Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kernel/amd_iommu_init.c
10817 views
1
/*
2
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3
* Author: Joerg Roedel <[email protected]>
4
* Leo Duran <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 as published
8
* by the Free Software Foundation.
9
*
10
* This program is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
* GNU General Public License for more details.
14
*
15
* You should have received a copy of the GNU General Public License
16
* along with this program; if not, write to the Free Software
17
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
*/
19
20
#include <linux/pci.h>
21
#include <linux/acpi.h>
22
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25
#include <linux/interrupt.h>
26
#include <linux/msi.h>
27
#include <asm/pci-direct.h>
28
#include <asm/amd_iommu_proto.h>
29
#include <asm/amd_iommu_types.h>
30
#include <asm/amd_iommu.h>
31
#include <asm/iommu.h>
32
#include <asm/gart.h>
33
#include <asm/x86_init.h>
34
#include <asm/iommu_table.h>
35
/*
36
* definitions for the ACPI scanning code
37
*/
38
#define IVRS_HEADER_LENGTH 48
39
40
#define ACPI_IVHD_TYPE 0x10
41
#define ACPI_IVMD_TYPE_ALL 0x20
42
#define ACPI_IVMD_TYPE 0x21
43
#define ACPI_IVMD_TYPE_RANGE 0x22
44
45
#define IVHD_DEV_ALL 0x01
46
#define IVHD_DEV_SELECT 0x02
47
#define IVHD_DEV_SELECT_RANGE_START 0x03
48
#define IVHD_DEV_RANGE_END 0x04
49
#define IVHD_DEV_ALIAS 0x42
50
#define IVHD_DEV_ALIAS_RANGE 0x43
51
#define IVHD_DEV_EXT_SELECT 0x46
52
#define IVHD_DEV_EXT_SELECT_RANGE 0x47
53
54
#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
55
#define IVHD_FLAG_PASSPW_EN_MASK 0x02
56
#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
57
#define IVHD_FLAG_ISOC_EN_MASK 0x08
58
59
#define IVMD_FLAG_EXCL_RANGE 0x08
60
#define IVMD_FLAG_UNITY_MAP 0x01
61
62
#define ACPI_DEVFLAG_INITPASS 0x01
63
#define ACPI_DEVFLAG_EXTINT 0x02
64
#define ACPI_DEVFLAG_NMI 0x04
65
#define ACPI_DEVFLAG_SYSMGT1 0x10
66
#define ACPI_DEVFLAG_SYSMGT2 0x20
67
#define ACPI_DEVFLAG_LINT0 0x40
68
#define ACPI_DEVFLAG_LINT1 0x80
69
#define ACPI_DEVFLAG_ATSDIS 0x10000000
70
71
/*
72
* ACPI table definitions
73
*
74
* These data structures are laid over the table to parse the important values
75
* out of it.
76
*/
77
78
/*
79
* structure describing one IOMMU in the ACPI table. Typically followed by one
80
* or more ivhd_entrys.
81
*/
82
struct ivhd_header {
83
u8 type;
84
u8 flags;
85
u16 length;
86
u16 devid;
87
u16 cap_ptr;
88
u64 mmio_phys;
89
u16 pci_seg;
90
u16 info;
91
u32 reserved;
92
} __attribute__((packed));
93
94
/*
95
* A device entry describing which devices a specific IOMMU translates and
96
* which requestor ids they use.
97
*/
98
struct ivhd_entry {
99
u8 type;
100
u16 devid;
101
u8 flags;
102
u32 ext;
103
} __attribute__((packed));
104
105
/*
106
* An AMD IOMMU memory definition structure. It defines things like exclusion
107
* ranges for devices and regions that should be unity mapped.
108
*/
109
struct ivmd_header {
110
u8 type;
111
u8 flags;
112
u16 length;
113
u16 devid;
114
u16 aux;
115
u64 resv;
116
u64 range_start;
117
u64 range_length;
118
} __attribute__((packed));
119
120
bool amd_iommu_dump;
121
122
static int __initdata amd_iommu_detected;
123
static bool __initdata amd_iommu_disabled;
124
125
u16 amd_iommu_last_bdf; /* largest PCI device id we have
126
to handle */
127
LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
128
we find in ACPI */
129
bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
130
131
LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
132
system */
133
134
/* Array to assign indices to IOMMUs*/
135
struct amd_iommu *amd_iommus[MAX_IOMMUS];
136
int amd_iommus_present;
137
138
/* IOMMUs have a non-present cache? */
139
bool amd_iommu_np_cache __read_mostly;
140
bool amd_iommu_iotlb_sup __read_mostly = true;
141
142
/*
143
* The ACPI table parsing functions set this variable on an error
144
*/
145
static int __initdata amd_iommu_init_err;
146
147
/*
148
* List of protection domains - used during resume
149
*/
150
LIST_HEAD(amd_iommu_pd_list);
151
spinlock_t amd_iommu_pd_lock;
152
153
/*
154
* Pointer to the device table which is shared by all AMD IOMMUs
155
* it is indexed by the PCI device id or the HT unit id and contains
156
* information about the domain the device belongs to as well as the
157
* page table root pointer.
158
*/
159
struct dev_table_entry *amd_iommu_dev_table;
160
161
/*
162
* The alias table is a driver specific data structure which contains the
163
* mappings of the PCI device ids to the actual requestor ids on the IOMMU.
164
* More than one device can share the same requestor id.
165
*/
166
u16 *amd_iommu_alias_table;
167
168
/*
169
* The rlookup table is used to find the IOMMU which is responsible
170
* for a specific device. It is also indexed by the PCI device id.
171
*/
172
struct amd_iommu **amd_iommu_rlookup_table;
173
174
/*
175
* AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
176
* to know which ones are already in use.
177
*/
178
unsigned long *amd_iommu_pd_alloc_bitmap;
179
180
static u32 dev_table_size; /* size of the device table */
181
static u32 alias_table_size; /* size of the alias table */
182
static u32 rlookup_table_size; /* size if the rlookup table */
183
184
/*
185
* This function flushes all internal caches of
186
* the IOMMU used by this driver.
187
*/
188
extern void iommu_flush_all_caches(struct amd_iommu *iommu);
189
190
static inline void update_last_devid(u16 devid)
191
{
192
if (devid > amd_iommu_last_bdf)
193
amd_iommu_last_bdf = devid;
194
}
195
196
static inline unsigned long tbl_size(int entry_size)
197
{
198
unsigned shift = PAGE_SHIFT +
199
get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
200
201
return 1UL << shift;
202
}
203
204
/* Access to l1 and l2 indexed register spaces */
205
206
static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
207
{
208
u32 val;
209
210
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
211
pci_read_config_dword(iommu->dev, 0xfc, &val);
212
return val;
213
}
214
215
static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
216
{
217
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
218
pci_write_config_dword(iommu->dev, 0xfc, val);
219
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
220
}
221
222
static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
223
{
224
u32 val;
225
226
pci_write_config_dword(iommu->dev, 0xf0, address);
227
pci_read_config_dword(iommu->dev, 0xf4, &val);
228
return val;
229
}
230
231
static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
232
{
233
pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
234
pci_write_config_dword(iommu->dev, 0xf4, val);
235
}
236
237
/****************************************************************************
238
*
239
* AMD IOMMU MMIO register space handling functions
240
*
241
* These functions are used to program the IOMMU device registers in
242
* MMIO space required for that driver.
243
*
244
****************************************************************************/
245
246
/*
247
* This function set the exclusion range in the IOMMU. DMA accesses to the
248
* exclusion range are passed through untranslated
249
*/
250
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
251
{
252
u64 start = iommu->exclusion_start & PAGE_MASK;
253
u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
254
u64 entry;
255
256
if (!iommu->exclusion_start)
257
return;
258
259
entry = start | MMIO_EXCL_ENABLE_MASK;
260
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
261
&entry, sizeof(entry));
262
263
entry = limit;
264
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
265
&entry, sizeof(entry));
266
}
267
268
/* Programs the physical address of the device table into the IOMMU hardware */
269
static void __init iommu_set_device_table(struct amd_iommu *iommu)
270
{
271
u64 entry;
272
273
BUG_ON(iommu->mmio_base == NULL);
274
275
entry = virt_to_phys(amd_iommu_dev_table);
276
entry |= (dev_table_size >> 12) - 1;
277
memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
278
&entry, sizeof(entry));
279
}
280
281
/* Generic functions to enable/disable certain features of the IOMMU. */
282
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
283
{
284
u32 ctrl;
285
286
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
287
ctrl |= (1 << bit);
288
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
289
}
290
291
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
292
{
293
u32 ctrl;
294
295
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
296
ctrl &= ~(1 << bit);
297
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
298
}
299
300
/* Function to enable the hardware */
301
static void iommu_enable(struct amd_iommu *iommu)
302
{
303
static const char * const feat_str[] = {
304
"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
305
"IA", "GA", "HE", "PC", NULL
306
};
307
int i;
308
309
printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx",
310
dev_name(&iommu->dev->dev), iommu->cap_ptr);
311
312
if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
313
printk(KERN_CONT " extended features: ");
314
for (i = 0; feat_str[i]; ++i)
315
if (iommu_feature(iommu, (1ULL << i)))
316
printk(KERN_CONT " %s", feat_str[i]);
317
}
318
printk(KERN_CONT "\n");
319
320
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
321
}
322
323
static void iommu_disable(struct amd_iommu *iommu)
324
{
325
/* Disable command buffer */
326
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
327
328
/* Disable event logging and event interrupts */
329
iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
330
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
331
332
/* Disable IOMMU hardware itself */
333
iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
334
}
335
336
/*
337
* mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
338
* the system has one.
339
*/
340
static u8 * __init iommu_map_mmio_space(u64 address)
341
{
342
u8 *ret;
343
344
if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
345
pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
346
address);
347
pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
348
return NULL;
349
}
350
351
ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
352
if (ret != NULL)
353
return ret;
354
355
release_mem_region(address, MMIO_REGION_LENGTH);
356
357
return NULL;
358
}
359
360
static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
361
{
362
if (iommu->mmio_base)
363
iounmap(iommu->mmio_base);
364
release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
365
}
366
367
/****************************************************************************
368
*
369
* The functions below belong to the first pass of AMD IOMMU ACPI table
370
* parsing. In this pass we try to find out the highest device id this
371
* code has to handle. Upon this information the size of the shared data
372
* structures is determined later.
373
*
374
****************************************************************************/
375
376
/*
377
* This function calculates the length of a given IVHD entry
378
*/
379
static inline int ivhd_entry_length(u8 *ivhd)
380
{
381
return 0x04 << (*ivhd >> 6);
382
}
383
384
/*
385
* This function reads the last device id the IOMMU has to handle from the PCI
386
* capability header for this IOMMU
387
*/
388
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
389
{
390
u32 cap;
391
392
cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
393
update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
394
395
return 0;
396
}
397
398
/*
399
* After reading the highest device id from the IOMMU PCI capability header
400
* this function looks if there is a higher device id defined in the ACPI table
401
*/
402
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
403
{
404
u8 *p = (void *)h, *end = (void *)h;
405
struct ivhd_entry *dev;
406
407
p += sizeof(*h);
408
end += h->length;
409
410
find_last_devid_on_pci(PCI_BUS(h->devid),
411
PCI_SLOT(h->devid),
412
PCI_FUNC(h->devid),
413
h->cap_ptr);
414
415
while (p < end) {
416
dev = (struct ivhd_entry *)p;
417
switch (dev->type) {
418
case IVHD_DEV_SELECT:
419
case IVHD_DEV_RANGE_END:
420
case IVHD_DEV_ALIAS:
421
case IVHD_DEV_EXT_SELECT:
422
/* all the above subfield types refer to device ids */
423
update_last_devid(dev->devid);
424
break;
425
default:
426
break;
427
}
428
p += ivhd_entry_length(p);
429
}
430
431
WARN_ON(p != end);
432
433
return 0;
434
}
435
436
/*
437
* Iterate over all IVHD entries in the ACPI table and find the highest device
438
* id which we need to handle. This is the first of three functions which parse
439
* the ACPI table. So we check the checksum here.
440
*/
441
static int __init find_last_devid_acpi(struct acpi_table_header *table)
442
{
443
int i;
444
u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
445
struct ivhd_header *h;
446
447
/*
448
* Validate checksum here so we don't need to do it when
449
* we actually parse the table
450
*/
451
for (i = 0; i < table->length; ++i)
452
checksum += p[i];
453
if (checksum != 0) {
454
/* ACPI table corrupt */
455
amd_iommu_init_err = -ENODEV;
456
return 0;
457
}
458
459
p += IVRS_HEADER_LENGTH;
460
461
end += table->length;
462
while (p < end) {
463
h = (struct ivhd_header *)p;
464
switch (h->type) {
465
case ACPI_IVHD_TYPE:
466
find_last_devid_from_ivhd(h);
467
break;
468
default:
469
break;
470
}
471
p += h->length;
472
}
473
WARN_ON(p != end);
474
475
return 0;
476
}
477
478
/****************************************************************************
479
*
480
* The following functions belong the the code path which parses the ACPI table
481
* the second time. In this ACPI parsing iteration we allocate IOMMU specific
482
* data structures, initialize the device/alias/rlookup table and also
483
* basically initialize the hardware.
484
*
485
****************************************************************************/
486
487
/*
488
* Allocates the command buffer. This buffer is per AMD IOMMU. We can
489
* write commands to that buffer later and the IOMMU will execute them
490
* asynchronously
491
*/
492
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
493
{
494
u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
495
get_order(CMD_BUFFER_SIZE));
496
497
if (cmd_buf == NULL)
498
return NULL;
499
500
iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
501
502
return cmd_buf;
503
}
504
505
/*
506
* This function resets the command buffer if the IOMMU stopped fetching
507
* commands from it.
508
*/
509
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
510
{
511
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
512
513
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
514
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
515
516
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
517
}
518
519
/*
520
* This function writes the command buffer address to the hardware and
521
* enables it.
522
*/
523
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
524
{
525
u64 entry;
526
527
BUG_ON(iommu->cmd_buf == NULL);
528
529
entry = (u64)virt_to_phys(iommu->cmd_buf);
530
entry |= MMIO_CMD_SIZE_512;
531
532
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
533
&entry, sizeof(entry));
534
535
amd_iommu_reset_cmd_buffer(iommu);
536
iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
537
}
538
539
static void __init free_command_buffer(struct amd_iommu *iommu)
540
{
541
free_pages((unsigned long)iommu->cmd_buf,
542
get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
543
}
544
545
/* allocates the memory where the IOMMU will log its events to */
546
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
547
{
548
iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
549
get_order(EVT_BUFFER_SIZE));
550
551
if (iommu->evt_buf == NULL)
552
return NULL;
553
554
iommu->evt_buf_size = EVT_BUFFER_SIZE;
555
556
return iommu->evt_buf;
557
}
558
559
static void iommu_enable_event_buffer(struct amd_iommu *iommu)
560
{
561
u64 entry;
562
563
BUG_ON(iommu->evt_buf == NULL);
564
565
entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
566
567
memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
568
&entry, sizeof(entry));
569
570
/* set head and tail to zero manually */
571
writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
572
writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
573
574
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
575
}
576
577
static void __init free_event_buffer(struct amd_iommu *iommu)
578
{
579
free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
580
}
581
582
/* sets a specific bit in the device table entry. */
583
static void set_dev_entry_bit(u16 devid, u8 bit)
584
{
585
int i = (bit >> 5) & 0x07;
586
int _bit = bit & 0x1f;
587
588
amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
589
}
590
591
static int get_dev_entry_bit(u16 devid, u8 bit)
592
{
593
int i = (bit >> 5) & 0x07;
594
int _bit = bit & 0x1f;
595
596
return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
597
}
598
599
600
void amd_iommu_apply_erratum_63(u16 devid)
601
{
602
int sysmgt;
603
604
sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
605
(get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
606
607
if (sysmgt == 0x01)
608
set_dev_entry_bit(devid, DEV_ENTRY_IW);
609
}
610
611
/* Writes the specific IOMMU for a device into the rlookup table */
612
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
613
{
614
amd_iommu_rlookup_table[devid] = iommu;
615
}
616
617
/*
618
* This function takes the device specific flags read from the ACPI
619
* table and sets up the device table entry with that information
620
*/
621
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
622
u16 devid, u32 flags, u32 ext_flags)
623
{
624
if (flags & ACPI_DEVFLAG_INITPASS)
625
set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
626
if (flags & ACPI_DEVFLAG_EXTINT)
627
set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
628
if (flags & ACPI_DEVFLAG_NMI)
629
set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
630
if (flags & ACPI_DEVFLAG_SYSMGT1)
631
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
632
if (flags & ACPI_DEVFLAG_SYSMGT2)
633
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
634
if (flags & ACPI_DEVFLAG_LINT0)
635
set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
636
if (flags & ACPI_DEVFLAG_LINT1)
637
set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
638
639
amd_iommu_apply_erratum_63(devid);
640
641
set_iommu_for_device(iommu, devid);
642
}
643
644
/*
645
* Reads the device exclusion range from ACPI and initialize IOMMU with
646
* it
647
*/
648
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
649
{
650
struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
651
652
if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
653
return;
654
655
if (iommu) {
656
/*
657
* We only can configure exclusion ranges per IOMMU, not
658
* per device. But we can enable the exclusion range per
659
* device. This is done here
660
*/
661
set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
662
iommu->exclusion_start = m->range_start;
663
iommu->exclusion_length = m->range_length;
664
}
665
}
666
667
/*
668
* This function reads some important data from the IOMMU PCI space and
669
* initializes the driver data structure with it. It reads the hardware
670
* capabilities and the first/last device entries
671
*/
672
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
673
{
674
int cap_ptr = iommu->cap_ptr;
675
u32 range, misc, low, high;
676
int i, j;
677
678
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
679
&iommu->cap);
680
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
681
&range);
682
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
683
&misc);
684
685
iommu->first_device = calc_devid(MMIO_GET_BUS(range),
686
MMIO_GET_FD(range));
687
iommu->last_device = calc_devid(MMIO_GET_BUS(range),
688
MMIO_GET_LD(range));
689
iommu->evt_msi_num = MMIO_MSI_NUM(misc);
690
691
if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
692
amd_iommu_iotlb_sup = false;
693
694
/* read extended feature bits */
695
low = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
696
high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);
697
698
iommu->features = ((u64)high << 32) | low;
699
700
if (!is_rd890_iommu(iommu->dev))
701
return;
702
703
/*
704
* Some rd890 systems may not be fully reconfigured by the BIOS, so
705
* it's necessary for us to store this information so it can be
706
* reprogrammed on resume
707
*/
708
709
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
710
&iommu->stored_addr_lo);
711
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
712
&iommu->stored_addr_hi);
713
714
/* Low bit locks writes to configuration space */
715
iommu->stored_addr_lo &= ~1;
716
717
for (i = 0; i < 6; i++)
718
for (j = 0; j < 0x12; j++)
719
iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
720
721
for (i = 0; i < 0x83; i++)
722
iommu->stored_l2[i] = iommu_read_l2(iommu, i);
723
}
724
725
/*
726
* Takes a pointer to an AMD IOMMU entry in the ACPI table and
727
* initializes the hardware and our data structures with it.
728
*/
729
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
730
struct ivhd_header *h)
731
{
732
u8 *p = (u8 *)h;
733
u8 *end = p, flags = 0;
734
u16 devid = 0, devid_start = 0, devid_to = 0;
735
u32 dev_i, ext_flags = 0;
736
bool alias = false;
737
struct ivhd_entry *e;
738
739
/*
740
* First save the recommended feature enable bits from ACPI
741
*/
742
iommu->acpi_flags = h->flags;
743
744
/*
745
* Done. Now parse the device entries
746
*/
747
p += sizeof(struct ivhd_header);
748
end += h->length;
749
750
751
while (p < end) {
752
e = (struct ivhd_entry *)p;
753
switch (e->type) {
754
case IVHD_DEV_ALL:
755
756
DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
757
" last device %02x:%02x.%x flags: %02x\n",
758
PCI_BUS(iommu->first_device),
759
PCI_SLOT(iommu->first_device),
760
PCI_FUNC(iommu->first_device),
761
PCI_BUS(iommu->last_device),
762
PCI_SLOT(iommu->last_device),
763
PCI_FUNC(iommu->last_device),
764
e->flags);
765
766
for (dev_i = iommu->first_device;
767
dev_i <= iommu->last_device; ++dev_i)
768
set_dev_entry_from_acpi(iommu, dev_i,
769
e->flags, 0);
770
break;
771
case IVHD_DEV_SELECT:
772
773
DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
774
"flags: %02x\n",
775
PCI_BUS(e->devid),
776
PCI_SLOT(e->devid),
777
PCI_FUNC(e->devid),
778
e->flags);
779
780
devid = e->devid;
781
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
782
break;
783
case IVHD_DEV_SELECT_RANGE_START:
784
785
DUMP_printk(" DEV_SELECT_RANGE_START\t "
786
"devid: %02x:%02x.%x flags: %02x\n",
787
PCI_BUS(e->devid),
788
PCI_SLOT(e->devid),
789
PCI_FUNC(e->devid),
790
e->flags);
791
792
devid_start = e->devid;
793
flags = e->flags;
794
ext_flags = 0;
795
alias = false;
796
break;
797
case IVHD_DEV_ALIAS:
798
799
DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
800
"flags: %02x devid_to: %02x:%02x.%x\n",
801
PCI_BUS(e->devid),
802
PCI_SLOT(e->devid),
803
PCI_FUNC(e->devid),
804
e->flags,
805
PCI_BUS(e->ext >> 8),
806
PCI_SLOT(e->ext >> 8),
807
PCI_FUNC(e->ext >> 8));
808
809
devid = e->devid;
810
devid_to = e->ext >> 8;
811
set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
812
set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
813
amd_iommu_alias_table[devid] = devid_to;
814
break;
815
case IVHD_DEV_ALIAS_RANGE:
816
817
DUMP_printk(" DEV_ALIAS_RANGE\t\t "
818
"devid: %02x:%02x.%x flags: %02x "
819
"devid_to: %02x:%02x.%x\n",
820
PCI_BUS(e->devid),
821
PCI_SLOT(e->devid),
822
PCI_FUNC(e->devid),
823
e->flags,
824
PCI_BUS(e->ext >> 8),
825
PCI_SLOT(e->ext >> 8),
826
PCI_FUNC(e->ext >> 8));
827
828
devid_start = e->devid;
829
flags = e->flags;
830
devid_to = e->ext >> 8;
831
ext_flags = 0;
832
alias = true;
833
break;
834
case IVHD_DEV_EXT_SELECT:
835
836
DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
837
"flags: %02x ext: %08x\n",
838
PCI_BUS(e->devid),
839
PCI_SLOT(e->devid),
840
PCI_FUNC(e->devid),
841
e->flags, e->ext);
842
843
devid = e->devid;
844
set_dev_entry_from_acpi(iommu, devid, e->flags,
845
e->ext);
846
break;
847
case IVHD_DEV_EXT_SELECT_RANGE:
848
849
DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
850
"%02x:%02x.%x flags: %02x ext: %08x\n",
851
PCI_BUS(e->devid),
852
PCI_SLOT(e->devid),
853
PCI_FUNC(e->devid),
854
e->flags, e->ext);
855
856
devid_start = e->devid;
857
flags = e->flags;
858
ext_flags = e->ext;
859
alias = false;
860
break;
861
case IVHD_DEV_RANGE_END:
862
863
DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
864
PCI_BUS(e->devid),
865
PCI_SLOT(e->devid),
866
PCI_FUNC(e->devid));
867
868
devid = e->devid;
869
for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
870
if (alias) {
871
amd_iommu_alias_table[dev_i] = devid_to;
872
set_dev_entry_from_acpi(iommu,
873
devid_to, flags, ext_flags);
874
}
875
set_dev_entry_from_acpi(iommu, dev_i,
876
flags, ext_flags);
877
}
878
break;
879
default:
880
break;
881
}
882
883
p += ivhd_entry_length(p);
884
}
885
}
886
887
/* Initializes the device->iommu mapping for the driver */
888
static int __init init_iommu_devices(struct amd_iommu *iommu)
889
{
890
u32 i;
891
892
for (i = iommu->first_device; i <= iommu->last_device; ++i)
893
set_iommu_for_device(iommu, i);
894
895
return 0;
896
}
897
898
static void __init free_iommu_one(struct amd_iommu *iommu)
899
{
900
free_command_buffer(iommu);
901
free_event_buffer(iommu);
902
iommu_unmap_mmio_space(iommu);
903
}
904
905
static void __init free_iommu_all(void)
906
{
907
struct amd_iommu *iommu, *next;
908
909
for_each_iommu_safe(iommu, next) {
910
list_del(&iommu->list);
911
free_iommu_one(iommu);
912
kfree(iommu);
913
}
914
}
915
916
/*
917
* This function clues the initialization function for one IOMMU
918
* together and also allocates the command buffer and programs the
919
* hardware. It does NOT enable the IOMMU. This is done afterwards.
920
*/
921
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
922
{
923
spin_lock_init(&iommu->lock);
924
925
/* Add IOMMU to internal data structures */
926
list_add_tail(&iommu->list, &amd_iommu_list);
927
iommu->index = amd_iommus_present++;
928
929
if (unlikely(iommu->index >= MAX_IOMMUS)) {
930
WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
931
return -ENOSYS;
932
}
933
934
/* Index is fine - add IOMMU to the array */
935
amd_iommus[iommu->index] = iommu;
936
937
/*
938
* Copy data from ACPI table entry to the iommu struct
939
*/
940
iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
941
if (!iommu->dev)
942
return 1;
943
944
iommu->cap_ptr = h->cap_ptr;
945
iommu->pci_seg = h->pci_seg;
946
iommu->mmio_phys = h->mmio_phys;
947
iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
948
if (!iommu->mmio_base)
949
return -ENOMEM;
950
951
iommu->cmd_buf = alloc_command_buffer(iommu);
952
if (!iommu->cmd_buf)
953
return -ENOMEM;
954
955
iommu->evt_buf = alloc_event_buffer(iommu);
956
if (!iommu->evt_buf)
957
return -ENOMEM;
958
959
iommu->int_enabled = false;
960
961
init_iommu_from_pci(iommu);
962
init_iommu_from_acpi(iommu, h);
963
init_iommu_devices(iommu);
964
965
if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
966
amd_iommu_np_cache = true;
967
968
return pci_enable_device(iommu->dev);
969
}
970
971
/*
972
* Iterates over all IOMMU entries in the ACPI table, allocates the
973
* IOMMU structure and initializes it with init_iommu_one()
974
*/
975
static int __init init_iommu_all(struct acpi_table_header *table)
976
{
977
u8 *p = (u8 *)table, *end = (u8 *)table;
978
struct ivhd_header *h;
979
struct amd_iommu *iommu;
980
int ret;
981
982
end += table->length;
983
p += IVRS_HEADER_LENGTH;
984
985
while (p < end) {
986
h = (struct ivhd_header *)p;
987
switch (*p) {
988
case ACPI_IVHD_TYPE:
989
990
DUMP_printk("device: %02x:%02x.%01x cap: %04x "
991
"seg: %d flags: %01x info %04x\n",
992
PCI_BUS(h->devid), PCI_SLOT(h->devid),
993
PCI_FUNC(h->devid), h->cap_ptr,
994
h->pci_seg, h->flags, h->info);
995
DUMP_printk(" mmio-addr: %016llx\n",
996
h->mmio_phys);
997
998
iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
999
if (iommu == NULL) {
1000
amd_iommu_init_err = -ENOMEM;
1001
return 0;
1002
}
1003
1004
ret = init_iommu_one(iommu, h);
1005
if (ret) {
1006
amd_iommu_init_err = ret;
1007
return 0;
1008
}
1009
break;
1010
default:
1011
break;
1012
}
1013
p += h->length;
1014
1015
}
1016
WARN_ON(p != end);
1017
1018
return 0;
1019
}
1020
1021
/****************************************************************************
1022
*
1023
* The following functions initialize the MSI interrupts for all IOMMUs
1024
* in the system. Its a bit challenging because there could be multiple
1025
* IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
1026
* pci_dev.
1027
*
1028
****************************************************************************/
1029
1030
static int iommu_setup_msi(struct amd_iommu *iommu)
1031
{
1032
int r;
1033
1034
if (pci_enable_msi(iommu->dev))
1035
return 1;
1036
1037
r = request_threaded_irq(iommu->dev->irq,
1038
amd_iommu_int_handler,
1039
amd_iommu_int_thread,
1040
0, "AMD-Vi",
1041
iommu->dev);
1042
1043
if (r) {
1044
pci_disable_msi(iommu->dev);
1045
return 1;
1046
}
1047
1048
iommu->int_enabled = true;
1049
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1050
1051
return 0;
1052
}
1053
1054
static int iommu_init_msi(struct amd_iommu *iommu)
1055
{
1056
if (iommu->int_enabled)
1057
return 0;
1058
1059
if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1060
return iommu_setup_msi(iommu);
1061
1062
return 1;
1063
}
1064
1065
/****************************************************************************
1066
*
1067
* The next functions belong to the third pass of parsing the ACPI
1068
* table. In this last pass the memory mapping requirements are
1069
* gathered (like exclusion and unity mapping reanges).
1070
*
1071
****************************************************************************/
1072
1073
static void __init free_unity_maps(void)
1074
{
1075
struct unity_map_entry *entry, *next;
1076
1077
list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
1078
list_del(&entry->list);
1079
kfree(entry);
1080
}
1081
}
1082
1083
/* called when we find an exclusion range definition in ACPI */
1084
static int __init init_exclusion_range(struct ivmd_header *m)
1085
{
1086
int i;
1087
1088
switch (m->type) {
1089
case ACPI_IVMD_TYPE:
1090
set_device_exclusion_range(m->devid, m);
1091
break;
1092
case ACPI_IVMD_TYPE_ALL:
1093
for (i = 0; i <= amd_iommu_last_bdf; ++i)
1094
set_device_exclusion_range(i, m);
1095
break;
1096
case ACPI_IVMD_TYPE_RANGE:
1097
for (i = m->devid; i <= m->aux; ++i)
1098
set_device_exclusion_range(i, m);
1099
break;
1100
default:
1101
break;
1102
}
1103
1104
return 0;
1105
}
1106
1107
/* called for unity map ACPI definition */
1108
static int __init init_unity_map_range(struct ivmd_header *m)
1109
{
1110
struct unity_map_entry *e = 0;
1111
char *s;
1112
1113
e = kzalloc(sizeof(*e), GFP_KERNEL);
1114
if (e == NULL)
1115
return -ENOMEM;
1116
1117
switch (m->type) {
1118
default:
1119
kfree(e);
1120
return 0;
1121
case ACPI_IVMD_TYPE:
1122
s = "IVMD_TYPEi\t\t\t";
1123
e->devid_start = e->devid_end = m->devid;
1124
break;
1125
case ACPI_IVMD_TYPE_ALL:
1126
s = "IVMD_TYPE_ALL\t\t";
1127
e->devid_start = 0;
1128
e->devid_end = amd_iommu_last_bdf;
1129
break;
1130
case ACPI_IVMD_TYPE_RANGE:
1131
s = "IVMD_TYPE_RANGE\t\t";
1132
e->devid_start = m->devid;
1133
e->devid_end = m->aux;
1134
break;
1135
}
1136
e->address_start = PAGE_ALIGN(m->range_start);
1137
e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1138
e->prot = m->flags >> 1;
1139
1140
DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1141
" range_start: %016llx range_end: %016llx flags: %x\n", s,
1142
PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1143
PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1144
PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1145
e->address_start, e->address_end, m->flags);
1146
1147
list_add_tail(&e->list, &amd_iommu_unity_map);
1148
1149
return 0;
1150
}
1151
1152
/* iterates over all memory definitions we find in the ACPI table */
1153
static int __init init_memory_definitions(struct acpi_table_header *table)
1154
{
1155
u8 *p = (u8 *)table, *end = (u8 *)table;
1156
struct ivmd_header *m;
1157
1158
end += table->length;
1159
p += IVRS_HEADER_LENGTH;
1160
1161
while (p < end) {
1162
m = (struct ivmd_header *)p;
1163
if (m->flags & IVMD_FLAG_EXCL_RANGE)
1164
init_exclusion_range(m);
1165
else if (m->flags & IVMD_FLAG_UNITY_MAP)
1166
init_unity_map_range(m);
1167
1168
p += m->length;
1169
}
1170
1171
return 0;
1172
}
1173
1174
/*
1175
* Init the device table to not allow DMA access for devices and
1176
* suppress all page faults
1177
*/
1178
static void init_device_table(void)
1179
{
1180
u32 devid;
1181
1182
for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1183
set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1184
set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
1185
}
1186
}
1187
1188
static void iommu_init_flags(struct amd_iommu *iommu)
1189
{
1190
iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
1191
iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
1192
iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
1193
1194
iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
1195
iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
1196
iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
1197
1198
iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
1199
iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
1200
iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
1201
1202
iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
1203
iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
1204
iommu_feature_disable(iommu, CONTROL_ISOC_EN);
1205
1206
/*
1207
* make IOMMU memory accesses cache coherent
1208
*/
1209
iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1210
}
1211
1212
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1213
{
1214
int i, j;
1215
u32 ioc_feature_control;
1216
struct pci_dev *pdev = NULL;
1217
1218
/* RD890 BIOSes may not have completely reconfigured the iommu */
1219
if (!is_rd890_iommu(iommu->dev))
1220
return;
1221
1222
/*
1223
* First, we need to ensure that the iommu is enabled. This is
1224
* controlled by a register in the northbridge
1225
*/
1226
pdev = pci_get_bus_and_slot(iommu->dev->bus->number, PCI_DEVFN(0, 0));
1227
1228
if (!pdev)
1229
return;
1230
1231
/* Select Northbridge indirect register 0x75 and enable writing */
1232
pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
1233
pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
1234
1235
/* Enable the iommu */
1236
if (!(ioc_feature_control & 0x1))
1237
pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
1238
1239
pci_dev_put(pdev);
1240
1241
/* Restore the iommu BAR */
1242
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1243
iommu->stored_addr_lo);
1244
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
1245
iommu->stored_addr_hi);
1246
1247
/* Restore the l1 indirect regs for each of the 6 l1s */
1248
for (i = 0; i < 6; i++)
1249
for (j = 0; j < 0x12; j++)
1250
iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
1251
1252
/* Restore the l2 indirect regs */
1253
for (i = 0; i < 0x83; i++)
1254
iommu_write_l2(iommu, i, iommu->stored_l2[i]);
1255
1256
/* Lock PCI setup registers */
1257
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1258
iommu->stored_addr_lo | 1);
1259
}
1260
1261
/*
1262
* This function finally enables all IOMMUs found in the system after
1263
* they have been initialized
1264
*/
1265
static void enable_iommus(void)
1266
{
1267
struct amd_iommu *iommu;
1268
1269
for_each_iommu(iommu) {
1270
iommu_disable(iommu);
1271
iommu_init_flags(iommu);
1272
iommu_set_device_table(iommu);
1273
iommu_enable_command_buffer(iommu);
1274
iommu_enable_event_buffer(iommu);
1275
iommu_set_exclusion_range(iommu);
1276
iommu_init_msi(iommu);
1277
iommu_enable(iommu);
1278
iommu_flush_all_caches(iommu);
1279
}
1280
}
1281
1282
static void disable_iommus(void)
1283
{
1284
struct amd_iommu *iommu;
1285
1286
for_each_iommu(iommu)
1287
iommu_disable(iommu);
1288
}
1289
1290
/*
1291
* Suspend/Resume support
1292
* disable suspend until real resume implemented
1293
*/
1294
1295
static void amd_iommu_resume(void)
1296
{
1297
struct amd_iommu *iommu;
1298
1299
for_each_iommu(iommu)
1300
iommu_apply_resume_quirks(iommu);
1301
1302
/* re-load the hardware */
1303
enable_iommus();
1304
1305
/*
1306
* we have to flush after the IOMMUs are enabled because a
1307
* disabled IOMMU will never execute the commands we send
1308
*/
1309
for_each_iommu(iommu)
1310
iommu_flush_all_caches(iommu);
1311
}
1312
1313
static int amd_iommu_suspend(void)
1314
{
1315
/* disable IOMMUs to go out of the way for BIOS */
1316
disable_iommus();
1317
1318
return 0;
1319
}
1320
1321
static struct syscore_ops amd_iommu_syscore_ops = {
1322
.suspend = amd_iommu_suspend,
1323
.resume = amd_iommu_resume,
1324
};
1325
1326
/*
1327
* This is the core init function for AMD IOMMU hardware in the system.
1328
* This function is called from the generic x86 DMA layer initialization
1329
* code.
1330
*
1331
* This function basically parses the ACPI table for AMD IOMMU (IVRS)
1332
* three times:
1333
*
1334
* 1 pass) Find the highest PCI device id the driver has to handle.
1335
* Upon this information the size of the data structures is
1336
* determined that needs to be allocated.
1337
*
1338
* 2 pass) Initialize the data structures just allocated with the
1339
* information in the ACPI table about available AMD IOMMUs
1340
* in the system. It also maps the PCI devices in the
1341
* system to specific IOMMUs
1342
*
1343
* 3 pass) After the basic data structures are allocated and
1344
* initialized we update them with information about memory
1345
* remapping requirements parsed out of the ACPI table in
1346
* this last pass.
1347
*
1348
* After that the hardware is initialized and ready to go. In the last
1349
* step we do some Linux specific things like registering the driver in
1350
* the dma_ops interface and initializing the suspend/resume support
1351
* functions. Finally it prints some information about AMD IOMMUs and
1352
* the driver state and enables the hardware.
1353
*/
1354
static int __init amd_iommu_init(void)
1355
{
1356
int i, ret = 0;
1357
1358
/*
1359
* First parse ACPI tables to find the largest Bus/Dev/Func
1360
* we need to handle. Upon this information the shared data
1361
* structures for the IOMMUs in the system will be allocated
1362
*/
1363
if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1364
return -ENODEV;
1365
1366
ret = amd_iommu_init_err;
1367
if (ret)
1368
goto out;
1369
1370
dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1371
alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1372
rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1373
1374
ret = -ENOMEM;
1375
1376
/* Device table - directly used by all IOMMUs */
1377
amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1378
get_order(dev_table_size));
1379
if (amd_iommu_dev_table == NULL)
1380
goto out;
1381
1382
/*
1383
* Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1384
* IOMMU see for that device
1385
*/
1386
amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1387
get_order(alias_table_size));
1388
if (amd_iommu_alias_table == NULL)
1389
goto free;
1390
1391
/* IOMMU rlookup table - find the IOMMU for a specific device */
1392
amd_iommu_rlookup_table = (void *)__get_free_pages(
1393
GFP_KERNEL | __GFP_ZERO,
1394
get_order(rlookup_table_size));
1395
if (amd_iommu_rlookup_table == NULL)
1396
goto free;
1397
1398
amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1399
GFP_KERNEL | __GFP_ZERO,
1400
get_order(MAX_DOMAIN_ID/8));
1401
if (amd_iommu_pd_alloc_bitmap == NULL)
1402
goto free;
1403
1404
/* init the device table */
1405
init_device_table();
1406
1407
/*
1408
* let all alias entries point to itself
1409
*/
1410
for (i = 0; i <= amd_iommu_last_bdf; ++i)
1411
amd_iommu_alias_table[i] = i;
1412
1413
/*
1414
* never allocate domain 0 because its used as the non-allocated and
1415
* error value placeholder
1416
*/
1417
amd_iommu_pd_alloc_bitmap[0] = 1;
1418
1419
spin_lock_init(&amd_iommu_pd_lock);
1420
1421
/*
1422
* now the data structures are allocated and basically initialized
1423
* start the real acpi table scan
1424
*/
1425
ret = -ENODEV;
1426
if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1427
goto free;
1428
1429
if (amd_iommu_init_err) {
1430
ret = amd_iommu_init_err;
1431
goto free;
1432
}
1433
1434
if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1435
goto free;
1436
1437
if (amd_iommu_init_err) {
1438
ret = amd_iommu_init_err;
1439
goto free;
1440
}
1441
1442
ret = amd_iommu_init_devices();
1443
if (ret)
1444
goto free;
1445
1446
enable_iommus();
1447
1448
if (iommu_pass_through)
1449
ret = amd_iommu_init_passthrough();
1450
else
1451
ret = amd_iommu_init_dma_ops();
1452
1453
if (ret)
1454
goto free_disable;
1455
1456
amd_iommu_init_api();
1457
1458
amd_iommu_init_notifier();
1459
1460
register_syscore_ops(&amd_iommu_syscore_ops);
1461
1462
if (iommu_pass_through)
1463
goto out;
1464
1465
if (amd_iommu_unmap_flush)
1466
printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1467
else
1468
printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1469
1470
x86_platform.iommu_shutdown = disable_iommus;
1471
out:
1472
return ret;
1473
1474
free_disable:
1475
disable_iommus();
1476
1477
free:
1478
amd_iommu_uninit_devices();
1479
1480
free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1481
get_order(MAX_DOMAIN_ID/8));
1482
1483
free_pages((unsigned long)amd_iommu_rlookup_table,
1484
get_order(rlookup_table_size));
1485
1486
free_pages((unsigned long)amd_iommu_alias_table,
1487
get_order(alias_table_size));
1488
1489
free_pages((unsigned long)amd_iommu_dev_table,
1490
get_order(dev_table_size));
1491
1492
free_iommu_all();
1493
1494
free_unity_maps();
1495
1496
#ifdef CONFIG_GART_IOMMU
1497
/*
1498
* We failed to initialize the AMD IOMMU - try fallback to GART
1499
* if possible.
1500
*/
1501
gart_iommu_init();
1502
1503
#endif
1504
1505
goto out;
1506
}
1507
1508
/****************************************************************************
1509
*
1510
* Early detect code. This code runs at IOMMU detection time in the DMA
1511
* layer. It just looks if there is an IVRS ACPI table to detect AMD
1512
* IOMMUs
1513
*
1514
****************************************************************************/
1515
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1516
{
1517
return 0;
1518
}
1519
1520
int __init amd_iommu_detect(void)
1521
{
1522
if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1523
return -ENODEV;
1524
1525
if (amd_iommu_disabled)
1526
return -ENODEV;
1527
1528
if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1529
iommu_detected = 1;
1530
amd_iommu_detected = 1;
1531
x86_init.iommu.iommu_init = amd_iommu_init;
1532
1533
/* Make sure ACS will be enabled */
1534
pci_request_acs();
1535
return 1;
1536
}
1537
return -ENODEV;
1538
}
1539
1540
/****************************************************************************
1541
*
1542
* Parsing functions for the AMD IOMMU specific kernel command line
1543
* options.
1544
*
1545
****************************************************************************/
1546
1547
static int __init parse_amd_iommu_dump(char *str)
1548
{
1549
amd_iommu_dump = true;
1550
1551
return 1;
1552
}
1553
1554
static int __init parse_amd_iommu_options(char *str)
1555
{
1556
for (; *str; ++str) {
1557
if (strncmp(str, "fullflush", 9) == 0)
1558
amd_iommu_unmap_flush = true;
1559
if (strncmp(str, "off", 3) == 0)
1560
amd_iommu_disabled = true;
1561
}
1562
1563
return 1;
1564
}
1565
1566
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1567
__setup("amd_iommu=", parse_amd_iommu_options);
1568
1569
IOMMU_INIT_FINISH(amd_iommu_detect,
1570
gart_iommu_hole_init,
1571
0,
1572
0);
1573
1574