578
cleanup_domain(domain);
2579
2580
BUG_ON(domain->dev_cnt != 0);
2581
2582
free_pagetable(domain);
2583
2584
protection_domain_free(domain);
2585
2586
dom->priv = NULL;
2587
}
2588
2589
static void amd_iommu_detach_device(struct iommu_domain *dom,
2590
struct device *dev)
2591
{
2592
struct iommu_dev_data *dev_data = dev->archdata.iommu;
2593
struct amd_iommu *iommu;
2594
u16 devid;
2595
2596
if (!check_device(dev))
2597
return;
2598
2599
devid = get_device_id(dev);
2600
2601
if (dev_data->domain != NULL)
2602
detach_device(dev);
2603
2604
iommu = amd_iommu_rlookup_table[devid];
2605
if (!iommu)
2606
return;
2607
2608
device_flush_dte(dev);
2609
iommu_completion_wait(iommu);
2610
}
2611
2612
static int amd_iommu_attach_device(struct iommu_domain *dom,
2613
struct device *dev)
2614
{
2615
struct protection_domain *domain = dom->priv;
2616
struct iommu_dev_data *dev_data;
2617
struct amd_iommu *iommu;
2618
int ret;
2619
u16 devid;
2620
2621
if (!check_device(dev))
2622
return -EINVAL;
2623
2624
dev_data = dev->archdata.iommu;
2625
2626
devid = get_device_id(dev);
2627
2628
iommu = amd_iommu_rlookup_table[devid];
2629
if (!iommu)
2630
return -EINVAL;
2631
2632
if (dev_data->domain)
2633
detach_device(dev);
2634
2635
ret = attach_device(dev, domain);
2636
2637
iommu_completion_wait(iommu);
2638
2639
return ret;
2640
}
2641
2642
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2643
phys_addr_t paddr, int gfp_order, int iommu_prot)
2644
{
2645
unsigned long page_size = 0x1000UL << gfp_order;
2646
struct protection_domain *domain = dom->priv;
2647
int prot = 0;
2648
int ret;
2649
2650
if (iommu_prot & IOMMU_READ)
2651
prot |= IOMMU_PROT_IR;
2652
if (iommu_prot & IOMMU_WRITE)
2653
prot |= IOMMU_PROT_IW;
2654
2655
mutex_lock(&domain->api_lock);
2656
ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2657
mutex_unlock(&domain->api_lock);
2658
2659
return ret;
2660
}
2661
2662
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2663
int gfp_order)
2664
{
2665
struct protection_domain *domain = dom->priv;
2666
unsigned long page_size, unmap_size;
2667
2668
page_size = 0x1000UL << gfp_order;
2669
2670
mutex_lock(&domain->api_lock);
2671
unmap_size = iommu_unmap_page(domain, iova, page_size);
2672
mutex_unlock(&domain->api_lock);
2673
2674
domain_flush_tlb_pde(domain);
2675
2676
return get_order(unmap_size);
2677
}
2678
2679
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2680
unsigned long iova)
2681
{
2682
struct protection_domain *domain = dom->priv;
2683
unsigned long offset_mask;
2684
phys_addr_t paddr;
2685
u64 *pte, __pte;
2686
2687
pte = fetch_pte(domain, iova);
2688
2689
if (!pte || !IOMMU_PTE_PRESENT(*pte))
2690
return 0;
2691
2692
if (PM_PTE_LEVEL(*pte) == 0)
2693
offset_mask = PAGE_SIZE - 1;
2694
else
2695
offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2696
2697
__pte = *pte & PM_ADDR_MASK;
2698
paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2699
2700
return paddr;
2701
}
2702
2703
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2704
unsigned long cap)
2705
{
2706
switch (cap) {
2707
case IOMMU_CAP_CACHE_COHERENCY:
2708
return 1;
2709
}
2710
2711
return 0;
2712
}
2713
2714
static struct iommu_ops amd_iommu_ops = {
2715
.domain_init = amd_iommu_domain_init,
2716
.domain_destroy = amd_iommu_domain_destroy,
2717
.attach_dev = amd_iommu_attach_device,
2718
.detach_dev = amd_iommu_detach_device,
2719
.map = amd_iommu_map,
2720
.unmap = amd_iommu_unmap,
2721
.iova_to_phys = amd_iommu_iova_to_phys,
2722
.domain_has_cap = amd_iommu_domain_has_cap,
2723
};
2724
2725
/*****************************************************************************
2726
*
2727
* The next functions do a basic initialization of IOMMU for pass through
2728
* mode
2729
*
2730
* In passthrough mode the IOMMU is initialized and enabled but not used for
2731
* DMA-API translation.
2732
*
2733
*****************************************************************************/
2734
2735
int __init amd_iommu_init_passthrough(void)
2736
{
2737
struct amd_iommu *iommu;
2738
struct pci_dev *dev = NULL;
2739
u16 devid;
2740
2741
/* allocate passthrough domain */
2742
pt_domain = protection_domain_alloc();
2743
if (!pt_domain)
2744
return -ENOMEM;
2745
2746
pt_domain->mode |= PAGE_MODE_NONE;
2747
2748
for_each_pci_dev(dev) {
2749
if (!check_device(&dev->dev))
2750
continue;
2751
2752
devid = get_device_id(&dev->dev);
2753
2754
iommu = amd_iommu_rlookup_table[devid];
2755
if (!iommu)
2756
continue;
2757
2758
attach_device(&dev->dev, pt_domain);
2759
}
2760
2761
pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2762
2763
return 0;
2764
}
2765
2766