Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kernel/apb_timer.c
10817 views
1
/*
2
* apb_timer.c: Driver for Langwell APB timers
3
*
4
* (C) Copyright 2009 Intel Corporation
5
* Author: Jacob Pan ([email protected])
6
*
7
* This program is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU General Public License
9
* as published by the Free Software Foundation; version 2
10
* of the License.
11
*
12
* Note:
13
* Langwell is the south complex of Intel Moorestown MID platform. There are
14
* eight external timers in total that can be used by the operating system.
15
* The timer information, such as frequency and addresses, is provided to the
16
* OS via SFI tables.
17
* Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18
* individual redirection table entries (RTE).
19
* Unlike HPET, there is no master counter, therefore one of the timers are
20
* used as clocksource. The overall allocation looks like:
21
* - timer 0 - NR_CPUs for per cpu timer
22
* - one timer for clocksource
23
* - one timer for watchdog driver.
24
* It is also worth notice that APB timer does not support true one-shot mode,
25
* free-running mode will be used here to emulate one-shot mode.
26
* APB timer can also be used as broadcast timer along with per cpu local APIC
27
* timer, but by default APB timer has higher rating than local APIC timers.
28
*/
29
30
#include <linux/clocksource.h>
31
#include <linux/clockchips.h>
32
#include <linux/delay.h>
33
#include <linux/errno.h>
34
#include <linux/init.h>
35
#include <linux/sysdev.h>
36
#include <linux/slab.h>
37
#include <linux/pm.h>
38
#include <linux/pci.h>
39
#include <linux/sfi.h>
40
#include <linux/interrupt.h>
41
#include <linux/cpu.h>
42
#include <linux/irq.h>
43
44
#include <asm/fixmap.h>
45
#include <asm/apb_timer.h>
46
#include <asm/mrst.h>
47
48
#define APBT_MASK CLOCKSOURCE_MASK(32)
49
#define APBT_SHIFT 22
50
#define APBT_CLOCKEVENT_RATING 110
51
#define APBT_CLOCKSOURCE_RATING 250
52
#define APBT_MIN_DELTA_USEC 200
53
54
#define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
55
#define APBT_CLOCKEVENT0_NUM (0)
56
#define APBT_CLOCKEVENT1_NUM (1)
57
#define APBT_CLOCKSOURCE_NUM (2)
58
59
static unsigned long apbt_address;
60
static int apb_timer_block_enabled;
61
static void __iomem *apbt_virt_address;
62
static int phy_cs_timer_id;
63
64
/*
65
* Common DW APB timer info
66
*/
67
static uint64_t apbt_freq;
68
69
static void apbt_set_mode(enum clock_event_mode mode,
70
struct clock_event_device *evt);
71
static int apbt_next_event(unsigned long delta,
72
struct clock_event_device *evt);
73
static cycle_t apbt_read_clocksource(struct clocksource *cs);
74
static void apbt_restart_clocksource(struct clocksource *cs);
75
76
struct apbt_dev {
77
struct clock_event_device evt;
78
unsigned int num;
79
int cpu;
80
unsigned int irq;
81
unsigned int tick;
82
unsigned int count;
83
unsigned int flags;
84
char name[10];
85
};
86
87
static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
88
89
#ifdef CONFIG_SMP
90
static unsigned int apbt_num_timers_used;
91
static struct apbt_dev *apbt_devs;
92
#endif
93
94
static inline unsigned long apbt_readl_reg(unsigned long a)
95
{
96
return readl(apbt_virt_address + a);
97
}
98
99
static inline void apbt_writel_reg(unsigned long d, unsigned long a)
100
{
101
writel(d, apbt_virt_address + a);
102
}
103
104
static inline unsigned long apbt_readl(int n, unsigned long a)
105
{
106
return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
107
}
108
109
static inline void apbt_writel(int n, unsigned long d, unsigned long a)
110
{
111
writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
112
}
113
114
static inline void apbt_set_mapping(void)
115
{
116
struct sfi_timer_table_entry *mtmr;
117
118
if (apbt_virt_address) {
119
pr_debug("APBT base already mapped\n");
120
return;
121
}
122
mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
123
if (mtmr == NULL) {
124
printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
125
APBT_CLOCKEVENT0_NUM);
126
return;
127
}
128
apbt_address = (unsigned long)mtmr->phys_addr;
129
if (!apbt_address) {
130
printk(KERN_WARNING "No timer base from SFI, use default\n");
131
apbt_address = APBT_DEFAULT_BASE;
132
}
133
apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
134
if (apbt_virt_address) {
135
pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
136
(void *)apbt_address, (void *)apbt_virt_address);
137
} else {
138
pr_debug("Failed mapping APBT phy address at %p\n",\
139
(void *)apbt_address);
140
goto panic_noapbt;
141
}
142
apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
143
sfi_free_mtmr(mtmr);
144
145
/* Now figure out the physical timer id for clocksource device */
146
mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
147
if (mtmr == NULL)
148
goto panic_noapbt;
149
150
/* Now figure out the physical timer id */
151
phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
152
/ APBTMRS_REG_SIZE;
153
pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
154
return;
155
156
panic_noapbt:
157
panic("Failed to setup APB system timer\n");
158
159
}
160
161
static inline void apbt_clear_mapping(void)
162
{
163
iounmap(apbt_virt_address);
164
apbt_virt_address = NULL;
165
}
166
167
/*
168
* APBT timer interrupt enable / disable
169
*/
170
static inline int is_apbt_capable(void)
171
{
172
return apbt_virt_address ? 1 : 0;
173
}
174
175
static struct clocksource clocksource_apbt = {
176
.name = "apbt",
177
.rating = APBT_CLOCKSOURCE_RATING,
178
.read = apbt_read_clocksource,
179
.mask = APBT_MASK,
180
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
181
.resume = apbt_restart_clocksource,
182
};
183
184
/* boot APB clock event device */
185
static struct clock_event_device apbt_clockevent = {
186
.name = "apbt0",
187
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
188
.set_mode = apbt_set_mode,
189
.set_next_event = apbt_next_event,
190
.shift = APBT_SHIFT,
191
.irq = 0,
192
.rating = APBT_CLOCKEVENT_RATING,
193
};
194
195
/*
196
* start count down from 0xffff_ffff. this is done by toggling the enable bit
197
* then load initial load count to ~0.
198
*/
199
static void apbt_start_counter(int n)
200
{
201
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
202
203
ctrl &= ~APBTMR_CONTROL_ENABLE;
204
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
205
apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
206
/* enable, mask interrupt */
207
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
208
ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
209
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
210
/* read it once to get cached counter value initialized */
211
apbt_read_clocksource(&clocksource_apbt);
212
}
213
214
static irqreturn_t apbt_interrupt_handler(int irq, void *data)
215
{
216
struct apbt_dev *dev = (struct apbt_dev *)data;
217
struct clock_event_device *aevt = &dev->evt;
218
219
if (!aevt->event_handler) {
220
printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
221
dev->num);
222
return IRQ_NONE;
223
}
224
aevt->event_handler(aevt);
225
return IRQ_HANDLED;
226
}
227
228
static void apbt_restart_clocksource(struct clocksource *cs)
229
{
230
apbt_start_counter(phy_cs_timer_id);
231
}
232
233
static void apbt_enable_int(int n)
234
{
235
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
236
/* clear pending intr */
237
apbt_readl(n, APBTMR_N_EOI);
238
ctrl &= ~APBTMR_CONTROL_INT;
239
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
240
}
241
242
static void apbt_disable_int(int n)
243
{
244
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
245
246
ctrl |= APBTMR_CONTROL_INT;
247
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
248
}
249
250
251
static int __init apbt_clockevent_register(void)
252
{
253
struct sfi_timer_table_entry *mtmr;
254
struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
255
256
mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
257
if (mtmr == NULL) {
258
printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
259
APBT_CLOCKEVENT0_NUM);
260
return -ENODEV;
261
}
262
263
/*
264
* We need to calculate the scaled math multiplication factor for
265
* nanosecond to apbt tick conversion.
266
* mult = (nsec/cycle)*2^APBT_SHIFT
267
*/
268
apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
269
, NSEC_PER_SEC, APBT_SHIFT);
270
271
/* Calculate the min / max delta */
272
apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
273
&apbt_clockevent);
274
apbt_clockevent.min_delta_ns = clockevent_delta2ns(
275
APBT_MIN_DELTA_USEC*apbt_freq,
276
&apbt_clockevent);
277
/*
278
* Start apbt with the boot cpu mask and make it
279
* global if not used for per cpu timer.
280
*/
281
apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
282
adev->num = smp_processor_id();
283
memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
284
285
if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
286
adev->evt.rating = APBT_CLOCKEVENT_RATING - 100;
287
global_clock_event = &adev->evt;
288
printk(KERN_DEBUG "%s clockevent registered as global\n",
289
global_clock_event->name);
290
}
291
292
if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
293
IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
294
apbt_clockevent.name, adev)) {
295
printk(KERN_ERR "Failed request IRQ for APBT%d\n",
296
apbt_clockevent.irq);
297
}
298
299
clockevents_register_device(&adev->evt);
300
/* Start APBT 0 interrupts */
301
apbt_enable_int(APBT_CLOCKEVENT0_NUM);
302
303
sfi_free_mtmr(mtmr);
304
return 0;
305
}
306
307
#ifdef CONFIG_SMP
308
309
static void apbt_setup_irq(struct apbt_dev *adev)
310
{
311
/* timer0 irq has been setup early */
312
if (adev->irq == 0)
313
return;
314
315
irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
316
irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
317
/* APB timer irqs are set up as mp_irqs, timer is edge type */
318
__irq_set_handler(adev->irq, handle_edge_irq, 0, "edge");
319
320
if (system_state == SYSTEM_BOOTING) {
321
if (request_irq(adev->irq, apbt_interrupt_handler,
322
IRQF_TIMER | IRQF_DISABLED |
323
IRQF_NOBALANCING,
324
adev->name, adev)) {
325
printk(KERN_ERR "Failed request IRQ for APBT%d\n",
326
adev->num);
327
}
328
} else
329
enable_irq(adev->irq);
330
}
331
332
/* Should be called with per cpu */
333
void apbt_setup_secondary_clock(void)
334
{
335
struct apbt_dev *adev;
336
struct clock_event_device *aevt;
337
int cpu;
338
339
/* Don't register boot CPU clockevent */
340
cpu = smp_processor_id();
341
if (!cpu)
342
return;
343
/*
344
* We need to calculate the scaled math multiplication factor for
345
* nanosecond to apbt tick conversion.
346
* mult = (nsec/cycle)*2^APBT_SHIFT
347
*/
348
printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
349
adev = &per_cpu(cpu_apbt_dev, cpu);
350
aevt = &adev->evt;
351
352
memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
353
aevt->cpumask = cpumask_of(cpu);
354
aevt->name = adev->name;
355
aevt->mode = CLOCK_EVT_MODE_UNUSED;
356
357
printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
358
cpu, aevt->name, *(u32 *)aevt->cpumask);
359
360
apbt_setup_irq(adev);
361
362
clockevents_register_device(aevt);
363
364
apbt_enable_int(cpu);
365
366
return;
367
}
368
369
/*
370
* this notify handler process CPU hotplug events. in case of S0i3, nonboot
371
* cpus are disabled/enabled frequently, for performance reasons, we keep the
372
* per cpu timer irq registered so that we do need to do free_irq/request_irq.
373
*
374
* TODO: it might be more reliable to directly disable percpu clockevent device
375
* without the notifier chain. currently, cpu 0 may get interrupts from other
376
* cpu timers during the offline process due to the ordering of notification.
377
* the extra interrupt is harmless.
378
*/
379
static int apbt_cpuhp_notify(struct notifier_block *n,
380
unsigned long action, void *hcpu)
381
{
382
unsigned long cpu = (unsigned long)hcpu;
383
struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
384
385
switch (action & 0xf) {
386
case CPU_DEAD:
387
disable_irq(adev->irq);
388
apbt_disable_int(cpu);
389
if (system_state == SYSTEM_RUNNING) {
390
pr_debug("skipping APBT CPU %lu offline\n", cpu);
391
} else if (adev) {
392
pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
393
free_irq(adev->irq, adev);
394
}
395
break;
396
default:
397
pr_debug("APBT notified %lu, no action\n", action);
398
}
399
return NOTIFY_OK;
400
}
401
402
static __init int apbt_late_init(void)
403
{
404
if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
405
!apb_timer_block_enabled)
406
return 0;
407
/* This notifier should be called after workqueue is ready */
408
hotcpu_notifier(apbt_cpuhp_notify, -20);
409
return 0;
410
}
411
fs_initcall(apbt_late_init);
412
#else
413
414
void apbt_setup_secondary_clock(void) {}
415
416
#endif /* CONFIG_SMP */
417
418
static void apbt_set_mode(enum clock_event_mode mode,
419
struct clock_event_device *evt)
420
{
421
unsigned long ctrl;
422
uint64_t delta;
423
int timer_num;
424
struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
425
426
BUG_ON(!apbt_virt_address);
427
428
timer_num = adev->num;
429
pr_debug("%s CPU %d timer %d mode=%d\n",
430
__func__, first_cpu(*evt->cpumask), timer_num, mode);
431
432
switch (mode) {
433
case CLOCK_EVT_MODE_PERIODIC:
434
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
435
delta >>= apbt_clockevent.shift;
436
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
437
ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
438
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
439
/*
440
* DW APB p. 46, have to disable timer before load counter,
441
* may cause sync problem.
442
*/
443
ctrl &= ~APBTMR_CONTROL_ENABLE;
444
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
445
udelay(1);
446
pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
447
apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
448
ctrl |= APBTMR_CONTROL_ENABLE;
449
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
450
break;
451
/* APB timer does not have one-shot mode, use free running mode */
452
case CLOCK_EVT_MODE_ONESHOT:
453
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
454
/*
455
* set free running mode, this mode will let timer reload max
456
* timeout which will give time (3min on 25MHz clock) to rearm
457
* the next event, therefore emulate the one-shot mode.
458
*/
459
ctrl &= ~APBTMR_CONTROL_ENABLE;
460
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
461
462
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
463
/* write again to set free running mode */
464
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
465
466
/*
467
* DW APB p. 46, load counter with all 1s before starting free
468
* running mode.
469
*/
470
apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
471
ctrl &= ~APBTMR_CONTROL_INT;
472
ctrl |= APBTMR_CONTROL_ENABLE;
473
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
474
break;
475
476
case CLOCK_EVT_MODE_UNUSED:
477
case CLOCK_EVT_MODE_SHUTDOWN:
478
apbt_disable_int(timer_num);
479
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
480
ctrl &= ~APBTMR_CONTROL_ENABLE;
481
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
482
break;
483
484
case CLOCK_EVT_MODE_RESUME:
485
apbt_enable_int(timer_num);
486
break;
487
}
488
}
489
490
static int apbt_next_event(unsigned long delta,
491
struct clock_event_device *evt)
492
{
493
unsigned long ctrl;
494
int timer_num;
495
496
struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
497
498
timer_num = adev->num;
499
/* Disable timer */
500
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
501
ctrl &= ~APBTMR_CONTROL_ENABLE;
502
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
503
/* write new count */
504
apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
505
ctrl |= APBTMR_CONTROL_ENABLE;
506
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
507
return 0;
508
}
509
510
static cycle_t apbt_read_clocksource(struct clocksource *cs)
511
{
512
unsigned long current_count;
513
514
current_count = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE);
515
return (cycle_t)~current_count;
516
}
517
518
static int apbt_clocksource_register(void)
519
{
520
u64 start, now;
521
cycle_t t1;
522
523
/* Start the counter, use timer 2 as source, timer 0/1 for event */
524
apbt_start_counter(phy_cs_timer_id);
525
526
/* Verify whether apbt counter works */
527
t1 = apbt_read_clocksource(&clocksource_apbt);
528
rdtscll(start);
529
530
/*
531
* We don't know the TSC frequency yet, but waiting for
532
* 200000 TSC cycles is safe:
533
* 4 GHz == 50us
534
* 1 GHz == 200us
535
*/
536
do {
537
rep_nop();
538
rdtscll(now);
539
} while ((now - start) < 200000UL);
540
541
/* APBT is the only always on clocksource, it has to work! */
542
if (t1 == apbt_read_clocksource(&clocksource_apbt))
543
panic("APBT counter not counting. APBT disabled\n");
544
545
clocksource_register_khz(&clocksource_apbt, (u32)apbt_freq*1000);
546
547
return 0;
548
}
549
550
/*
551
* Early setup the APBT timer, only use timer 0 for booting then switch to
552
* per CPU timer if possible.
553
* returns 1 if per cpu apbt is setup
554
* returns 0 if no per cpu apbt is chosen
555
* panic if set up failed, this is the only platform timer on Moorestown.
556
*/
557
void __init apbt_time_init(void)
558
{
559
#ifdef CONFIG_SMP
560
int i;
561
struct sfi_timer_table_entry *p_mtmr;
562
unsigned int percpu_timer;
563
struct apbt_dev *adev;
564
#endif
565
566
if (apb_timer_block_enabled)
567
return;
568
apbt_set_mapping();
569
if (apbt_virt_address) {
570
pr_debug("Found APBT version 0x%lx\n",\
571
apbt_readl_reg(APBTMRS_COMP_VERSION));
572
} else
573
goto out_noapbt;
574
/*
575
* Read the frequency and check for a sane value, for ESL model
576
* we extend the possible clock range to allow time scaling.
577
*/
578
579
if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
580
pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
581
goto out_noapbt;
582
}
583
if (apbt_clocksource_register()) {
584
pr_debug("APBT has failed to register clocksource\n");
585
goto out_noapbt;
586
}
587
if (!apbt_clockevent_register())
588
apb_timer_block_enabled = 1;
589
else {
590
pr_debug("APBT has failed to register clockevent\n");
591
goto out_noapbt;
592
}
593
#ifdef CONFIG_SMP
594
/* kernel cmdline disable apb timer, so we will use lapic timers */
595
if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
596
printk(KERN_INFO "apbt: disabled per cpu timer\n");
597
return;
598
}
599
pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
600
if (num_possible_cpus() <= sfi_mtimer_num) {
601
percpu_timer = 1;
602
apbt_num_timers_used = num_possible_cpus();
603
} else {
604
percpu_timer = 0;
605
apbt_num_timers_used = 1;
606
adev = &per_cpu(cpu_apbt_dev, 0);
607
adev->flags &= ~APBT_DEV_USED;
608
}
609
pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
610
611
/* here we set up per CPU timer data structure */
612
apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
613
GFP_KERNEL);
614
if (!apbt_devs) {
615
printk(KERN_ERR "Failed to allocate APB timer devices\n");
616
return;
617
}
618
for (i = 0; i < apbt_num_timers_used; i++) {
619
adev = &per_cpu(cpu_apbt_dev, i);
620
adev->num = i;
621
adev->cpu = i;
622
p_mtmr = sfi_get_mtmr(i);
623
if (p_mtmr) {
624
adev->tick = p_mtmr->freq_hz;
625
adev->irq = p_mtmr->irq;
626
} else
627
printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
628
adev->count = 0;
629
sprintf(adev->name, "apbt%d", i);
630
}
631
#endif
632
633
return;
634
635
out_noapbt:
636
apbt_clear_mapping();
637
apb_timer_block_enabled = 0;
638
panic("failed to enable APB timer\n");
639
}
640
641
static inline void apbt_disable(int n)
642
{
643
if (is_apbt_capable()) {
644
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
645
ctrl &= ~APBTMR_CONTROL_ENABLE;
646
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
647
}
648
}
649
650
/* called before apb_timer_enable, use early map */
651
unsigned long apbt_quick_calibrate()
652
{
653
int i, scale;
654
u64 old, new;
655
cycle_t t1, t2;
656
unsigned long khz = 0;
657
u32 loop, shift;
658
659
apbt_set_mapping();
660
apbt_start_counter(phy_cs_timer_id);
661
662
/* check if the timer can count down, otherwise return */
663
old = apbt_read_clocksource(&clocksource_apbt);
664
i = 10000;
665
while (--i) {
666
if (old != apbt_read_clocksource(&clocksource_apbt))
667
break;
668
}
669
if (!i)
670
goto failed;
671
672
/* count 16 ms */
673
loop = (apbt_freq * 1000) << 4;
674
675
/* restart the timer to ensure it won't get to 0 in the calibration */
676
apbt_start_counter(phy_cs_timer_id);
677
678
old = apbt_read_clocksource(&clocksource_apbt);
679
old += loop;
680
681
t1 = __native_read_tsc();
682
683
do {
684
new = apbt_read_clocksource(&clocksource_apbt);
685
} while (new < old);
686
687
t2 = __native_read_tsc();
688
689
shift = 5;
690
if (unlikely(loop >> shift == 0)) {
691
printk(KERN_INFO
692
"APBT TSC calibration failed, not enough resolution\n");
693
return 0;
694
}
695
scale = (int)div_u64((t2 - t1), loop >> shift);
696
khz = (scale * apbt_freq * 1000) >> shift;
697
printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
698
return khz;
699
failed:
700
return 0;
701
}
702
703