Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kernel/apic/io_apic.c
17531 views
1
/*
2
* Intel IO-APIC support for multi-Pentium hosts.
3
*
4
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5
*
6
* Many thanks to Stig Venaas for trying out countless experimental
7
* patches and reporting/debugging problems patiently!
8
*
9
* (c) 1999, Multiple IO-APIC support, developed by
10
* Ken-ichi Yaku <[email protected]> and
11
* Hidemi Kishimoto <[email protected]>,
12
* further tested and cleaned up by Zach Brown <[email protected]>
13
* and Ingo Molnar <[email protected]>
14
*
15
* Fixes
16
* Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17
* thanks to Eric Gilmore
18
* and Rolf G. Tews
19
* for testing these extensively
20
* Paul Diefenbaugh : Added full ACPI support
21
*/
22
23
#include <linux/mm.h>
24
#include <linux/interrupt.h>
25
#include <linux/init.h>
26
#include <linux/delay.h>
27
#include <linux/sched.h>
28
#include <linux/pci.h>
29
#include <linux/mc146818rtc.h>
30
#include <linux/compiler.h>
31
#include <linux/acpi.h>
32
#include <linux/module.h>
33
#include <linux/syscore_ops.h>
34
#include <linux/msi.h>
35
#include <linux/htirq.h>
36
#include <linux/freezer.h>
37
#include <linux/kthread.h>
38
#include <linux/jiffies.h> /* time_after() */
39
#include <linux/slab.h>
40
#ifdef CONFIG_ACPI
41
#include <acpi/acpi_bus.h>
42
#endif
43
#include <linux/bootmem.h>
44
#include <linux/dmar.h>
45
#include <linux/hpet.h>
46
47
#include <asm/idle.h>
48
#include <asm/io.h>
49
#include <asm/smp.h>
50
#include <asm/cpu.h>
51
#include <asm/desc.h>
52
#include <asm/proto.h>
53
#include <asm/acpi.h>
54
#include <asm/dma.h>
55
#include <asm/timer.h>
56
#include <asm/i8259.h>
57
#include <asm/msidef.h>
58
#include <asm/hypertransport.h>
59
#include <asm/setup.h>
60
#include <asm/irq_remapping.h>
61
#include <asm/hpet.h>
62
#include <asm/hw_irq.h>
63
64
#include <asm/apic.h>
65
66
#define __apicdebuginit(type) static type __init
67
#define for_each_irq_pin(entry, head) \
68
for (entry = head; entry; entry = entry->next)
69
70
/*
71
* Is the SiS APIC rmw bug present ?
72
* -1 = don't know, 0 = no, 1 = yes
73
*/
74
int sis_apic_bug = -1;
75
76
static DEFINE_RAW_SPINLOCK(ioapic_lock);
77
static DEFINE_RAW_SPINLOCK(vector_lock);
78
79
static struct ioapic {
80
/*
81
* # of IRQ routing registers
82
*/
83
int nr_registers;
84
/*
85
* Saved state during suspend/resume, or while enabling intr-remap.
86
*/
87
struct IO_APIC_route_entry *saved_registers;
88
/* I/O APIC config */
89
struct mpc_ioapic mp_config;
90
/* IO APIC gsi routing info */
91
struct mp_ioapic_gsi gsi_config;
92
DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
93
} ioapics[MAX_IO_APICS];
94
95
#define mpc_ioapic_ver(id) ioapics[id].mp_config.apicver
96
97
int mpc_ioapic_id(int id)
98
{
99
return ioapics[id].mp_config.apicid;
100
}
101
102
unsigned int mpc_ioapic_addr(int id)
103
{
104
return ioapics[id].mp_config.apicaddr;
105
}
106
107
struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int id)
108
{
109
return &ioapics[id].gsi_config;
110
}
111
112
int nr_ioapics;
113
114
/* The one past the highest gsi number used */
115
u32 gsi_top;
116
117
/* MP IRQ source entries */
118
struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
119
120
/* # of MP IRQ source entries */
121
int mp_irq_entries;
122
123
/* GSI interrupts */
124
static int nr_irqs_gsi = NR_IRQS_LEGACY;
125
126
#if defined (CONFIG_MCA) || defined (CONFIG_EISA)
127
int mp_bus_id_to_type[MAX_MP_BUSSES];
128
#endif
129
130
DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
131
132
int skip_ioapic_setup;
133
134
/**
135
* disable_ioapic_support() - disables ioapic support at runtime
136
*/
137
void disable_ioapic_support(void)
138
{
139
#ifdef CONFIG_PCI
140
noioapicquirk = 1;
141
noioapicreroute = -1;
142
#endif
143
skip_ioapic_setup = 1;
144
}
145
146
static int __init parse_noapic(char *str)
147
{
148
/* disable IO-APIC */
149
disable_ioapic_support();
150
return 0;
151
}
152
early_param("noapic", parse_noapic);
153
154
static int io_apic_setup_irq_pin(unsigned int irq, int node,
155
struct io_apic_irq_attr *attr);
156
157
/* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
158
void mp_save_irq(struct mpc_intsrc *m)
159
{
160
int i;
161
162
apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
163
" IRQ %02x, APIC ID %x, APIC INT %02x\n",
164
m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
165
m->srcbusirq, m->dstapic, m->dstirq);
166
167
for (i = 0; i < mp_irq_entries; i++) {
168
if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
169
return;
170
}
171
172
memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
173
if (++mp_irq_entries == MAX_IRQ_SOURCES)
174
panic("Max # of irq sources exceeded!!\n");
175
}
176
177
struct irq_pin_list {
178
int apic, pin;
179
struct irq_pin_list *next;
180
};
181
182
static struct irq_pin_list *alloc_irq_pin_list(int node)
183
{
184
return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
185
}
186
187
188
/* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
189
#ifdef CONFIG_SPARSE_IRQ
190
static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
191
#else
192
static struct irq_cfg irq_cfgx[NR_IRQS];
193
#endif
194
195
int __init arch_early_irq_init(void)
196
{
197
struct irq_cfg *cfg;
198
int count, node, i;
199
200
if (!legacy_pic->nr_legacy_irqs) {
201
nr_irqs_gsi = 0;
202
io_apic_irqs = ~0UL;
203
}
204
205
for (i = 0; i < nr_ioapics; i++) {
206
ioapics[i].saved_registers =
207
kzalloc(sizeof(struct IO_APIC_route_entry) *
208
ioapics[i].nr_registers, GFP_KERNEL);
209
if (!ioapics[i].saved_registers)
210
pr_err("IOAPIC %d: suspend/resume impossible!\n", i);
211
}
212
213
cfg = irq_cfgx;
214
count = ARRAY_SIZE(irq_cfgx);
215
node = cpu_to_node(0);
216
217
/* Make sure the legacy interrupts are marked in the bitmap */
218
irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
219
220
for (i = 0; i < count; i++) {
221
irq_set_chip_data(i, &cfg[i]);
222
zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
223
zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
224
/*
225
* For legacy IRQ's, start with assigning irq0 to irq15 to
226
* IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
227
*/
228
if (i < legacy_pic->nr_legacy_irqs) {
229
cfg[i].vector = IRQ0_VECTOR + i;
230
cpumask_set_cpu(0, cfg[i].domain);
231
}
232
}
233
234
return 0;
235
}
236
237
#ifdef CONFIG_SPARSE_IRQ
238
static struct irq_cfg *irq_cfg(unsigned int irq)
239
{
240
return irq_get_chip_data(irq);
241
}
242
243
static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
244
{
245
struct irq_cfg *cfg;
246
247
cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
248
if (!cfg)
249
return NULL;
250
if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
251
goto out_cfg;
252
if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
253
goto out_domain;
254
return cfg;
255
out_domain:
256
free_cpumask_var(cfg->domain);
257
out_cfg:
258
kfree(cfg);
259
return NULL;
260
}
261
262
static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
263
{
264
if (!cfg)
265
return;
266
irq_set_chip_data(at, NULL);
267
free_cpumask_var(cfg->domain);
268
free_cpumask_var(cfg->old_domain);
269
kfree(cfg);
270
}
271
272
#else
273
274
struct irq_cfg *irq_cfg(unsigned int irq)
275
{
276
return irq < nr_irqs ? irq_cfgx + irq : NULL;
277
}
278
279
static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
280
{
281
return irq_cfgx + irq;
282
}
283
284
static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
285
286
#endif
287
288
static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
289
{
290
int res = irq_alloc_desc_at(at, node);
291
struct irq_cfg *cfg;
292
293
if (res < 0) {
294
if (res != -EEXIST)
295
return NULL;
296
cfg = irq_get_chip_data(at);
297
if (cfg)
298
return cfg;
299
}
300
301
cfg = alloc_irq_cfg(at, node);
302
if (cfg)
303
irq_set_chip_data(at, cfg);
304
else
305
irq_free_desc(at);
306
return cfg;
307
}
308
309
static int alloc_irq_from(unsigned int from, int node)
310
{
311
return irq_alloc_desc_from(from, node);
312
}
313
314
static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
315
{
316
free_irq_cfg(at, cfg);
317
irq_free_desc(at);
318
}
319
320
struct io_apic {
321
unsigned int index;
322
unsigned int unused[3];
323
unsigned int data;
324
unsigned int unused2[11];
325
unsigned int eoi;
326
};
327
328
static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
329
{
330
return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
331
+ (mpc_ioapic_addr(idx) & ~PAGE_MASK);
332
}
333
334
static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
335
{
336
struct io_apic __iomem *io_apic = io_apic_base(apic);
337
writel(vector, &io_apic->eoi);
338
}
339
340
static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
341
{
342
struct io_apic __iomem *io_apic = io_apic_base(apic);
343
writel(reg, &io_apic->index);
344
return readl(&io_apic->data);
345
}
346
347
static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
348
{
349
struct io_apic __iomem *io_apic = io_apic_base(apic);
350
writel(reg, &io_apic->index);
351
writel(value, &io_apic->data);
352
}
353
354
/*
355
* Re-write a value: to be used for read-modify-write
356
* cycles where the read already set up the index register.
357
*
358
* Older SiS APIC requires we rewrite the index register
359
*/
360
static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
361
{
362
struct io_apic __iomem *io_apic = io_apic_base(apic);
363
364
if (sis_apic_bug)
365
writel(reg, &io_apic->index);
366
writel(value, &io_apic->data);
367
}
368
369
static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
370
{
371
struct irq_pin_list *entry;
372
unsigned long flags;
373
374
raw_spin_lock_irqsave(&ioapic_lock, flags);
375
for_each_irq_pin(entry, cfg->irq_2_pin) {
376
unsigned int reg;
377
int pin;
378
379
pin = entry->pin;
380
reg = io_apic_read(entry->apic, 0x10 + pin*2);
381
/* Is the remote IRR bit set? */
382
if (reg & IO_APIC_REDIR_REMOTE_IRR) {
383
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
384
return true;
385
}
386
}
387
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
388
389
return false;
390
}
391
392
union entry_union {
393
struct { u32 w1, w2; };
394
struct IO_APIC_route_entry entry;
395
};
396
397
static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
398
{
399
union entry_union eu;
400
unsigned long flags;
401
raw_spin_lock_irqsave(&ioapic_lock, flags);
402
eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
403
eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
404
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
405
return eu.entry;
406
}
407
408
/*
409
* When we write a new IO APIC routing entry, we need to write the high
410
* word first! If the mask bit in the low word is clear, we will enable
411
* the interrupt, and we need to make sure the entry is fully populated
412
* before that happens.
413
*/
414
static void
415
__ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
416
{
417
union entry_union eu = {{0, 0}};
418
419
eu.entry = e;
420
io_apic_write(apic, 0x11 + 2*pin, eu.w2);
421
io_apic_write(apic, 0x10 + 2*pin, eu.w1);
422
}
423
424
static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
425
{
426
unsigned long flags;
427
raw_spin_lock_irqsave(&ioapic_lock, flags);
428
__ioapic_write_entry(apic, pin, e);
429
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
430
}
431
432
/*
433
* When we mask an IO APIC routing entry, we need to write the low
434
* word first, in order to set the mask bit before we change the
435
* high bits!
436
*/
437
static void ioapic_mask_entry(int apic, int pin)
438
{
439
unsigned long flags;
440
union entry_union eu = { .entry.mask = 1 };
441
442
raw_spin_lock_irqsave(&ioapic_lock, flags);
443
io_apic_write(apic, 0x10 + 2*pin, eu.w1);
444
io_apic_write(apic, 0x11 + 2*pin, eu.w2);
445
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
446
}
447
448
/*
449
* The common case is 1:1 IRQ<->pin mappings. Sometimes there are
450
* shared ISA-space IRQs, so we have to support them. We are super
451
* fast in the common case, and fast for shared ISA-space IRQs.
452
*/
453
static int
454
__add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
455
{
456
struct irq_pin_list **last, *entry;
457
458
/* don't allow duplicates */
459
last = &cfg->irq_2_pin;
460
for_each_irq_pin(entry, cfg->irq_2_pin) {
461
if (entry->apic == apic && entry->pin == pin)
462
return 0;
463
last = &entry->next;
464
}
465
466
entry = alloc_irq_pin_list(node);
467
if (!entry) {
468
printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
469
node, apic, pin);
470
return -ENOMEM;
471
}
472
entry->apic = apic;
473
entry->pin = pin;
474
475
*last = entry;
476
return 0;
477
}
478
479
static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
480
{
481
if (__add_pin_to_irq_node(cfg, node, apic, pin))
482
panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
483
}
484
485
/*
486
* Reroute an IRQ to a different pin.
487
*/
488
static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
489
int oldapic, int oldpin,
490
int newapic, int newpin)
491
{
492
struct irq_pin_list *entry;
493
494
for_each_irq_pin(entry, cfg->irq_2_pin) {
495
if (entry->apic == oldapic && entry->pin == oldpin) {
496
entry->apic = newapic;
497
entry->pin = newpin;
498
/* every one is different, right? */
499
return;
500
}
501
}
502
503
/* old apic/pin didn't exist, so just add new ones */
504
add_pin_to_irq_node(cfg, node, newapic, newpin);
505
}
506
507
static void __io_apic_modify_irq(struct irq_pin_list *entry,
508
int mask_and, int mask_or,
509
void (*final)(struct irq_pin_list *entry))
510
{
511
unsigned int reg, pin;
512
513
pin = entry->pin;
514
reg = io_apic_read(entry->apic, 0x10 + pin * 2);
515
reg &= mask_and;
516
reg |= mask_or;
517
io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
518
if (final)
519
final(entry);
520
}
521
522
static void io_apic_modify_irq(struct irq_cfg *cfg,
523
int mask_and, int mask_or,
524
void (*final)(struct irq_pin_list *entry))
525
{
526
struct irq_pin_list *entry;
527
528
for_each_irq_pin(entry, cfg->irq_2_pin)
529
__io_apic_modify_irq(entry, mask_and, mask_or, final);
530
}
531
532
static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
533
{
534
__io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
535
IO_APIC_REDIR_MASKED, NULL);
536
}
537
538
static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
539
{
540
__io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
541
IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
542
}
543
544
static void io_apic_sync(struct irq_pin_list *entry)
545
{
546
/*
547
* Synchronize the IO-APIC and the CPU by doing
548
* a dummy read from the IO-APIC
549
*/
550
struct io_apic __iomem *io_apic;
551
io_apic = io_apic_base(entry->apic);
552
readl(&io_apic->data);
553
}
554
555
static void mask_ioapic(struct irq_cfg *cfg)
556
{
557
unsigned long flags;
558
559
raw_spin_lock_irqsave(&ioapic_lock, flags);
560
io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
561
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
562
}
563
564
static void mask_ioapic_irq(struct irq_data *data)
565
{
566
mask_ioapic(data->chip_data);
567
}
568
569
static void __unmask_ioapic(struct irq_cfg *cfg)
570
{
571
io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
572
}
573
574
static void unmask_ioapic(struct irq_cfg *cfg)
575
{
576
unsigned long flags;
577
578
raw_spin_lock_irqsave(&ioapic_lock, flags);
579
__unmask_ioapic(cfg);
580
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
581
}
582
583
static void unmask_ioapic_irq(struct irq_data *data)
584
{
585
unmask_ioapic(data->chip_data);
586
}
587
588
static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
589
{
590
struct IO_APIC_route_entry entry;
591
592
/* Check delivery_mode to be sure we're not clearing an SMI pin */
593
entry = ioapic_read_entry(apic, pin);
594
if (entry.delivery_mode == dest_SMI)
595
return;
596
/*
597
* Disable it in the IO-APIC irq-routing table:
598
*/
599
ioapic_mask_entry(apic, pin);
600
}
601
602
static void clear_IO_APIC (void)
603
{
604
int apic, pin;
605
606
for (apic = 0; apic < nr_ioapics; apic++)
607
for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
608
clear_IO_APIC_pin(apic, pin);
609
}
610
611
#ifdef CONFIG_X86_32
612
/*
613
* support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
614
* specific CPU-side IRQs.
615
*/
616
617
#define MAX_PIRQS 8
618
static int pirq_entries[MAX_PIRQS] = {
619
[0 ... MAX_PIRQS - 1] = -1
620
};
621
622
static int __init ioapic_pirq_setup(char *str)
623
{
624
int i, max;
625
int ints[MAX_PIRQS+1];
626
627
get_options(str, ARRAY_SIZE(ints), ints);
628
629
apic_printk(APIC_VERBOSE, KERN_INFO
630
"PIRQ redirection, working around broken MP-BIOS.\n");
631
max = MAX_PIRQS;
632
if (ints[0] < MAX_PIRQS)
633
max = ints[0];
634
635
for (i = 0; i < max; i++) {
636
apic_printk(APIC_VERBOSE, KERN_DEBUG
637
"... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
638
/*
639
* PIRQs are mapped upside down, usually.
640
*/
641
pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
642
}
643
return 1;
644
}
645
646
__setup("pirq=", ioapic_pirq_setup);
647
#endif /* CONFIG_X86_32 */
648
649
/*
650
* Saves all the IO-APIC RTE's
651
*/
652
int save_ioapic_entries(void)
653
{
654
int apic, pin;
655
int err = 0;
656
657
for (apic = 0; apic < nr_ioapics; apic++) {
658
if (!ioapics[apic].saved_registers) {
659
err = -ENOMEM;
660
continue;
661
}
662
663
for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
664
ioapics[apic].saved_registers[pin] =
665
ioapic_read_entry(apic, pin);
666
}
667
668
return err;
669
}
670
671
/*
672
* Mask all IO APIC entries.
673
*/
674
void mask_ioapic_entries(void)
675
{
676
int apic, pin;
677
678
for (apic = 0; apic < nr_ioapics; apic++) {
679
if (!ioapics[apic].saved_registers)
680
continue;
681
682
for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
683
struct IO_APIC_route_entry entry;
684
685
entry = ioapics[apic].saved_registers[pin];
686
if (!entry.mask) {
687
entry.mask = 1;
688
ioapic_write_entry(apic, pin, entry);
689
}
690
}
691
}
692
}
693
694
/*
695
* Restore IO APIC entries which was saved in the ioapic structure.
696
*/
697
int restore_ioapic_entries(void)
698
{
699
int apic, pin;
700
701
for (apic = 0; apic < nr_ioapics; apic++) {
702
if (!ioapics[apic].saved_registers)
703
continue;
704
705
for (pin = 0; pin < ioapics[apic].nr_registers; pin++)
706
ioapic_write_entry(apic, pin,
707
ioapics[apic].saved_registers[pin]);
708
}
709
return 0;
710
}
711
712
/*
713
* Find the IRQ entry number of a certain pin.
714
*/
715
static int find_irq_entry(int apic, int pin, int type)
716
{
717
int i;
718
719
for (i = 0; i < mp_irq_entries; i++)
720
if (mp_irqs[i].irqtype == type &&
721
(mp_irqs[i].dstapic == mpc_ioapic_id(apic) ||
722
mp_irqs[i].dstapic == MP_APIC_ALL) &&
723
mp_irqs[i].dstirq == pin)
724
return i;
725
726
return -1;
727
}
728
729
/*
730
* Find the pin to which IRQ[irq] (ISA) is connected
731
*/
732
static int __init find_isa_irq_pin(int irq, int type)
733
{
734
int i;
735
736
for (i = 0; i < mp_irq_entries; i++) {
737
int lbus = mp_irqs[i].srcbus;
738
739
if (test_bit(lbus, mp_bus_not_pci) &&
740
(mp_irqs[i].irqtype == type) &&
741
(mp_irqs[i].srcbusirq == irq))
742
743
return mp_irqs[i].dstirq;
744
}
745
return -1;
746
}
747
748
static int __init find_isa_irq_apic(int irq, int type)
749
{
750
int i;
751
752
for (i = 0; i < mp_irq_entries; i++) {
753
int lbus = mp_irqs[i].srcbus;
754
755
if (test_bit(lbus, mp_bus_not_pci) &&
756
(mp_irqs[i].irqtype == type) &&
757
(mp_irqs[i].srcbusirq == irq))
758
break;
759
}
760
if (i < mp_irq_entries) {
761
int apic;
762
for(apic = 0; apic < nr_ioapics; apic++) {
763
if (mpc_ioapic_id(apic) == mp_irqs[i].dstapic)
764
return apic;
765
}
766
}
767
768
return -1;
769
}
770
771
#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
772
/*
773
* EISA Edge/Level control register, ELCR
774
*/
775
static int EISA_ELCR(unsigned int irq)
776
{
777
if (irq < legacy_pic->nr_legacy_irqs) {
778
unsigned int port = 0x4d0 + (irq >> 3);
779
return (inb(port) >> (irq & 7)) & 1;
780
}
781
apic_printk(APIC_VERBOSE, KERN_INFO
782
"Broken MPtable reports ISA irq %d\n", irq);
783
return 0;
784
}
785
786
#endif
787
788
/* ISA interrupts are always polarity zero edge triggered,
789
* when listed as conforming in the MP table. */
790
791
#define default_ISA_trigger(idx) (0)
792
#define default_ISA_polarity(idx) (0)
793
794
/* EISA interrupts are always polarity zero and can be edge or level
795
* trigger depending on the ELCR value. If an interrupt is listed as
796
* EISA conforming in the MP table, that means its trigger type must
797
* be read in from the ELCR */
798
799
#define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
800
#define default_EISA_polarity(idx) default_ISA_polarity(idx)
801
802
/* PCI interrupts are always polarity one level triggered,
803
* when listed as conforming in the MP table. */
804
805
#define default_PCI_trigger(idx) (1)
806
#define default_PCI_polarity(idx) (1)
807
808
/* MCA interrupts are always polarity zero level triggered,
809
* when listed as conforming in the MP table. */
810
811
#define default_MCA_trigger(idx) (1)
812
#define default_MCA_polarity(idx) default_ISA_polarity(idx)
813
814
static int irq_polarity(int idx)
815
{
816
int bus = mp_irqs[idx].srcbus;
817
int polarity;
818
819
/*
820
* Determine IRQ line polarity (high active or low active):
821
*/
822
switch (mp_irqs[idx].irqflag & 3)
823
{
824
case 0: /* conforms, ie. bus-type dependent polarity */
825
if (test_bit(bus, mp_bus_not_pci))
826
polarity = default_ISA_polarity(idx);
827
else
828
polarity = default_PCI_polarity(idx);
829
break;
830
case 1: /* high active */
831
{
832
polarity = 0;
833
break;
834
}
835
case 2: /* reserved */
836
{
837
printk(KERN_WARNING "broken BIOS!!\n");
838
polarity = 1;
839
break;
840
}
841
case 3: /* low active */
842
{
843
polarity = 1;
844
break;
845
}
846
default: /* invalid */
847
{
848
printk(KERN_WARNING "broken BIOS!!\n");
849
polarity = 1;
850
break;
851
}
852
}
853
return polarity;
854
}
855
856
static int irq_trigger(int idx)
857
{
858
int bus = mp_irqs[idx].srcbus;
859
int trigger;
860
861
/*
862
* Determine IRQ trigger mode (edge or level sensitive):
863
*/
864
switch ((mp_irqs[idx].irqflag>>2) & 3)
865
{
866
case 0: /* conforms, ie. bus-type dependent */
867
if (test_bit(bus, mp_bus_not_pci))
868
trigger = default_ISA_trigger(idx);
869
else
870
trigger = default_PCI_trigger(idx);
871
#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
872
switch (mp_bus_id_to_type[bus]) {
873
case MP_BUS_ISA: /* ISA pin */
874
{
875
/* set before the switch */
876
break;
877
}
878
case MP_BUS_EISA: /* EISA pin */
879
{
880
trigger = default_EISA_trigger(idx);
881
break;
882
}
883
case MP_BUS_PCI: /* PCI pin */
884
{
885
/* set before the switch */
886
break;
887
}
888
case MP_BUS_MCA: /* MCA pin */
889
{
890
trigger = default_MCA_trigger(idx);
891
break;
892
}
893
default:
894
{
895
printk(KERN_WARNING "broken BIOS!!\n");
896
trigger = 1;
897
break;
898
}
899
}
900
#endif
901
break;
902
case 1: /* edge */
903
{
904
trigger = 0;
905
break;
906
}
907
case 2: /* reserved */
908
{
909
printk(KERN_WARNING "broken BIOS!!\n");
910
trigger = 1;
911
break;
912
}
913
case 3: /* level */
914
{
915
trigger = 1;
916
break;
917
}
918
default: /* invalid */
919
{
920
printk(KERN_WARNING "broken BIOS!!\n");
921
trigger = 0;
922
break;
923
}
924
}
925
return trigger;
926
}
927
928
static int pin_2_irq(int idx, int apic, int pin)
929
{
930
int irq;
931
int bus = mp_irqs[idx].srcbus;
932
struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(apic);
933
934
/*
935
* Debugging check, we are in big trouble if this message pops up!
936
*/
937
if (mp_irqs[idx].dstirq != pin)
938
printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
939
940
if (test_bit(bus, mp_bus_not_pci)) {
941
irq = mp_irqs[idx].srcbusirq;
942
} else {
943
u32 gsi = gsi_cfg->gsi_base + pin;
944
945
if (gsi >= NR_IRQS_LEGACY)
946
irq = gsi;
947
else
948
irq = gsi_top + gsi;
949
}
950
951
#ifdef CONFIG_X86_32
952
/*
953
* PCI IRQ command line redirection. Yes, limits are hardcoded.
954
*/
955
if ((pin >= 16) && (pin <= 23)) {
956
if (pirq_entries[pin-16] != -1) {
957
if (!pirq_entries[pin-16]) {
958
apic_printk(APIC_VERBOSE, KERN_DEBUG
959
"disabling PIRQ%d\n", pin-16);
960
} else {
961
irq = pirq_entries[pin-16];
962
apic_printk(APIC_VERBOSE, KERN_DEBUG
963
"using PIRQ%d -> IRQ %d\n",
964
pin-16, irq);
965
}
966
}
967
}
968
#endif
969
970
return irq;
971
}
972
973
/*
974
* Find a specific PCI IRQ entry.
975
* Not an __init, possibly needed by modules
976
*/
977
int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
978
struct io_apic_irq_attr *irq_attr)
979
{
980
int apic, i, best_guess = -1;
981
982
apic_printk(APIC_DEBUG,
983
"querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
984
bus, slot, pin);
985
if (test_bit(bus, mp_bus_not_pci)) {
986
apic_printk(APIC_VERBOSE,
987
"PCI BIOS passed nonexistent PCI bus %d!\n", bus);
988
return -1;
989
}
990
for (i = 0; i < mp_irq_entries; i++) {
991
int lbus = mp_irqs[i].srcbus;
992
993
for (apic = 0; apic < nr_ioapics; apic++)
994
if (mpc_ioapic_id(apic) == mp_irqs[i].dstapic ||
995
mp_irqs[i].dstapic == MP_APIC_ALL)
996
break;
997
998
if (!test_bit(lbus, mp_bus_not_pci) &&
999
!mp_irqs[i].irqtype &&
1000
(bus == lbus) &&
1001
(slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1002
int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1003
1004
if (!(apic || IO_APIC_IRQ(irq)))
1005
continue;
1006
1007
if (pin == (mp_irqs[i].srcbusirq & 3)) {
1008
set_io_apic_irq_attr(irq_attr, apic,
1009
mp_irqs[i].dstirq,
1010
irq_trigger(i),
1011
irq_polarity(i));
1012
return irq;
1013
}
1014
/*
1015
* Use the first all-but-pin matching entry as a
1016
* best-guess fuzzy result for broken mptables.
1017
*/
1018
if (best_guess < 0) {
1019
set_io_apic_irq_attr(irq_attr, apic,
1020
mp_irqs[i].dstirq,
1021
irq_trigger(i),
1022
irq_polarity(i));
1023
best_guess = irq;
1024
}
1025
}
1026
}
1027
return best_guess;
1028
}
1029
EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1030
1031
void lock_vector_lock(void)
1032
{
1033
/* Used to the online set of cpus does not change
1034
* during assign_irq_vector.
1035
*/
1036
raw_spin_lock(&vector_lock);
1037
}
1038
1039
void unlock_vector_lock(void)
1040
{
1041
raw_spin_unlock(&vector_lock);
1042
}
1043
1044
static int
1045
__assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1046
{
1047
/*
1048
* NOTE! The local APIC isn't very good at handling
1049
* multiple interrupts at the same interrupt level.
1050
* As the interrupt level is determined by taking the
1051
* vector number and shifting that right by 4, we
1052
* want to spread these out a bit so that they don't
1053
* all fall in the same interrupt level.
1054
*
1055
* Also, we've got to be careful not to trash gate
1056
* 0x80, because int 0x80 is hm, kind of importantish. ;)
1057
*/
1058
static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1059
static int current_offset = VECTOR_OFFSET_START % 8;
1060
unsigned int old_vector;
1061
int cpu, err;
1062
cpumask_var_t tmp_mask;
1063
1064
if (cfg->move_in_progress)
1065
return -EBUSY;
1066
1067
if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1068
return -ENOMEM;
1069
1070
old_vector = cfg->vector;
1071
if (old_vector) {
1072
cpumask_and(tmp_mask, mask, cpu_online_mask);
1073
cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1074
if (!cpumask_empty(tmp_mask)) {
1075
free_cpumask_var(tmp_mask);
1076
return 0;
1077
}
1078
}
1079
1080
/* Only try and allocate irqs on cpus that are present */
1081
err = -ENOSPC;
1082
for_each_cpu_and(cpu, mask, cpu_online_mask) {
1083
int new_cpu;
1084
int vector, offset;
1085
1086
apic->vector_allocation_domain(cpu, tmp_mask);
1087
1088
vector = current_vector;
1089
offset = current_offset;
1090
next:
1091
vector += 8;
1092
if (vector >= first_system_vector) {
1093
/* If out of vectors on large boxen, must share them. */
1094
offset = (offset + 1) % 8;
1095
vector = FIRST_EXTERNAL_VECTOR + offset;
1096
}
1097
if (unlikely(current_vector == vector))
1098
continue;
1099
1100
if (test_bit(vector, used_vectors))
1101
goto next;
1102
1103
for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1104
if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1105
goto next;
1106
/* Found one! */
1107
current_vector = vector;
1108
current_offset = offset;
1109
if (old_vector) {
1110
cfg->move_in_progress = 1;
1111
cpumask_copy(cfg->old_domain, cfg->domain);
1112
}
1113
for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1114
per_cpu(vector_irq, new_cpu)[vector] = irq;
1115
cfg->vector = vector;
1116
cpumask_copy(cfg->domain, tmp_mask);
1117
err = 0;
1118
break;
1119
}
1120
free_cpumask_var(tmp_mask);
1121
return err;
1122
}
1123
1124
int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1125
{
1126
int err;
1127
unsigned long flags;
1128
1129
raw_spin_lock_irqsave(&vector_lock, flags);
1130
err = __assign_irq_vector(irq, cfg, mask);
1131
raw_spin_unlock_irqrestore(&vector_lock, flags);
1132
return err;
1133
}
1134
1135
static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1136
{
1137
int cpu, vector;
1138
1139
BUG_ON(!cfg->vector);
1140
1141
vector = cfg->vector;
1142
for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1143
per_cpu(vector_irq, cpu)[vector] = -1;
1144
1145
cfg->vector = 0;
1146
cpumask_clear(cfg->domain);
1147
1148
if (likely(!cfg->move_in_progress))
1149
return;
1150
for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1151
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1152
vector++) {
1153
if (per_cpu(vector_irq, cpu)[vector] != irq)
1154
continue;
1155
per_cpu(vector_irq, cpu)[vector] = -1;
1156
break;
1157
}
1158
}
1159
cfg->move_in_progress = 0;
1160
}
1161
1162
void __setup_vector_irq(int cpu)
1163
{
1164
/* Initialize vector_irq on a new cpu */
1165
int irq, vector;
1166
struct irq_cfg *cfg;
1167
1168
/*
1169
* vector_lock will make sure that we don't run into irq vector
1170
* assignments that might be happening on another cpu in parallel,
1171
* while we setup our initial vector to irq mappings.
1172
*/
1173
raw_spin_lock(&vector_lock);
1174
/* Mark the inuse vectors */
1175
for_each_active_irq(irq) {
1176
cfg = irq_get_chip_data(irq);
1177
if (!cfg)
1178
continue;
1179
/*
1180
* If it is a legacy IRQ handled by the legacy PIC, this cpu
1181
* will be part of the irq_cfg's domain.
1182
*/
1183
if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1184
cpumask_set_cpu(cpu, cfg->domain);
1185
1186
if (!cpumask_test_cpu(cpu, cfg->domain))
1187
continue;
1188
vector = cfg->vector;
1189
per_cpu(vector_irq, cpu)[vector] = irq;
1190
}
1191
/* Mark the free vectors */
1192
for (vector = 0; vector < NR_VECTORS; ++vector) {
1193
irq = per_cpu(vector_irq, cpu)[vector];
1194
if (irq < 0)
1195
continue;
1196
1197
cfg = irq_cfg(irq);
1198
if (!cpumask_test_cpu(cpu, cfg->domain))
1199
per_cpu(vector_irq, cpu)[vector] = -1;
1200
}
1201
raw_spin_unlock(&vector_lock);
1202
}
1203
1204
static struct irq_chip ioapic_chip;
1205
static struct irq_chip ir_ioapic_chip;
1206
1207
#ifdef CONFIG_X86_32
1208
static inline int IO_APIC_irq_trigger(int irq)
1209
{
1210
int apic, idx, pin;
1211
1212
for (apic = 0; apic < nr_ioapics; apic++) {
1213
for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
1214
idx = find_irq_entry(apic, pin, mp_INT);
1215
if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1216
return irq_trigger(idx);
1217
}
1218
}
1219
/*
1220
* nonexistent IRQs are edge default
1221
*/
1222
return 0;
1223
}
1224
#else
1225
static inline int IO_APIC_irq_trigger(int irq)
1226
{
1227
return 1;
1228
}
1229
#endif
1230
1231
static void ioapic_register_intr(unsigned int irq, struct irq_cfg *cfg,
1232
unsigned long trigger)
1233
{
1234
struct irq_chip *chip = &ioapic_chip;
1235
irq_flow_handler_t hdl;
1236
bool fasteoi;
1237
1238
if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1239
trigger == IOAPIC_LEVEL) {
1240
irq_set_status_flags(irq, IRQ_LEVEL);
1241
fasteoi = true;
1242
} else {
1243
irq_clear_status_flags(irq, IRQ_LEVEL);
1244
fasteoi = false;
1245
}
1246
1247
if (irq_remapped(cfg)) {
1248
irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1249
chip = &ir_ioapic_chip;
1250
fasteoi = trigger != 0;
1251
}
1252
1253
hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq;
1254
irq_set_chip_and_handler_name(irq, chip, hdl,
1255
fasteoi ? "fasteoi" : "edge");
1256
}
1257
1258
static int setup_ioapic_entry(int apic_id, int irq,
1259
struct IO_APIC_route_entry *entry,
1260
unsigned int destination, int trigger,
1261
int polarity, int vector, int pin)
1262
{
1263
/*
1264
* add it to the IO-APIC irq-routing table:
1265
*/
1266
memset(entry,0,sizeof(*entry));
1267
1268
if (intr_remapping_enabled) {
1269
struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1270
struct irte irte;
1271
struct IR_IO_APIC_route_entry *ir_entry =
1272
(struct IR_IO_APIC_route_entry *) entry;
1273
int index;
1274
1275
if (!iommu)
1276
panic("No mapping iommu for ioapic %d\n", apic_id);
1277
1278
index = alloc_irte(iommu, irq, 1);
1279
if (index < 0)
1280
panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1281
1282
prepare_irte(&irte, vector, destination);
1283
1284
/* Set source-id of interrupt request */
1285
set_ioapic_sid(&irte, apic_id);
1286
1287
modify_irte(irq, &irte);
1288
1289
ir_entry->index2 = (index >> 15) & 0x1;
1290
ir_entry->zero = 0;
1291
ir_entry->format = 1;
1292
ir_entry->index = (index & 0x7fff);
1293
/*
1294
* IO-APIC RTE will be configured with virtual vector.
1295
* irq handler will do the explicit EOI to the io-apic.
1296
*/
1297
ir_entry->vector = pin;
1298
} else {
1299
entry->delivery_mode = apic->irq_delivery_mode;
1300
entry->dest_mode = apic->irq_dest_mode;
1301
entry->dest = destination;
1302
entry->vector = vector;
1303
}
1304
1305
entry->mask = 0; /* enable IRQ */
1306
entry->trigger = trigger;
1307
entry->polarity = polarity;
1308
1309
/* Mask level triggered irqs.
1310
* Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1311
*/
1312
if (trigger)
1313
entry->mask = 1;
1314
return 0;
1315
}
1316
1317
static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1318
struct irq_cfg *cfg, int trigger, int polarity)
1319
{
1320
struct IO_APIC_route_entry entry;
1321
unsigned int dest;
1322
1323
if (!IO_APIC_IRQ(irq))
1324
return;
1325
/*
1326
* For legacy irqs, cfg->domain starts with cpu 0 for legacy
1327
* controllers like 8259. Now that IO-APIC can handle this irq, update
1328
* the cfg->domain.
1329
*/
1330
if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1331
apic->vector_allocation_domain(0, cfg->domain);
1332
1333
if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1334
return;
1335
1336
dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1337
1338
apic_printk(APIC_VERBOSE,KERN_DEBUG
1339
"IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1340
"IRQ %d Mode:%i Active:%i)\n",
1341
apic_id, mpc_ioapic_id(apic_id), pin, cfg->vector,
1342
irq, trigger, polarity);
1343
1344
1345
if (setup_ioapic_entry(mpc_ioapic_id(apic_id), irq, &entry,
1346
dest, trigger, polarity, cfg->vector, pin)) {
1347
printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1348
mpc_ioapic_id(apic_id), pin);
1349
__clear_irq_vector(irq, cfg);
1350
return;
1351
}
1352
1353
ioapic_register_intr(irq, cfg, trigger);
1354
if (irq < legacy_pic->nr_legacy_irqs)
1355
legacy_pic->mask(irq);
1356
1357
ioapic_write_entry(apic_id, pin, entry);
1358
}
1359
1360
static bool __init io_apic_pin_not_connected(int idx, int apic_id, int pin)
1361
{
1362
if (idx != -1)
1363
return false;
1364
1365
apic_printk(APIC_VERBOSE, KERN_DEBUG " apic %d pin %d not connected\n",
1366
mpc_ioapic_id(apic_id), pin);
1367
return true;
1368
}
1369
1370
static void __init __io_apic_setup_irqs(unsigned int apic_id)
1371
{
1372
int idx, node = cpu_to_node(0);
1373
struct io_apic_irq_attr attr;
1374
unsigned int pin, irq;
1375
1376
for (pin = 0; pin < ioapics[apic_id].nr_registers; pin++) {
1377
idx = find_irq_entry(apic_id, pin, mp_INT);
1378
if (io_apic_pin_not_connected(idx, apic_id, pin))
1379
continue;
1380
1381
irq = pin_2_irq(idx, apic_id, pin);
1382
1383
if ((apic_id > 0) && (irq > 16))
1384
continue;
1385
1386
/*
1387
* Skip the timer IRQ if there's a quirk handler
1388
* installed and if it returns 1:
1389
*/
1390
if (apic->multi_timer_check &&
1391
apic->multi_timer_check(apic_id, irq))
1392
continue;
1393
1394
set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1395
irq_polarity(idx));
1396
1397
io_apic_setup_irq_pin(irq, node, &attr);
1398
}
1399
}
1400
1401
static void __init setup_IO_APIC_irqs(void)
1402
{
1403
unsigned int apic_id;
1404
1405
apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1406
1407
for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1408
__io_apic_setup_irqs(apic_id);
1409
}
1410
1411
/*
1412
* for the gsit that is not in first ioapic
1413
* but could not use acpi_register_gsi()
1414
* like some special sci in IBM x3330
1415
*/
1416
void setup_IO_APIC_irq_extra(u32 gsi)
1417
{
1418
int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1419
struct io_apic_irq_attr attr;
1420
1421
/*
1422
* Convert 'gsi' to 'ioapic.pin'.
1423
*/
1424
apic_id = mp_find_ioapic(gsi);
1425
if (apic_id < 0)
1426
return;
1427
1428
pin = mp_find_ioapic_pin(apic_id, gsi);
1429
idx = find_irq_entry(apic_id, pin, mp_INT);
1430
if (idx == -1)
1431
return;
1432
1433
irq = pin_2_irq(idx, apic_id, pin);
1434
1435
/* Only handle the non legacy irqs on secondary ioapics */
1436
if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1437
return;
1438
1439
set_io_apic_irq_attr(&attr, apic_id, pin, irq_trigger(idx),
1440
irq_polarity(idx));
1441
1442
io_apic_setup_irq_pin_once(irq, node, &attr);
1443
}
1444
1445
/*
1446
* Set up the timer pin, possibly with the 8259A-master behind.
1447
*/
1448
static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1449
int vector)
1450
{
1451
struct IO_APIC_route_entry entry;
1452
1453
if (intr_remapping_enabled)
1454
return;
1455
1456
memset(&entry, 0, sizeof(entry));
1457
1458
/*
1459
* We use logical delivery to get the timer IRQ
1460
* to the first CPU.
1461
*/
1462
entry.dest_mode = apic->irq_dest_mode;
1463
entry.mask = 0; /* don't mask IRQ for edge */
1464
entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1465
entry.delivery_mode = apic->irq_delivery_mode;
1466
entry.polarity = 0;
1467
entry.trigger = 0;
1468
entry.vector = vector;
1469
1470
/*
1471
* The timer IRQ doesn't have to know that behind the
1472
* scene we may have a 8259A-master in AEOI mode ...
1473
*/
1474
irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
1475
"edge");
1476
1477
/*
1478
* Add it to the IO-APIC irq-routing table:
1479
*/
1480
ioapic_write_entry(apic_id, pin, entry);
1481
}
1482
1483
1484
__apicdebuginit(void) print_IO_APIC(void)
1485
{
1486
int apic, i;
1487
union IO_APIC_reg_00 reg_00;
1488
union IO_APIC_reg_01 reg_01;
1489
union IO_APIC_reg_02 reg_02;
1490
union IO_APIC_reg_03 reg_03;
1491
unsigned long flags;
1492
struct irq_cfg *cfg;
1493
unsigned int irq;
1494
1495
printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1496
for (i = 0; i < nr_ioapics; i++)
1497
printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1498
mpc_ioapic_id(i), ioapics[i].nr_registers);
1499
1500
/*
1501
* We are a bit conservative about what we expect. We have to
1502
* know about every hardware change ASAP.
1503
*/
1504
printk(KERN_INFO "testing the IO APIC.......................\n");
1505
1506
for (apic = 0; apic < nr_ioapics; apic++) {
1507
1508
raw_spin_lock_irqsave(&ioapic_lock, flags);
1509
reg_00.raw = io_apic_read(apic, 0);
1510
reg_01.raw = io_apic_read(apic, 1);
1511
if (reg_01.bits.version >= 0x10)
1512
reg_02.raw = io_apic_read(apic, 2);
1513
if (reg_01.bits.version >= 0x20)
1514
reg_03.raw = io_apic_read(apic, 3);
1515
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1516
1517
printk("\n");
1518
printk(KERN_DEBUG "IO APIC #%d......\n", mpc_ioapic_id(apic));
1519
printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1520
printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1521
printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1522
printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1523
1524
printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1525
printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1526
1527
printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1528
printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1529
1530
/*
1531
* Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1532
* but the value of reg_02 is read as the previous read register
1533
* value, so ignore it if reg_02 == reg_01.
1534
*/
1535
if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1536
printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1537
printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1538
}
1539
1540
/*
1541
* Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1542
* or reg_03, but the value of reg_0[23] is read as the previous read
1543
* register value, so ignore it if reg_03 == reg_0[12].
1544
*/
1545
if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1546
reg_03.raw != reg_01.raw) {
1547
printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1548
printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1549
}
1550
1551
printk(KERN_DEBUG ".... IRQ redirection table:\n");
1552
1553
printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1554
" Stat Dmod Deli Vect:\n");
1555
1556
for (i = 0; i <= reg_01.bits.entries; i++) {
1557
struct IO_APIC_route_entry entry;
1558
1559
entry = ioapic_read_entry(apic, i);
1560
1561
printk(KERN_DEBUG " %02x %03X ",
1562
i,
1563
entry.dest
1564
);
1565
1566
printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1567
entry.mask,
1568
entry.trigger,
1569
entry.irr,
1570
entry.polarity,
1571
entry.delivery_status,
1572
entry.dest_mode,
1573
entry.delivery_mode,
1574
entry.vector
1575
);
1576
}
1577
}
1578
printk(KERN_DEBUG "IRQ to pin mappings:\n");
1579
for_each_active_irq(irq) {
1580
struct irq_pin_list *entry;
1581
1582
cfg = irq_get_chip_data(irq);
1583
if (!cfg)
1584
continue;
1585
entry = cfg->irq_2_pin;
1586
if (!entry)
1587
continue;
1588
printk(KERN_DEBUG "IRQ%d ", irq);
1589
for_each_irq_pin(entry, cfg->irq_2_pin)
1590
printk("-> %d:%d", entry->apic, entry->pin);
1591
printk("\n");
1592
}
1593
1594
printk(KERN_INFO ".................................... done.\n");
1595
1596
return;
1597
}
1598
1599
__apicdebuginit(void) print_APIC_field(int base)
1600
{
1601
int i;
1602
1603
printk(KERN_DEBUG);
1604
1605
for (i = 0; i < 8; i++)
1606
printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1607
1608
printk(KERN_CONT "\n");
1609
}
1610
1611
__apicdebuginit(void) print_local_APIC(void *dummy)
1612
{
1613
unsigned int i, v, ver, maxlvt;
1614
u64 icr;
1615
1616
printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1617
smp_processor_id(), hard_smp_processor_id());
1618
v = apic_read(APIC_ID);
1619
printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1620
v = apic_read(APIC_LVR);
1621
printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1622
ver = GET_APIC_VERSION(v);
1623
maxlvt = lapic_get_maxlvt();
1624
1625
v = apic_read(APIC_TASKPRI);
1626
printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1627
1628
if (APIC_INTEGRATED(ver)) { /* !82489DX */
1629
if (!APIC_XAPIC(ver)) {
1630
v = apic_read(APIC_ARBPRI);
1631
printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1632
v & APIC_ARBPRI_MASK);
1633
}
1634
v = apic_read(APIC_PROCPRI);
1635
printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1636
}
1637
1638
/*
1639
* Remote read supported only in the 82489DX and local APIC for
1640
* Pentium processors.
1641
*/
1642
if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1643
v = apic_read(APIC_RRR);
1644
printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1645
}
1646
1647
v = apic_read(APIC_LDR);
1648
printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1649
if (!x2apic_enabled()) {
1650
v = apic_read(APIC_DFR);
1651
printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1652
}
1653
v = apic_read(APIC_SPIV);
1654
printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1655
1656
printk(KERN_DEBUG "... APIC ISR field:\n");
1657
print_APIC_field(APIC_ISR);
1658
printk(KERN_DEBUG "... APIC TMR field:\n");
1659
print_APIC_field(APIC_TMR);
1660
printk(KERN_DEBUG "... APIC IRR field:\n");
1661
print_APIC_field(APIC_IRR);
1662
1663
if (APIC_INTEGRATED(ver)) { /* !82489DX */
1664
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1665
apic_write(APIC_ESR, 0);
1666
1667
v = apic_read(APIC_ESR);
1668
printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1669
}
1670
1671
icr = apic_icr_read();
1672
printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1673
printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1674
1675
v = apic_read(APIC_LVTT);
1676
printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1677
1678
if (maxlvt > 3) { /* PC is LVT#4. */
1679
v = apic_read(APIC_LVTPC);
1680
printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1681
}
1682
v = apic_read(APIC_LVT0);
1683
printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1684
v = apic_read(APIC_LVT1);
1685
printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1686
1687
if (maxlvt > 2) { /* ERR is LVT#3. */
1688
v = apic_read(APIC_LVTERR);
1689
printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1690
}
1691
1692
v = apic_read(APIC_TMICT);
1693
printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1694
v = apic_read(APIC_TMCCT);
1695
printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1696
v = apic_read(APIC_TDCR);
1697
printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1698
1699
if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1700
v = apic_read(APIC_EFEAT);
1701
maxlvt = (v >> 16) & 0xff;
1702
printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1703
v = apic_read(APIC_ECTRL);
1704
printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1705
for (i = 0; i < maxlvt; i++) {
1706
v = apic_read(APIC_EILVTn(i));
1707
printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1708
}
1709
}
1710
printk("\n");
1711
}
1712
1713
__apicdebuginit(void) print_local_APICs(int maxcpu)
1714
{
1715
int cpu;
1716
1717
if (!maxcpu)
1718
return;
1719
1720
preempt_disable();
1721
for_each_online_cpu(cpu) {
1722
if (cpu >= maxcpu)
1723
break;
1724
smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1725
}
1726
preempt_enable();
1727
}
1728
1729
__apicdebuginit(void) print_PIC(void)
1730
{
1731
unsigned int v;
1732
unsigned long flags;
1733
1734
if (!legacy_pic->nr_legacy_irqs)
1735
return;
1736
1737
printk(KERN_DEBUG "\nprinting PIC contents\n");
1738
1739
raw_spin_lock_irqsave(&i8259A_lock, flags);
1740
1741
v = inb(0xa1) << 8 | inb(0x21);
1742
printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1743
1744
v = inb(0xa0) << 8 | inb(0x20);
1745
printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1746
1747
outb(0x0b,0xa0);
1748
outb(0x0b,0x20);
1749
v = inb(0xa0) << 8 | inb(0x20);
1750
outb(0x0a,0xa0);
1751
outb(0x0a,0x20);
1752
1753
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1754
1755
printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1756
1757
v = inb(0x4d1) << 8 | inb(0x4d0);
1758
printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1759
}
1760
1761
static int __initdata show_lapic = 1;
1762
static __init int setup_show_lapic(char *arg)
1763
{
1764
int num = -1;
1765
1766
if (strcmp(arg, "all") == 0) {
1767
show_lapic = CONFIG_NR_CPUS;
1768
} else {
1769
get_option(&arg, &num);
1770
if (num >= 0)
1771
show_lapic = num;
1772
}
1773
1774
return 1;
1775
}
1776
__setup("show_lapic=", setup_show_lapic);
1777
1778
__apicdebuginit(int) print_ICs(void)
1779
{
1780
if (apic_verbosity == APIC_QUIET)
1781
return 0;
1782
1783
print_PIC();
1784
1785
/* don't print out if apic is not there */
1786
if (!cpu_has_apic && !apic_from_smp_config())
1787
return 0;
1788
1789
print_local_APICs(show_lapic);
1790
print_IO_APIC();
1791
1792
return 0;
1793
}
1794
1795
fs_initcall(print_ICs);
1796
1797
1798
/* Where if anywhere is the i8259 connect in external int mode */
1799
static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1800
1801
void __init enable_IO_APIC(void)
1802
{
1803
int i8259_apic, i8259_pin;
1804
int apic;
1805
1806
if (!legacy_pic->nr_legacy_irqs)
1807
return;
1808
1809
for(apic = 0; apic < nr_ioapics; apic++) {
1810
int pin;
1811
/* See if any of the pins is in ExtINT mode */
1812
for (pin = 0; pin < ioapics[apic].nr_registers; pin++) {
1813
struct IO_APIC_route_entry entry;
1814
entry = ioapic_read_entry(apic, pin);
1815
1816
/* If the interrupt line is enabled and in ExtInt mode
1817
* I have found the pin where the i8259 is connected.
1818
*/
1819
if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1820
ioapic_i8259.apic = apic;
1821
ioapic_i8259.pin = pin;
1822
goto found_i8259;
1823
}
1824
}
1825
}
1826
found_i8259:
1827
/* Look to see what if the MP table has reported the ExtINT */
1828
/* If we could not find the appropriate pin by looking at the ioapic
1829
* the i8259 probably is not connected the ioapic but give the
1830
* mptable a chance anyway.
1831
*/
1832
i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1833
i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1834
/* Trust the MP table if nothing is setup in the hardware */
1835
if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1836
printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1837
ioapic_i8259.pin = i8259_pin;
1838
ioapic_i8259.apic = i8259_apic;
1839
}
1840
/* Complain if the MP table and the hardware disagree */
1841
if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1842
(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1843
{
1844
printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1845
}
1846
1847
/*
1848
* Do not trust the IO-APIC being empty at bootup
1849
*/
1850
clear_IO_APIC();
1851
}
1852
1853
/*
1854
* Not an __init, needed by the reboot code
1855
*/
1856
void disable_IO_APIC(void)
1857
{
1858
/*
1859
* Clear the IO-APIC before rebooting:
1860
*/
1861
clear_IO_APIC();
1862
1863
if (!legacy_pic->nr_legacy_irqs)
1864
return;
1865
1866
/*
1867
* If the i8259 is routed through an IOAPIC
1868
* Put that IOAPIC in virtual wire mode
1869
* so legacy interrupts can be delivered.
1870
*
1871
* With interrupt-remapping, for now we will use virtual wire A mode,
1872
* as virtual wire B is little complex (need to configure both
1873
* IOAPIC RTE as well as interrupt-remapping table entry).
1874
* As this gets called during crash dump, keep this simple for now.
1875
*/
1876
if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1877
struct IO_APIC_route_entry entry;
1878
1879
memset(&entry, 0, sizeof(entry));
1880
entry.mask = 0; /* Enabled */
1881
entry.trigger = 0; /* Edge */
1882
entry.irr = 0;
1883
entry.polarity = 0; /* High */
1884
entry.delivery_status = 0;
1885
entry.dest_mode = 0; /* Physical */
1886
entry.delivery_mode = dest_ExtINT; /* ExtInt */
1887
entry.vector = 0;
1888
entry.dest = read_apic_id();
1889
1890
/*
1891
* Add it to the IO-APIC irq-routing table:
1892
*/
1893
ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1894
}
1895
1896
/*
1897
* Use virtual wire A mode when interrupt remapping is enabled.
1898
*/
1899
if (cpu_has_apic || apic_from_smp_config())
1900
disconnect_bsp_APIC(!intr_remapping_enabled &&
1901
ioapic_i8259.pin != -1);
1902
}
1903
1904
#ifdef CONFIG_X86_32
1905
/*
1906
* function to set the IO-APIC physical IDs based on the
1907
* values stored in the MPC table.
1908
*
1909
* by Matt Domsch <[email protected]> Tue Dec 21 12:25:05 CST 1999
1910
*/
1911
void __init setup_ioapic_ids_from_mpc_nocheck(void)
1912
{
1913
union IO_APIC_reg_00 reg_00;
1914
physid_mask_t phys_id_present_map;
1915
int apic_id;
1916
int i;
1917
unsigned char old_id;
1918
unsigned long flags;
1919
1920
/*
1921
* This is broken; anything with a real cpu count has to
1922
* circumvent this idiocy regardless.
1923
*/
1924
apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1925
1926
/*
1927
* Set the IOAPIC ID to the value stored in the MPC table.
1928
*/
1929
for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1930
1931
/* Read the register 0 value */
1932
raw_spin_lock_irqsave(&ioapic_lock, flags);
1933
reg_00.raw = io_apic_read(apic_id, 0);
1934
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1935
1936
old_id = mpc_ioapic_id(apic_id);
1937
1938
if (mpc_ioapic_id(apic_id) >= get_physical_broadcast()) {
1939
printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1940
apic_id, mpc_ioapic_id(apic_id));
1941
printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1942
reg_00.bits.ID);
1943
ioapics[apic_id].mp_config.apicid = reg_00.bits.ID;
1944
}
1945
1946
/*
1947
* Sanity check, is the ID really free? Every APIC in a
1948
* system must have a unique ID or we get lots of nice
1949
* 'stuck on smp_invalidate_needed IPI wait' messages.
1950
*/
1951
if (apic->check_apicid_used(&phys_id_present_map,
1952
mpc_ioapic_id(apic_id))) {
1953
printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1954
apic_id, mpc_ioapic_id(apic_id));
1955
for (i = 0; i < get_physical_broadcast(); i++)
1956
if (!physid_isset(i, phys_id_present_map))
1957
break;
1958
if (i >= get_physical_broadcast())
1959
panic("Max APIC ID exceeded!\n");
1960
printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1961
i);
1962
physid_set(i, phys_id_present_map);
1963
ioapics[apic_id].mp_config.apicid = i;
1964
} else {
1965
physid_mask_t tmp;
1966
apic->apicid_to_cpu_present(mpc_ioapic_id(apic_id),
1967
&tmp);
1968
apic_printk(APIC_VERBOSE, "Setting %d in the "
1969
"phys_id_present_map\n",
1970
mpc_ioapic_id(apic_id));
1971
physids_or(phys_id_present_map, phys_id_present_map, tmp);
1972
}
1973
1974
/*
1975
* We need to adjust the IRQ routing table
1976
* if the ID changed.
1977
*/
1978
if (old_id != mpc_ioapic_id(apic_id))
1979
for (i = 0; i < mp_irq_entries; i++)
1980
if (mp_irqs[i].dstapic == old_id)
1981
mp_irqs[i].dstapic
1982
= mpc_ioapic_id(apic_id);
1983
1984
/*
1985
* Update the ID register according to the right value
1986
* from the MPC table if they are different.
1987
*/
1988
if (mpc_ioapic_id(apic_id) == reg_00.bits.ID)
1989
continue;
1990
1991
apic_printk(APIC_VERBOSE, KERN_INFO
1992
"...changing IO-APIC physical APIC ID to %d ...",
1993
mpc_ioapic_id(apic_id));
1994
1995
reg_00.bits.ID = mpc_ioapic_id(apic_id);
1996
raw_spin_lock_irqsave(&ioapic_lock, flags);
1997
io_apic_write(apic_id, 0, reg_00.raw);
1998
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1999
2000
/*
2001
* Sanity check
2002
*/
2003
raw_spin_lock_irqsave(&ioapic_lock, flags);
2004
reg_00.raw = io_apic_read(apic_id, 0);
2005
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2006
if (reg_00.bits.ID != mpc_ioapic_id(apic_id))
2007
printk("could not set ID!\n");
2008
else
2009
apic_printk(APIC_VERBOSE, " ok.\n");
2010
}
2011
}
2012
2013
void __init setup_ioapic_ids_from_mpc(void)
2014
{
2015
2016
if (acpi_ioapic)
2017
return;
2018
/*
2019
* Don't check I/O APIC IDs for xAPIC systems. They have
2020
* no meaning without the serial APIC bus.
2021
*/
2022
if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2023
|| APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2024
return;
2025
setup_ioapic_ids_from_mpc_nocheck();
2026
}
2027
#endif
2028
2029
int no_timer_check __initdata;
2030
2031
static int __init notimercheck(char *s)
2032
{
2033
no_timer_check = 1;
2034
return 1;
2035
}
2036
__setup("no_timer_check", notimercheck);
2037
2038
/*
2039
* There is a nasty bug in some older SMP boards, their mptable lies
2040
* about the timer IRQ. We do the following to work around the situation:
2041
*
2042
* - timer IRQ defaults to IO-APIC IRQ
2043
* - if this function detects that timer IRQs are defunct, then we fall
2044
* back to ISA timer IRQs
2045
*/
2046
static int __init timer_irq_works(void)
2047
{
2048
unsigned long t1 = jiffies;
2049
unsigned long flags;
2050
2051
if (no_timer_check)
2052
return 1;
2053
2054
local_save_flags(flags);
2055
local_irq_enable();
2056
/* Let ten ticks pass... */
2057
mdelay((10 * 1000) / HZ);
2058
local_irq_restore(flags);
2059
2060
/*
2061
* Expect a few ticks at least, to be sure some possible
2062
* glue logic does not lock up after one or two first
2063
* ticks in a non-ExtINT mode. Also the local APIC
2064
* might have cached one ExtINT interrupt. Finally, at
2065
* least one tick may be lost due to delays.
2066
*/
2067
2068
/* jiffies wrap? */
2069
if (time_after(jiffies, t1 + 4))
2070
return 1;
2071
return 0;
2072
}
2073
2074
/*
2075
* In the SMP+IOAPIC case it might happen that there are an unspecified
2076
* number of pending IRQ events unhandled. These cases are very rare,
2077
* so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2078
* better to do it this way as thus we do not have to be aware of
2079
* 'pending' interrupts in the IRQ path, except at this point.
2080
*/
2081
/*
2082
* Edge triggered needs to resend any interrupt
2083
* that was delayed but this is now handled in the device
2084
* independent code.
2085
*/
2086
2087
/*
2088
* Starting up a edge-triggered IO-APIC interrupt is
2089
* nasty - we need to make sure that we get the edge.
2090
* If it is already asserted for some reason, we need
2091
* return 1 to indicate that is was pending.
2092
*
2093
* This is not complete - we should be able to fake
2094
* an edge even if it isn't on the 8259A...
2095
*/
2096
2097
static unsigned int startup_ioapic_irq(struct irq_data *data)
2098
{
2099
int was_pending = 0, irq = data->irq;
2100
unsigned long flags;
2101
2102
raw_spin_lock_irqsave(&ioapic_lock, flags);
2103
if (irq < legacy_pic->nr_legacy_irqs) {
2104
legacy_pic->mask(irq);
2105
if (legacy_pic->irq_pending(irq))
2106
was_pending = 1;
2107
}
2108
__unmask_ioapic(data->chip_data);
2109
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2110
2111
return was_pending;
2112
}
2113
2114
static int ioapic_retrigger_irq(struct irq_data *data)
2115
{
2116
struct irq_cfg *cfg = data->chip_data;
2117
unsigned long flags;
2118
2119
raw_spin_lock_irqsave(&vector_lock, flags);
2120
apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2121
raw_spin_unlock_irqrestore(&vector_lock, flags);
2122
2123
return 1;
2124
}
2125
2126
/*
2127
* Level and edge triggered IO-APIC interrupts need different handling,
2128
* so we use two separate IRQ descriptors. Edge triggered IRQs can be
2129
* handled with the level-triggered descriptor, but that one has slightly
2130
* more overhead. Level-triggered interrupts cannot be handled with the
2131
* edge-triggered handler, without risking IRQ storms and other ugly
2132
* races.
2133
*/
2134
2135
#ifdef CONFIG_SMP
2136
void send_cleanup_vector(struct irq_cfg *cfg)
2137
{
2138
cpumask_var_t cleanup_mask;
2139
2140
if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2141
unsigned int i;
2142
for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2143
apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2144
} else {
2145
cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2146
apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2147
free_cpumask_var(cleanup_mask);
2148
}
2149
cfg->move_in_progress = 0;
2150
}
2151
2152
static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2153
{
2154
int apic, pin;
2155
struct irq_pin_list *entry;
2156
u8 vector = cfg->vector;
2157
2158
for_each_irq_pin(entry, cfg->irq_2_pin) {
2159
unsigned int reg;
2160
2161
apic = entry->apic;
2162
pin = entry->pin;
2163
/*
2164
* With interrupt-remapping, destination information comes
2165
* from interrupt-remapping table entry.
2166
*/
2167
if (!irq_remapped(cfg))
2168
io_apic_write(apic, 0x11 + pin*2, dest);
2169
reg = io_apic_read(apic, 0x10 + pin*2);
2170
reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2171
reg |= vector;
2172
io_apic_modify(apic, 0x10 + pin*2, reg);
2173
}
2174
}
2175
2176
/*
2177
* Either sets data->affinity to a valid value, and returns
2178
* ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2179
* leaves data->affinity untouched.
2180
*/
2181
int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2182
unsigned int *dest_id)
2183
{
2184
struct irq_cfg *cfg = data->chip_data;
2185
2186
if (!cpumask_intersects(mask, cpu_online_mask))
2187
return -1;
2188
2189
if (assign_irq_vector(data->irq, data->chip_data, mask))
2190
return -1;
2191
2192
cpumask_copy(data->affinity, mask);
2193
2194
*dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2195
return 0;
2196
}
2197
2198
static int
2199
ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2200
bool force)
2201
{
2202
unsigned int dest, irq = data->irq;
2203
unsigned long flags;
2204
int ret;
2205
2206
raw_spin_lock_irqsave(&ioapic_lock, flags);
2207
ret = __ioapic_set_affinity(data, mask, &dest);
2208
if (!ret) {
2209
/* Only the high 8 bits are valid. */
2210
dest = SET_APIC_LOGICAL_ID(dest);
2211
__target_IO_APIC_irq(irq, dest, data->chip_data);
2212
}
2213
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2214
return ret;
2215
}
2216
2217
#ifdef CONFIG_INTR_REMAP
2218
2219
/*
2220
* Migrate the IO-APIC irq in the presence of intr-remapping.
2221
*
2222
* For both level and edge triggered, irq migration is a simple atomic
2223
* update(of vector and cpu destination) of IRTE and flush the hardware cache.
2224
*
2225
* For level triggered, we eliminate the io-apic RTE modification (with the
2226
* updated vector information), by using a virtual vector (io-apic pin number).
2227
* Real vector that is used for interrupting cpu will be coming from
2228
* the interrupt-remapping table entry.
2229
*/
2230
static int
2231
ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2232
bool force)
2233
{
2234
struct irq_cfg *cfg = data->chip_data;
2235
unsigned int dest, irq = data->irq;
2236
struct irte irte;
2237
2238
if (!cpumask_intersects(mask, cpu_online_mask))
2239
return -EINVAL;
2240
2241
if (get_irte(irq, &irte))
2242
return -EBUSY;
2243
2244
if (assign_irq_vector(irq, cfg, mask))
2245
return -EBUSY;
2246
2247
dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2248
2249
irte.vector = cfg->vector;
2250
irte.dest_id = IRTE_DEST(dest);
2251
2252
/*
2253
* Modified the IRTE and flushes the Interrupt entry cache.
2254
*/
2255
modify_irte(irq, &irte);
2256
2257
if (cfg->move_in_progress)
2258
send_cleanup_vector(cfg);
2259
2260
cpumask_copy(data->affinity, mask);
2261
return 0;
2262
}
2263
2264
#else
2265
static inline int
2266
ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2267
bool force)
2268
{
2269
return 0;
2270
}
2271
#endif
2272
2273
asmlinkage void smp_irq_move_cleanup_interrupt(void)
2274
{
2275
unsigned vector, me;
2276
2277
ack_APIC_irq();
2278
exit_idle();
2279
irq_enter();
2280
2281
me = smp_processor_id();
2282
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2283
unsigned int irq;
2284
unsigned int irr;
2285
struct irq_desc *desc;
2286
struct irq_cfg *cfg;
2287
irq = __this_cpu_read(vector_irq[vector]);
2288
2289
if (irq == -1)
2290
continue;
2291
2292
desc = irq_to_desc(irq);
2293
if (!desc)
2294
continue;
2295
2296
cfg = irq_cfg(irq);
2297
raw_spin_lock(&desc->lock);
2298
2299
/*
2300
* Check if the irq migration is in progress. If so, we
2301
* haven't received the cleanup request yet for this irq.
2302
*/
2303
if (cfg->move_in_progress)
2304
goto unlock;
2305
2306
if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2307
goto unlock;
2308
2309
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2310
/*
2311
* Check if the vector that needs to be cleanedup is
2312
* registered at the cpu's IRR. If so, then this is not
2313
* the best time to clean it up. Lets clean it up in the
2314
* next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2315
* to myself.
2316
*/
2317
if (irr & (1 << (vector % 32))) {
2318
apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2319
goto unlock;
2320
}
2321
__this_cpu_write(vector_irq[vector], -1);
2322
unlock:
2323
raw_spin_unlock(&desc->lock);
2324
}
2325
2326
irq_exit();
2327
}
2328
2329
static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2330
{
2331
unsigned me;
2332
2333
if (likely(!cfg->move_in_progress))
2334
return;
2335
2336
me = smp_processor_id();
2337
2338
if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2339
send_cleanup_vector(cfg);
2340
}
2341
2342
static void irq_complete_move(struct irq_cfg *cfg)
2343
{
2344
__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2345
}
2346
2347
void irq_force_complete_move(int irq)
2348
{
2349
struct irq_cfg *cfg = irq_get_chip_data(irq);
2350
2351
if (!cfg)
2352
return;
2353
2354
__irq_complete_move(cfg, cfg->vector);
2355
}
2356
#else
2357
static inline void irq_complete_move(struct irq_cfg *cfg) { }
2358
#endif
2359
2360
static void ack_apic_edge(struct irq_data *data)
2361
{
2362
irq_complete_move(data->chip_data);
2363
irq_move_irq(data);
2364
ack_APIC_irq();
2365
}
2366
2367
atomic_t irq_mis_count;
2368
2369
/*
2370
* IO-APIC versions below 0x20 don't support EOI register.
2371
* For the record, here is the information about various versions:
2372
* 0Xh 82489DX
2373
* 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2374
* 2Xh I/O(x)APIC which is PCI 2.2 Compliant
2375
* 30h-FFh Reserved
2376
*
2377
* Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2378
* version as 0x2. This is an error with documentation and these ICH chips
2379
* use io-apic's of version 0x20.
2380
*
2381
* For IO-APIC's with EOI register, we use that to do an explicit EOI.
2382
* Otherwise, we simulate the EOI message manually by changing the trigger
2383
* mode to edge and then back to level, with RTE being masked during this.
2384
*/
2385
static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2386
{
2387
struct irq_pin_list *entry;
2388
unsigned long flags;
2389
2390
raw_spin_lock_irqsave(&ioapic_lock, flags);
2391
for_each_irq_pin(entry, cfg->irq_2_pin) {
2392
if (mpc_ioapic_ver(entry->apic) >= 0x20) {
2393
/*
2394
* Intr-remapping uses pin number as the virtual vector
2395
* in the RTE. Actual vector is programmed in
2396
* intr-remapping table entry. Hence for the io-apic
2397
* EOI we use the pin number.
2398
*/
2399
if (irq_remapped(cfg))
2400
io_apic_eoi(entry->apic, entry->pin);
2401
else
2402
io_apic_eoi(entry->apic, cfg->vector);
2403
} else {
2404
__mask_and_edge_IO_APIC_irq(entry);
2405
__unmask_and_level_IO_APIC_irq(entry);
2406
}
2407
}
2408
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2409
}
2410
2411
static void ack_apic_level(struct irq_data *data)
2412
{
2413
struct irq_cfg *cfg = data->chip_data;
2414
int i, do_unmask_irq = 0, irq = data->irq;
2415
unsigned long v;
2416
2417
irq_complete_move(cfg);
2418
#ifdef CONFIG_GENERIC_PENDING_IRQ
2419
/* If we are moving the irq we need to mask it */
2420
if (unlikely(irqd_is_setaffinity_pending(data))) {
2421
do_unmask_irq = 1;
2422
mask_ioapic(cfg);
2423
}
2424
#endif
2425
2426
/*
2427
* It appears there is an erratum which affects at least version 0x11
2428
* of I/O APIC (that's the 82093AA and cores integrated into various
2429
* chipsets). Under certain conditions a level-triggered interrupt is
2430
* erroneously delivered as edge-triggered one but the respective IRR
2431
* bit gets set nevertheless. As a result the I/O unit expects an EOI
2432
* message but it will never arrive and further interrupts are blocked
2433
* from the source. The exact reason is so far unknown, but the
2434
* phenomenon was observed when two consecutive interrupt requests
2435
* from a given source get delivered to the same CPU and the source is
2436
* temporarily disabled in between.
2437
*
2438
* A workaround is to simulate an EOI message manually. We achieve it
2439
* by setting the trigger mode to edge and then to level when the edge
2440
* trigger mode gets detected in the TMR of a local APIC for a
2441
* level-triggered interrupt. We mask the source for the time of the
2442
* operation to prevent an edge-triggered interrupt escaping meanwhile.
2443
* The idea is from Manfred Spraul. --macro
2444
*
2445
* Also in the case when cpu goes offline, fixup_irqs() will forward
2446
* any unhandled interrupt on the offlined cpu to the new cpu
2447
* destination that is handling the corresponding interrupt. This
2448
* interrupt forwarding is done via IPI's. Hence, in this case also
2449
* level-triggered io-apic interrupt will be seen as an edge
2450
* interrupt in the IRR. And we can't rely on the cpu's EOI
2451
* to be broadcasted to the IO-APIC's which will clear the remoteIRR
2452
* corresponding to the level-triggered interrupt. Hence on IO-APIC's
2453
* supporting EOI register, we do an explicit EOI to clear the
2454
* remote IRR and on IO-APIC's which don't have an EOI register,
2455
* we use the above logic (mask+edge followed by unmask+level) from
2456
* Manfred Spraul to clear the remote IRR.
2457
*/
2458
i = cfg->vector;
2459
v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2460
2461
/*
2462
* We must acknowledge the irq before we move it or the acknowledge will
2463
* not propagate properly.
2464
*/
2465
ack_APIC_irq();
2466
2467
/*
2468
* Tail end of clearing remote IRR bit (either by delivering the EOI
2469
* message via io-apic EOI register write or simulating it using
2470
* mask+edge followed by unnask+level logic) manually when the
2471
* level triggered interrupt is seen as the edge triggered interrupt
2472
* at the cpu.
2473
*/
2474
if (!(v & (1 << (i & 0x1f)))) {
2475
atomic_inc(&irq_mis_count);
2476
2477
eoi_ioapic_irq(irq, cfg);
2478
}
2479
2480
/* Now we can move and renable the irq */
2481
if (unlikely(do_unmask_irq)) {
2482
/* Only migrate the irq if the ack has been received.
2483
*
2484
* On rare occasions the broadcast level triggered ack gets
2485
* delayed going to ioapics, and if we reprogram the
2486
* vector while Remote IRR is still set the irq will never
2487
* fire again.
2488
*
2489
* To prevent this scenario we read the Remote IRR bit
2490
* of the ioapic. This has two effects.
2491
* - On any sane system the read of the ioapic will
2492
* flush writes (and acks) going to the ioapic from
2493
* this cpu.
2494
* - We get to see if the ACK has actually been delivered.
2495
*
2496
* Based on failed experiments of reprogramming the
2497
* ioapic entry from outside of irq context starting
2498
* with masking the ioapic entry and then polling until
2499
* Remote IRR was clear before reprogramming the
2500
* ioapic I don't trust the Remote IRR bit to be
2501
* completey accurate.
2502
*
2503
* However there appears to be no other way to plug
2504
* this race, so if the Remote IRR bit is not
2505
* accurate and is causing problems then it is a hardware bug
2506
* and you can go talk to the chipset vendor about it.
2507
*/
2508
if (!io_apic_level_ack_pending(cfg))
2509
irq_move_masked_irq(data);
2510
unmask_ioapic(cfg);
2511
}
2512
}
2513
2514
#ifdef CONFIG_INTR_REMAP
2515
static void ir_ack_apic_edge(struct irq_data *data)
2516
{
2517
ack_APIC_irq();
2518
}
2519
2520
static void ir_ack_apic_level(struct irq_data *data)
2521
{
2522
ack_APIC_irq();
2523
eoi_ioapic_irq(data->irq, data->chip_data);
2524
}
2525
#endif /* CONFIG_INTR_REMAP */
2526
2527
static struct irq_chip ioapic_chip __read_mostly = {
2528
.name = "IO-APIC",
2529
.irq_startup = startup_ioapic_irq,
2530
.irq_mask = mask_ioapic_irq,
2531
.irq_unmask = unmask_ioapic_irq,
2532
.irq_ack = ack_apic_edge,
2533
.irq_eoi = ack_apic_level,
2534
#ifdef CONFIG_SMP
2535
.irq_set_affinity = ioapic_set_affinity,
2536
#endif
2537
.irq_retrigger = ioapic_retrigger_irq,
2538
};
2539
2540
static struct irq_chip ir_ioapic_chip __read_mostly = {
2541
.name = "IR-IO-APIC",
2542
.irq_startup = startup_ioapic_irq,
2543
.irq_mask = mask_ioapic_irq,
2544
.irq_unmask = unmask_ioapic_irq,
2545
#ifdef CONFIG_INTR_REMAP
2546
.irq_ack = ir_ack_apic_edge,
2547
.irq_eoi = ir_ack_apic_level,
2548
#ifdef CONFIG_SMP
2549
.irq_set_affinity = ir_ioapic_set_affinity,
2550
#endif
2551
#endif
2552
.irq_retrigger = ioapic_retrigger_irq,
2553
};
2554
2555
static inline void init_IO_APIC_traps(void)
2556
{
2557
struct irq_cfg *cfg;
2558
unsigned int irq;
2559
2560
/*
2561
* NOTE! The local APIC isn't very good at handling
2562
* multiple interrupts at the same interrupt level.
2563
* As the interrupt level is determined by taking the
2564
* vector number and shifting that right by 4, we
2565
* want to spread these out a bit so that they don't
2566
* all fall in the same interrupt level.
2567
*
2568
* Also, we've got to be careful not to trash gate
2569
* 0x80, because int 0x80 is hm, kind of importantish. ;)
2570
*/
2571
for_each_active_irq(irq) {
2572
cfg = irq_get_chip_data(irq);
2573
if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2574
/*
2575
* Hmm.. We don't have an entry for this,
2576
* so default to an old-fashioned 8259
2577
* interrupt if we can..
2578
*/
2579
if (irq < legacy_pic->nr_legacy_irqs)
2580
legacy_pic->make_irq(irq);
2581
else
2582
/* Strange. Oh, well.. */
2583
irq_set_chip(irq, &no_irq_chip);
2584
}
2585
}
2586
}
2587
2588
/*
2589
* The local APIC irq-chip implementation:
2590
*/
2591
2592
static void mask_lapic_irq(struct irq_data *data)
2593
{
2594
unsigned long v;
2595
2596
v = apic_read(APIC_LVT0);
2597
apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2598
}
2599
2600
static void unmask_lapic_irq(struct irq_data *data)
2601
{
2602
unsigned long v;
2603
2604
v = apic_read(APIC_LVT0);
2605
apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2606
}
2607
2608
static void ack_lapic_irq(struct irq_data *data)
2609
{
2610
ack_APIC_irq();
2611
}
2612
2613
static struct irq_chip lapic_chip __read_mostly = {
2614
.name = "local-APIC",
2615
.irq_mask = mask_lapic_irq,
2616
.irq_unmask = unmask_lapic_irq,
2617
.irq_ack = ack_lapic_irq,
2618
};
2619
2620
static void lapic_register_intr(int irq)
2621
{
2622
irq_clear_status_flags(irq, IRQ_LEVEL);
2623
irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2624
"edge");
2625
}
2626
2627
/*
2628
* This looks a bit hackish but it's about the only one way of sending
2629
* a few INTA cycles to 8259As and any associated glue logic. ICR does
2630
* not support the ExtINT mode, unfortunately. We need to send these
2631
* cycles as some i82489DX-based boards have glue logic that keeps the
2632
* 8259A interrupt line asserted until INTA. --macro
2633
*/
2634
static inline void __init unlock_ExtINT_logic(void)
2635
{
2636
int apic, pin, i;
2637
struct IO_APIC_route_entry entry0, entry1;
2638
unsigned char save_control, save_freq_select;
2639
2640
pin = find_isa_irq_pin(8, mp_INT);
2641
if (pin == -1) {
2642
WARN_ON_ONCE(1);
2643
return;
2644
}
2645
apic = find_isa_irq_apic(8, mp_INT);
2646
if (apic == -1) {
2647
WARN_ON_ONCE(1);
2648
return;
2649
}
2650
2651
entry0 = ioapic_read_entry(apic, pin);
2652
clear_IO_APIC_pin(apic, pin);
2653
2654
memset(&entry1, 0, sizeof(entry1));
2655
2656
entry1.dest_mode = 0; /* physical delivery */
2657
entry1.mask = 0; /* unmask IRQ now */
2658
entry1.dest = hard_smp_processor_id();
2659
entry1.delivery_mode = dest_ExtINT;
2660
entry1.polarity = entry0.polarity;
2661
entry1.trigger = 0;
2662
entry1.vector = 0;
2663
2664
ioapic_write_entry(apic, pin, entry1);
2665
2666
save_control = CMOS_READ(RTC_CONTROL);
2667
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2668
CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2669
RTC_FREQ_SELECT);
2670
CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2671
2672
i = 100;
2673
while (i-- > 0) {
2674
mdelay(10);
2675
if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2676
i -= 10;
2677
}
2678
2679
CMOS_WRITE(save_control, RTC_CONTROL);
2680
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2681
clear_IO_APIC_pin(apic, pin);
2682
2683
ioapic_write_entry(apic, pin, entry0);
2684
}
2685
2686
static int disable_timer_pin_1 __initdata;
2687
/* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2688
static int __init disable_timer_pin_setup(char *arg)
2689
{
2690
disable_timer_pin_1 = 1;
2691
return 0;
2692
}
2693
early_param("disable_timer_pin_1", disable_timer_pin_setup);
2694
2695
int timer_through_8259 __initdata;
2696
2697
/*
2698
* This code may look a bit paranoid, but it's supposed to cooperate with
2699
* a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2700
* is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2701
* fanatically on his truly buggy board.
2702
*
2703
* FIXME: really need to revamp this for all platforms.
2704
*/
2705
static inline void __init check_timer(void)
2706
{
2707
struct irq_cfg *cfg = irq_get_chip_data(0);
2708
int node = cpu_to_node(0);
2709
int apic1, pin1, apic2, pin2;
2710
unsigned long flags;
2711
int no_pin1 = 0;
2712
2713
local_irq_save(flags);
2714
2715
/*
2716
* get/set the timer IRQ vector:
2717
*/
2718
legacy_pic->mask(0);
2719
assign_irq_vector(0, cfg, apic->target_cpus());
2720
2721
/*
2722
* As IRQ0 is to be enabled in the 8259A, the virtual
2723
* wire has to be disabled in the local APIC. Also
2724
* timer interrupts need to be acknowledged manually in
2725
* the 8259A for the i82489DX when using the NMI
2726
* watchdog as that APIC treats NMIs as level-triggered.
2727
* The AEOI mode will finish them in the 8259A
2728
* automatically.
2729
*/
2730
apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2731
legacy_pic->init(1);
2732
2733
pin1 = find_isa_irq_pin(0, mp_INT);
2734
apic1 = find_isa_irq_apic(0, mp_INT);
2735
pin2 = ioapic_i8259.pin;
2736
apic2 = ioapic_i8259.apic;
2737
2738
apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2739
"apic1=%d pin1=%d apic2=%d pin2=%d\n",
2740
cfg->vector, apic1, pin1, apic2, pin2);
2741
2742
/*
2743
* Some BIOS writers are clueless and report the ExtINTA
2744
* I/O APIC input from the cascaded 8259A as the timer
2745
* interrupt input. So just in case, if only one pin
2746
* was found above, try it both directly and through the
2747
* 8259A.
2748
*/
2749
if (pin1 == -1) {
2750
if (intr_remapping_enabled)
2751
panic("BIOS bug: timer not connected to IO-APIC");
2752
pin1 = pin2;
2753
apic1 = apic2;
2754
no_pin1 = 1;
2755
} else if (pin2 == -1) {
2756
pin2 = pin1;
2757
apic2 = apic1;
2758
}
2759
2760
if (pin1 != -1) {
2761
/*
2762
* Ok, does IRQ0 through the IOAPIC work?
2763
*/
2764
if (no_pin1) {
2765
add_pin_to_irq_node(cfg, node, apic1, pin1);
2766
setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2767
} else {
2768
/* for edge trigger, setup_ioapic_irq already
2769
* leave it unmasked.
2770
* so only need to unmask if it is level-trigger
2771
* do we really have level trigger timer?
2772
*/
2773
int idx;
2774
idx = find_irq_entry(apic1, pin1, mp_INT);
2775
if (idx != -1 && irq_trigger(idx))
2776
unmask_ioapic(cfg);
2777
}
2778
if (timer_irq_works()) {
2779
if (disable_timer_pin_1 > 0)
2780
clear_IO_APIC_pin(0, pin1);
2781
goto out;
2782
}
2783
if (intr_remapping_enabled)
2784
panic("timer doesn't work through Interrupt-remapped IO-APIC");
2785
local_irq_disable();
2786
clear_IO_APIC_pin(apic1, pin1);
2787
if (!no_pin1)
2788
apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2789
"8254 timer not connected to IO-APIC\n");
2790
2791
apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2792
"(IRQ0) through the 8259A ...\n");
2793
apic_printk(APIC_QUIET, KERN_INFO
2794
"..... (found apic %d pin %d) ...\n", apic2, pin2);
2795
/*
2796
* legacy devices should be connected to IO APIC #0
2797
*/
2798
replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2799
setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2800
legacy_pic->unmask(0);
2801
if (timer_irq_works()) {
2802
apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2803
timer_through_8259 = 1;
2804
goto out;
2805
}
2806
/*
2807
* Cleanup, just in case ...
2808
*/
2809
local_irq_disable();
2810
legacy_pic->mask(0);
2811
clear_IO_APIC_pin(apic2, pin2);
2812
apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2813
}
2814
2815
apic_printk(APIC_QUIET, KERN_INFO
2816
"...trying to set up timer as Virtual Wire IRQ...\n");
2817
2818
lapic_register_intr(0);
2819
apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2820
legacy_pic->unmask(0);
2821
2822
if (timer_irq_works()) {
2823
apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2824
goto out;
2825
}
2826
local_irq_disable();
2827
legacy_pic->mask(0);
2828
apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2829
apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2830
2831
apic_printk(APIC_QUIET, KERN_INFO
2832
"...trying to set up timer as ExtINT IRQ...\n");
2833
2834
legacy_pic->init(0);
2835
legacy_pic->make_irq(0);
2836
apic_write(APIC_LVT0, APIC_DM_EXTINT);
2837
2838
unlock_ExtINT_logic();
2839
2840
if (timer_irq_works()) {
2841
apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2842
goto out;
2843
}
2844
local_irq_disable();
2845
apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2846
panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2847
"report. Then try booting with the 'noapic' option.\n");
2848
out:
2849
local_irq_restore(flags);
2850
}
2851
2852
/*
2853
* Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2854
* to devices. However there may be an I/O APIC pin available for
2855
* this interrupt regardless. The pin may be left unconnected, but
2856
* typically it will be reused as an ExtINT cascade interrupt for
2857
* the master 8259A. In the MPS case such a pin will normally be
2858
* reported as an ExtINT interrupt in the MP table. With ACPI
2859
* there is no provision for ExtINT interrupts, and in the absence
2860
* of an override it would be treated as an ordinary ISA I/O APIC
2861
* interrupt, that is edge-triggered and unmasked by default. We
2862
* used to do this, but it caused problems on some systems because
2863
* of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2864
* the same ExtINT cascade interrupt to drive the local APIC of the
2865
* bootstrap processor. Therefore we refrain from routing IRQ2 to
2866
* the I/O APIC in all cases now. No actual device should request
2867
* it anyway. --macro
2868
*/
2869
#define PIC_IRQS (1UL << PIC_CASCADE_IR)
2870
2871
void __init setup_IO_APIC(void)
2872
{
2873
2874
/*
2875
* calling enable_IO_APIC() is moved to setup_local_APIC for BP
2876
*/
2877
io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2878
2879
apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2880
/*
2881
* Set up IO-APIC IRQ routing.
2882
*/
2883
x86_init.mpparse.setup_ioapic_ids();
2884
2885
sync_Arb_IDs();
2886
setup_IO_APIC_irqs();
2887
init_IO_APIC_traps();
2888
if (legacy_pic->nr_legacy_irqs)
2889
check_timer();
2890
}
2891
2892
/*
2893
* Called after all the initialization is done. If we didn't find any
2894
* APIC bugs then we can allow the modify fast path
2895
*/
2896
2897
static int __init io_apic_bug_finalize(void)
2898
{
2899
if (sis_apic_bug == -1)
2900
sis_apic_bug = 0;
2901
return 0;
2902
}
2903
2904
late_initcall(io_apic_bug_finalize);
2905
2906
static void resume_ioapic_id(int ioapic_id)
2907
{
2908
unsigned long flags;
2909
union IO_APIC_reg_00 reg_00;
2910
2911
2912
raw_spin_lock_irqsave(&ioapic_lock, flags);
2913
reg_00.raw = io_apic_read(ioapic_id, 0);
2914
if (reg_00.bits.ID != mpc_ioapic_id(ioapic_id)) {
2915
reg_00.bits.ID = mpc_ioapic_id(ioapic_id);
2916
io_apic_write(ioapic_id, 0, reg_00.raw);
2917
}
2918
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2919
}
2920
2921
static void ioapic_resume(void)
2922
{
2923
int ioapic_id;
2924
2925
for (ioapic_id = nr_ioapics - 1; ioapic_id >= 0; ioapic_id--)
2926
resume_ioapic_id(ioapic_id);
2927
2928
restore_ioapic_entries();
2929
}
2930
2931
static struct syscore_ops ioapic_syscore_ops = {
2932
.suspend = save_ioapic_entries,
2933
.resume = ioapic_resume,
2934
};
2935
2936
static int __init ioapic_init_ops(void)
2937
{
2938
register_syscore_ops(&ioapic_syscore_ops);
2939
2940
return 0;
2941
}
2942
2943
device_initcall(ioapic_init_ops);
2944
2945
/*
2946
* Dynamic irq allocate and deallocation
2947
*/
2948
unsigned int create_irq_nr(unsigned int from, int node)
2949
{
2950
struct irq_cfg *cfg;
2951
unsigned long flags;
2952
unsigned int ret = 0;
2953
int irq;
2954
2955
if (from < nr_irqs_gsi)
2956
from = nr_irqs_gsi;
2957
2958
irq = alloc_irq_from(from, node);
2959
if (irq < 0)
2960
return 0;
2961
cfg = alloc_irq_cfg(irq, node);
2962
if (!cfg) {
2963
free_irq_at(irq, NULL);
2964
return 0;
2965
}
2966
2967
raw_spin_lock_irqsave(&vector_lock, flags);
2968
if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
2969
ret = irq;
2970
raw_spin_unlock_irqrestore(&vector_lock, flags);
2971
2972
if (ret) {
2973
irq_set_chip_data(irq, cfg);
2974
irq_clear_status_flags(irq, IRQ_NOREQUEST);
2975
} else {
2976
free_irq_at(irq, cfg);
2977
}
2978
return ret;
2979
}
2980
2981
int create_irq(void)
2982
{
2983
int node = cpu_to_node(0);
2984
unsigned int irq_want;
2985
int irq;
2986
2987
irq_want = nr_irqs_gsi;
2988
irq = create_irq_nr(irq_want, node);
2989
2990
if (irq == 0)
2991
irq = -1;
2992
2993
return irq;
2994
}
2995
2996
void destroy_irq(unsigned int irq)
2997
{
2998
struct irq_cfg *cfg = irq_get_chip_data(irq);
2999
unsigned long flags;
3000
3001
irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3002
3003
if (irq_remapped(cfg))
3004
free_irte(irq);
3005
raw_spin_lock_irqsave(&vector_lock, flags);
3006
__clear_irq_vector(irq, cfg);
3007
raw_spin_unlock_irqrestore(&vector_lock, flags);
3008
free_irq_at(irq, cfg);
3009
}
3010
3011
/*
3012
* MSI message composition
3013
*/
3014
#ifdef CONFIG_PCI_MSI
3015
static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3016
struct msi_msg *msg, u8 hpet_id)
3017
{
3018
struct irq_cfg *cfg;
3019
int err;
3020
unsigned dest;
3021
3022
if (disable_apic)
3023
return -ENXIO;
3024
3025
cfg = irq_cfg(irq);
3026
err = assign_irq_vector(irq, cfg, apic->target_cpus());
3027
if (err)
3028
return err;
3029
3030
dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3031
3032
if (irq_remapped(cfg)) {
3033
struct irte irte;
3034
int ir_index;
3035
u16 sub_handle;
3036
3037
ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3038
BUG_ON(ir_index == -1);
3039
3040
prepare_irte(&irte, cfg->vector, dest);
3041
3042
/* Set source-id of interrupt request */
3043
if (pdev)
3044
set_msi_sid(&irte, pdev);
3045
else
3046
set_hpet_sid(&irte, hpet_id);
3047
3048
modify_irte(irq, &irte);
3049
3050
msg->address_hi = MSI_ADDR_BASE_HI;
3051
msg->data = sub_handle;
3052
msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3053
MSI_ADDR_IR_SHV |
3054
MSI_ADDR_IR_INDEX1(ir_index) |
3055
MSI_ADDR_IR_INDEX2(ir_index);
3056
} else {
3057
if (x2apic_enabled())
3058
msg->address_hi = MSI_ADDR_BASE_HI |
3059
MSI_ADDR_EXT_DEST_ID(dest);
3060
else
3061
msg->address_hi = MSI_ADDR_BASE_HI;
3062
3063
msg->address_lo =
3064
MSI_ADDR_BASE_LO |
3065
((apic->irq_dest_mode == 0) ?
3066
MSI_ADDR_DEST_MODE_PHYSICAL:
3067
MSI_ADDR_DEST_MODE_LOGICAL) |
3068
((apic->irq_delivery_mode != dest_LowestPrio) ?
3069
MSI_ADDR_REDIRECTION_CPU:
3070
MSI_ADDR_REDIRECTION_LOWPRI) |
3071
MSI_ADDR_DEST_ID(dest);
3072
3073
msg->data =
3074
MSI_DATA_TRIGGER_EDGE |
3075
MSI_DATA_LEVEL_ASSERT |
3076
((apic->irq_delivery_mode != dest_LowestPrio) ?
3077
MSI_DATA_DELIVERY_FIXED:
3078
MSI_DATA_DELIVERY_LOWPRI) |
3079
MSI_DATA_VECTOR(cfg->vector);
3080
}
3081
return err;
3082
}
3083
3084
#ifdef CONFIG_SMP
3085
static int
3086
msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3087
{
3088
struct irq_cfg *cfg = data->chip_data;
3089
struct msi_msg msg;
3090
unsigned int dest;
3091
3092
if (__ioapic_set_affinity(data, mask, &dest))
3093
return -1;
3094
3095
__get_cached_msi_msg(data->msi_desc, &msg);
3096
3097
msg.data &= ~MSI_DATA_VECTOR_MASK;
3098
msg.data |= MSI_DATA_VECTOR(cfg->vector);
3099
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3100
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3101
3102
__write_msi_msg(data->msi_desc, &msg);
3103
3104
return 0;
3105
}
3106
#ifdef CONFIG_INTR_REMAP
3107
/*
3108
* Migrate the MSI irq to another cpumask. This migration is
3109
* done in the process context using interrupt-remapping hardware.
3110
*/
3111
static int
3112
ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3113
bool force)
3114
{
3115
struct irq_cfg *cfg = data->chip_data;
3116
unsigned int dest, irq = data->irq;
3117
struct irte irte;
3118
3119
if (get_irte(irq, &irte))
3120
return -1;
3121
3122
if (__ioapic_set_affinity(data, mask, &dest))
3123
return -1;
3124
3125
irte.vector = cfg->vector;
3126
irte.dest_id = IRTE_DEST(dest);
3127
3128
/*
3129
* atomically update the IRTE with the new destination and vector.
3130
*/
3131
modify_irte(irq, &irte);
3132
3133
/*
3134
* After this point, all the interrupts will start arriving
3135
* at the new destination. So, time to cleanup the previous
3136
* vector allocation.
3137
*/
3138
if (cfg->move_in_progress)
3139
send_cleanup_vector(cfg);
3140
3141
return 0;
3142
}
3143
3144
#endif
3145
#endif /* CONFIG_SMP */
3146
3147
/*
3148
* IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3149
* which implement the MSI or MSI-X Capability Structure.
3150
*/
3151
static struct irq_chip msi_chip = {
3152
.name = "PCI-MSI",
3153
.irq_unmask = unmask_msi_irq,
3154
.irq_mask = mask_msi_irq,
3155
.irq_ack = ack_apic_edge,
3156
#ifdef CONFIG_SMP
3157
.irq_set_affinity = msi_set_affinity,
3158
#endif
3159
.irq_retrigger = ioapic_retrigger_irq,
3160
};
3161
3162
static struct irq_chip msi_ir_chip = {
3163
.name = "IR-PCI-MSI",
3164
.irq_unmask = unmask_msi_irq,
3165
.irq_mask = mask_msi_irq,
3166
#ifdef CONFIG_INTR_REMAP
3167
.irq_ack = ir_ack_apic_edge,
3168
#ifdef CONFIG_SMP
3169
.irq_set_affinity = ir_msi_set_affinity,
3170
#endif
3171
#endif
3172
.irq_retrigger = ioapic_retrigger_irq,
3173
};
3174
3175
/*
3176
* Map the PCI dev to the corresponding remapping hardware unit
3177
* and allocate 'nvec' consecutive interrupt-remapping table entries
3178
* in it.
3179
*/
3180
static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3181
{
3182
struct intel_iommu *iommu;
3183
int index;
3184
3185
iommu = map_dev_to_ir(dev);
3186
if (!iommu) {
3187
printk(KERN_ERR
3188
"Unable to map PCI %s to iommu\n", pci_name(dev));
3189
return -ENOENT;
3190
}
3191
3192
index = alloc_irte(iommu, irq, nvec);
3193
if (index < 0) {
3194
printk(KERN_ERR
3195
"Unable to allocate %d IRTE for PCI %s\n", nvec,
3196
pci_name(dev));
3197
return -ENOSPC;
3198
}
3199
return index;
3200
}
3201
3202
static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3203
{
3204
struct irq_chip *chip = &msi_chip;
3205
struct msi_msg msg;
3206
int ret;
3207
3208
ret = msi_compose_msg(dev, irq, &msg, -1);
3209
if (ret < 0)
3210
return ret;
3211
3212
irq_set_msi_desc(irq, msidesc);
3213
write_msi_msg(irq, &msg);
3214
3215
if (irq_remapped(irq_get_chip_data(irq))) {
3216
irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3217
chip = &msi_ir_chip;
3218
}
3219
3220
irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3221
3222
dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3223
3224
return 0;
3225
}
3226
3227
int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3228
{
3229
int node, ret, sub_handle, index = 0;
3230
unsigned int irq, irq_want;
3231
struct msi_desc *msidesc;
3232
struct intel_iommu *iommu = NULL;
3233
3234
/* x86 doesn't support multiple MSI yet */
3235
if (type == PCI_CAP_ID_MSI && nvec > 1)
3236
return 1;
3237
3238
node = dev_to_node(&dev->dev);
3239
irq_want = nr_irqs_gsi;
3240
sub_handle = 0;
3241
list_for_each_entry(msidesc, &dev->msi_list, list) {
3242
irq = create_irq_nr(irq_want, node);
3243
if (irq == 0)
3244
return -1;
3245
irq_want = irq + 1;
3246
if (!intr_remapping_enabled)
3247
goto no_ir;
3248
3249
if (!sub_handle) {
3250
/*
3251
* allocate the consecutive block of IRTE's
3252
* for 'nvec'
3253
*/
3254
index = msi_alloc_irte(dev, irq, nvec);
3255
if (index < 0) {
3256
ret = index;
3257
goto error;
3258
}
3259
} else {
3260
iommu = map_dev_to_ir(dev);
3261
if (!iommu) {
3262
ret = -ENOENT;
3263
goto error;
3264
}
3265
/*
3266
* setup the mapping between the irq and the IRTE
3267
* base index, the sub_handle pointing to the
3268
* appropriate interrupt remap table entry.
3269
*/
3270
set_irte_irq(irq, iommu, index, sub_handle);
3271
}
3272
no_ir:
3273
ret = setup_msi_irq(dev, msidesc, irq);
3274
if (ret < 0)
3275
goto error;
3276
sub_handle++;
3277
}
3278
return 0;
3279
3280
error:
3281
destroy_irq(irq);
3282
return ret;
3283
}
3284
3285
void native_teardown_msi_irq(unsigned int irq)
3286
{
3287
destroy_irq(irq);
3288
}
3289
3290
#if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3291
#ifdef CONFIG_SMP
3292
static int
3293
dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3294
bool force)
3295
{
3296
struct irq_cfg *cfg = data->chip_data;
3297
unsigned int dest, irq = data->irq;
3298
struct msi_msg msg;
3299
3300
if (__ioapic_set_affinity(data, mask, &dest))
3301
return -1;
3302
3303
dmar_msi_read(irq, &msg);
3304
3305
msg.data &= ~MSI_DATA_VECTOR_MASK;
3306
msg.data |= MSI_DATA_VECTOR(cfg->vector);
3307
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3308
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3309
msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3310
3311
dmar_msi_write(irq, &msg);
3312
3313
return 0;
3314
}
3315
3316
#endif /* CONFIG_SMP */
3317
3318
static struct irq_chip dmar_msi_type = {
3319
.name = "DMAR_MSI",
3320
.irq_unmask = dmar_msi_unmask,
3321
.irq_mask = dmar_msi_mask,
3322
.irq_ack = ack_apic_edge,
3323
#ifdef CONFIG_SMP
3324
.irq_set_affinity = dmar_msi_set_affinity,
3325
#endif
3326
.irq_retrigger = ioapic_retrigger_irq,
3327
};
3328
3329
int arch_setup_dmar_msi(unsigned int irq)
3330
{
3331
int ret;
3332
struct msi_msg msg;
3333
3334
ret = msi_compose_msg(NULL, irq, &msg, -1);
3335
if (ret < 0)
3336
return ret;
3337
dmar_msi_write(irq, &msg);
3338
irq_set_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3339
"edge");
3340
return 0;
3341
}
3342
#endif
3343
3344
#ifdef CONFIG_HPET_TIMER
3345
3346
#ifdef CONFIG_SMP
3347
static int hpet_msi_set_affinity(struct irq_data *data,
3348
const struct cpumask *mask, bool force)
3349
{
3350
struct irq_cfg *cfg = data->chip_data;
3351
struct msi_msg msg;
3352
unsigned int dest;
3353
3354
if (__ioapic_set_affinity(data, mask, &dest))
3355
return -1;
3356
3357
hpet_msi_read(data->handler_data, &msg);
3358
3359
msg.data &= ~MSI_DATA_VECTOR_MASK;
3360
msg.data |= MSI_DATA_VECTOR(cfg->vector);
3361
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3362
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3363
3364
hpet_msi_write(data->handler_data, &msg);
3365
3366
return 0;
3367
}
3368
3369
#endif /* CONFIG_SMP */
3370
3371
static struct irq_chip ir_hpet_msi_type = {
3372
.name = "IR-HPET_MSI",
3373
.irq_unmask = hpet_msi_unmask,
3374
.irq_mask = hpet_msi_mask,
3375
#ifdef CONFIG_INTR_REMAP
3376
.irq_ack = ir_ack_apic_edge,
3377
#ifdef CONFIG_SMP
3378
.irq_set_affinity = ir_msi_set_affinity,
3379
#endif
3380
#endif
3381
.irq_retrigger = ioapic_retrigger_irq,
3382
};
3383
3384
static struct irq_chip hpet_msi_type = {
3385
.name = "HPET_MSI",
3386
.irq_unmask = hpet_msi_unmask,
3387
.irq_mask = hpet_msi_mask,
3388
.irq_ack = ack_apic_edge,
3389
#ifdef CONFIG_SMP
3390
.irq_set_affinity = hpet_msi_set_affinity,
3391
#endif
3392
.irq_retrigger = ioapic_retrigger_irq,
3393
};
3394
3395
int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3396
{
3397
struct irq_chip *chip = &hpet_msi_type;
3398
struct msi_msg msg;
3399
int ret;
3400
3401
if (intr_remapping_enabled) {
3402
struct intel_iommu *iommu = map_hpet_to_ir(id);
3403
int index;
3404
3405
if (!iommu)
3406
return -1;
3407
3408
index = alloc_irte(iommu, irq, 1);
3409
if (index < 0)
3410
return -1;
3411
}
3412
3413
ret = msi_compose_msg(NULL, irq, &msg, id);
3414
if (ret < 0)
3415
return ret;
3416
3417
hpet_msi_write(irq_get_handler_data(irq), &msg);
3418
irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3419
if (irq_remapped(irq_get_chip_data(irq)))
3420
chip = &ir_hpet_msi_type;
3421
3422
irq_set_chip_and_handler_name(irq, chip, handle_edge_irq, "edge");
3423
return 0;
3424
}
3425
#endif
3426
3427
#endif /* CONFIG_PCI_MSI */
3428
/*
3429
* Hypertransport interrupt support
3430
*/
3431
#ifdef CONFIG_HT_IRQ
3432
3433
#ifdef CONFIG_SMP
3434
3435
static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3436
{
3437
struct ht_irq_msg msg;
3438
fetch_ht_irq_msg(irq, &msg);
3439
3440
msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3441
msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3442
3443
msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3444
msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3445
3446
write_ht_irq_msg(irq, &msg);
3447
}
3448
3449
static int
3450
ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3451
{
3452
struct irq_cfg *cfg = data->chip_data;
3453
unsigned int dest;
3454
3455
if (__ioapic_set_affinity(data, mask, &dest))
3456
return -1;
3457
3458
target_ht_irq(data->irq, dest, cfg->vector);
3459
return 0;
3460
}
3461
3462
#endif
3463
3464
static struct irq_chip ht_irq_chip = {
3465
.name = "PCI-HT",
3466
.irq_mask = mask_ht_irq,
3467
.irq_unmask = unmask_ht_irq,
3468
.irq_ack = ack_apic_edge,
3469
#ifdef CONFIG_SMP
3470
.irq_set_affinity = ht_set_affinity,
3471
#endif
3472
.irq_retrigger = ioapic_retrigger_irq,
3473
};
3474
3475
int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3476
{
3477
struct irq_cfg *cfg;
3478
int err;
3479
3480
if (disable_apic)
3481
return -ENXIO;
3482
3483
cfg = irq_cfg(irq);
3484
err = assign_irq_vector(irq, cfg, apic->target_cpus());
3485
if (!err) {
3486
struct ht_irq_msg msg;
3487
unsigned dest;
3488
3489
dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3490
apic->target_cpus());
3491
3492
msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3493
3494
msg.address_lo =
3495
HT_IRQ_LOW_BASE |
3496
HT_IRQ_LOW_DEST_ID(dest) |
3497
HT_IRQ_LOW_VECTOR(cfg->vector) |
3498
((apic->irq_dest_mode == 0) ?
3499
HT_IRQ_LOW_DM_PHYSICAL :
3500
HT_IRQ_LOW_DM_LOGICAL) |
3501
HT_IRQ_LOW_RQEOI_EDGE |
3502
((apic->irq_delivery_mode != dest_LowestPrio) ?
3503
HT_IRQ_LOW_MT_FIXED :
3504
HT_IRQ_LOW_MT_ARBITRATED) |
3505
HT_IRQ_LOW_IRQ_MASKED;
3506
3507
write_ht_irq_msg(irq, &msg);
3508
3509
irq_set_chip_and_handler_name(irq, &ht_irq_chip,
3510
handle_edge_irq, "edge");
3511
3512
dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3513
}
3514
return err;
3515
}
3516
#endif /* CONFIG_HT_IRQ */
3517
3518
static int
3519
io_apic_setup_irq_pin(unsigned int irq, int node, struct io_apic_irq_attr *attr)
3520
{
3521
struct irq_cfg *cfg = alloc_irq_and_cfg_at(irq, node);
3522
int ret;
3523
3524
if (!cfg)
3525
return -EINVAL;
3526
ret = __add_pin_to_irq_node(cfg, node, attr->ioapic, attr->ioapic_pin);
3527
if (!ret)
3528
setup_ioapic_irq(attr->ioapic, attr->ioapic_pin, irq, cfg,
3529
attr->trigger, attr->polarity);
3530
return ret;
3531
}
3532
3533
int io_apic_setup_irq_pin_once(unsigned int irq, int node,
3534
struct io_apic_irq_attr *attr)
3535
{
3536
unsigned int id = attr->ioapic, pin = attr->ioapic_pin;
3537
int ret;
3538
3539
/* Avoid redundant programming */
3540
if (test_bit(pin, ioapics[id].pin_programmed)) {
3541
pr_debug("Pin %d-%d already programmed\n",
3542
mpc_ioapic_id(id), pin);
3543
return 0;
3544
}
3545
ret = io_apic_setup_irq_pin(irq, node, attr);
3546
if (!ret)
3547
set_bit(pin, ioapics[id].pin_programmed);
3548
return ret;
3549
}
3550
3551
static int __init io_apic_get_redir_entries(int ioapic)
3552
{
3553
union IO_APIC_reg_01 reg_01;
3554
unsigned long flags;
3555
3556
raw_spin_lock_irqsave(&ioapic_lock, flags);
3557
reg_01.raw = io_apic_read(ioapic, 1);
3558
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3559
3560
/* The register returns the maximum index redir index
3561
* supported, which is one less than the total number of redir
3562
* entries.
3563
*/
3564
return reg_01.bits.entries + 1;
3565
}
3566
3567
static void __init probe_nr_irqs_gsi(void)
3568
{
3569
int nr;
3570
3571
nr = gsi_top + NR_IRQS_LEGACY;
3572
if (nr > nr_irqs_gsi)
3573
nr_irqs_gsi = nr;
3574
3575
printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3576
}
3577
3578
int get_nr_irqs_gsi(void)
3579
{
3580
return nr_irqs_gsi;
3581
}
3582
3583
#ifdef CONFIG_SPARSE_IRQ
3584
int __init arch_probe_nr_irqs(void)
3585
{
3586
int nr;
3587
3588
if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3589
nr_irqs = NR_VECTORS * nr_cpu_ids;
3590
3591
nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3592
#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3593
/*
3594
* for MSI and HT dyn irq
3595
*/
3596
nr += nr_irqs_gsi * 16;
3597
#endif
3598
if (nr < nr_irqs)
3599
nr_irqs = nr;
3600
3601
return NR_IRQS_LEGACY;
3602
}
3603
#endif
3604
3605
int io_apic_set_pci_routing(struct device *dev, int irq,
3606
struct io_apic_irq_attr *irq_attr)
3607
{
3608
int node;
3609
3610
if (!IO_APIC_IRQ(irq)) {
3611
apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3612
irq_attr->ioapic);
3613
return -EINVAL;
3614
}
3615
3616
node = dev ? dev_to_node(dev) : cpu_to_node(0);
3617
3618
return io_apic_setup_irq_pin_once(irq, node, irq_attr);
3619
}
3620
3621
#ifdef CONFIG_X86_32
3622
static int __init io_apic_get_unique_id(int ioapic, int apic_id)
3623
{
3624
union IO_APIC_reg_00 reg_00;
3625
static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3626
physid_mask_t tmp;
3627
unsigned long flags;
3628
int i = 0;
3629
3630
/*
3631
* The P4 platform supports up to 256 APIC IDs on two separate APIC
3632
* buses (one for LAPICs, one for IOAPICs), where predecessors only
3633
* supports up to 16 on one shared APIC bus.
3634
*
3635
* TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3636
* advantage of new APIC bus architecture.
3637
*/
3638
3639
if (physids_empty(apic_id_map))
3640
apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3641
3642
raw_spin_lock_irqsave(&ioapic_lock, flags);
3643
reg_00.raw = io_apic_read(ioapic, 0);
3644
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3645
3646
if (apic_id >= get_physical_broadcast()) {
3647
printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3648
"%d\n", ioapic, apic_id, reg_00.bits.ID);
3649
apic_id = reg_00.bits.ID;
3650
}
3651
3652
/*
3653
* Every APIC in a system must have a unique ID or we get lots of nice
3654
* 'stuck on smp_invalidate_needed IPI wait' messages.
3655
*/
3656
if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3657
3658
for (i = 0; i < get_physical_broadcast(); i++) {
3659
if (!apic->check_apicid_used(&apic_id_map, i))
3660
break;
3661
}
3662
3663
if (i == get_physical_broadcast())
3664
panic("Max apic_id exceeded!\n");
3665
3666
printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3667
"trying %d\n", ioapic, apic_id, i);
3668
3669
apic_id = i;
3670
}
3671
3672
apic->apicid_to_cpu_present(apic_id, &tmp);
3673
physids_or(apic_id_map, apic_id_map, tmp);
3674
3675
if (reg_00.bits.ID != apic_id) {
3676
reg_00.bits.ID = apic_id;
3677
3678
raw_spin_lock_irqsave(&ioapic_lock, flags);
3679
io_apic_write(ioapic, 0, reg_00.raw);
3680
reg_00.raw = io_apic_read(ioapic, 0);
3681
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3682
3683
/* Sanity check */
3684
if (reg_00.bits.ID != apic_id) {
3685
printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3686
return -1;
3687
}
3688
}
3689
3690
apic_printk(APIC_VERBOSE, KERN_INFO
3691
"IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3692
3693
return apic_id;
3694
}
3695
3696
static u8 __init io_apic_unique_id(u8 id)
3697
{
3698
if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3699
!APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3700
return io_apic_get_unique_id(nr_ioapics, id);
3701
else
3702
return id;
3703
}
3704
#else
3705
static u8 __init io_apic_unique_id(u8 id)
3706
{
3707
int i;
3708
DECLARE_BITMAP(used, 256);
3709
3710
bitmap_zero(used, 256);
3711
for (i = 0; i < nr_ioapics; i++) {
3712
__set_bit(mpc_ioapic_id(i), used);
3713
}
3714
if (!test_bit(id, used))
3715
return id;
3716
return find_first_zero_bit(used, 256);
3717
}
3718
#endif
3719
3720
static int __init io_apic_get_version(int ioapic)
3721
{
3722
union IO_APIC_reg_01 reg_01;
3723
unsigned long flags;
3724
3725
raw_spin_lock_irqsave(&ioapic_lock, flags);
3726
reg_01.raw = io_apic_read(ioapic, 1);
3727
raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3728
3729
return reg_01.bits.version;
3730
}
3731
3732
int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3733
{
3734
int ioapic, pin, idx;
3735
3736
if (skip_ioapic_setup)
3737
return -1;
3738
3739
ioapic = mp_find_ioapic(gsi);
3740
if (ioapic < 0)
3741
return -1;
3742
3743
pin = mp_find_ioapic_pin(ioapic, gsi);
3744
if (pin < 0)
3745
return -1;
3746
3747
idx = find_irq_entry(ioapic, pin, mp_INT);
3748
if (idx < 0)
3749
return -1;
3750
3751
*trigger = irq_trigger(idx);
3752
*polarity = irq_polarity(idx);
3753
return 0;
3754
}
3755
3756
/*
3757
* This function currently is only a helper for the i386 smp boot process where
3758
* we need to reprogram the ioredtbls to cater for the cpus which have come online
3759
* so mask in all cases should simply be apic->target_cpus()
3760
*/
3761
#ifdef CONFIG_SMP
3762
void __init setup_ioapic_dest(void)
3763
{
3764
int pin, ioapic, irq, irq_entry;
3765
const struct cpumask *mask;
3766
struct irq_data *idata;
3767
3768
if (skip_ioapic_setup == 1)
3769
return;
3770
3771
for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3772
for (pin = 0; pin < ioapics[ioapic].nr_registers; pin++) {
3773
irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3774
if (irq_entry == -1)
3775
continue;
3776
irq = pin_2_irq(irq_entry, ioapic, pin);
3777
3778
if ((ioapic > 0) && (irq > 16))
3779
continue;
3780
3781
idata = irq_get_irq_data(irq);
3782
3783
/*
3784
* Honour affinities which have been set in early boot
3785
*/
3786
if (!irqd_can_balance(idata) || irqd_affinity_was_set(idata))
3787
mask = idata->affinity;
3788
else
3789
mask = apic->target_cpus();
3790
3791
if (intr_remapping_enabled)
3792
ir_ioapic_set_affinity(idata, mask, false);
3793
else
3794
ioapic_set_affinity(idata, mask, false);
3795
}
3796
3797
}
3798
#endif
3799
3800
#define IOAPIC_RESOURCE_NAME_SIZE 11
3801
3802
static struct resource *ioapic_resources;
3803
3804
static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3805
{
3806
unsigned long n;
3807
struct resource *res;
3808
char *mem;
3809
int i;
3810
3811
if (nr_ioapics <= 0)
3812
return NULL;
3813
3814
n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3815
n *= nr_ioapics;
3816
3817
mem = alloc_bootmem(n);
3818
res = (void *)mem;
3819
3820
mem += sizeof(struct resource) * nr_ioapics;
3821
3822
for (i = 0; i < nr_ioapics; i++) {
3823
res[i].name = mem;
3824
res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3825
snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3826
mem += IOAPIC_RESOURCE_NAME_SIZE;
3827
}
3828
3829
ioapic_resources = res;
3830
3831
return res;
3832
}
3833
3834
void __init ioapic_and_gsi_init(void)
3835
{
3836
unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3837
struct resource *ioapic_res;
3838
int i;
3839
3840
ioapic_res = ioapic_setup_resources(nr_ioapics);
3841
for (i = 0; i < nr_ioapics; i++) {
3842
if (smp_found_config) {
3843
ioapic_phys = mpc_ioapic_addr(i);
3844
#ifdef CONFIG_X86_32
3845
if (!ioapic_phys) {
3846
printk(KERN_ERR
3847
"WARNING: bogus zero IO-APIC "
3848
"address found in MPTABLE, "
3849
"disabling IO/APIC support!\n");
3850
smp_found_config = 0;
3851
skip_ioapic_setup = 1;
3852
goto fake_ioapic_page;
3853
}
3854
#endif
3855
} else {
3856
#ifdef CONFIG_X86_32
3857
fake_ioapic_page:
3858
#endif
3859
ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3860
ioapic_phys = __pa(ioapic_phys);
3861
}
3862
set_fixmap_nocache(idx, ioapic_phys);
3863
apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3864
__fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3865
ioapic_phys);
3866
idx++;
3867
3868
ioapic_res->start = ioapic_phys;
3869
ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3870
ioapic_res++;
3871
}
3872
3873
probe_nr_irqs_gsi();
3874
}
3875
3876
void __init ioapic_insert_resources(void)
3877
{
3878
int i;
3879
struct resource *r = ioapic_resources;
3880
3881
if (!r) {
3882
if (nr_ioapics > 0)
3883
printk(KERN_ERR
3884
"IO APIC resources couldn't be allocated.\n");
3885
return;
3886
}
3887
3888
for (i = 0; i < nr_ioapics; i++) {
3889
insert_resource(&iomem_resource, r);
3890
r++;
3891
}
3892
}
3893
3894
int mp_find_ioapic(u32 gsi)
3895
{
3896
int i = 0;
3897
3898
if (nr_ioapics == 0)
3899
return -1;
3900
3901
/* Find the IOAPIC that manages this GSI. */
3902
for (i = 0; i < nr_ioapics; i++) {
3903
struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i);
3904
if ((gsi >= gsi_cfg->gsi_base)
3905
&& (gsi <= gsi_cfg->gsi_end))
3906
return i;
3907
}
3908
3909
printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
3910
return -1;
3911
}
3912
3913
int mp_find_ioapic_pin(int ioapic, u32 gsi)
3914
{
3915
struct mp_ioapic_gsi *gsi_cfg;
3916
3917
if (WARN_ON(ioapic == -1))
3918
return -1;
3919
3920
gsi_cfg = mp_ioapic_gsi_routing(ioapic);
3921
if (WARN_ON(gsi > gsi_cfg->gsi_end))
3922
return -1;
3923
3924
return gsi - gsi_cfg->gsi_base;
3925
}
3926
3927
static __init int bad_ioapic(unsigned long address)
3928
{
3929
if (nr_ioapics >= MAX_IO_APICS) {
3930
printk(KERN_WARNING "WARNING: Max # of I/O APICs (%d) exceeded "
3931
"(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
3932
return 1;
3933
}
3934
if (!address) {
3935
printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
3936
" found in table, skipping!\n");
3937
return 1;
3938
}
3939
return 0;
3940
}
3941
3942
void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
3943
{
3944
int idx = 0;
3945
int entries;
3946
struct mp_ioapic_gsi *gsi_cfg;
3947
3948
if (bad_ioapic(address))
3949
return;
3950
3951
idx = nr_ioapics;
3952
3953
ioapics[idx].mp_config.type = MP_IOAPIC;
3954
ioapics[idx].mp_config.flags = MPC_APIC_USABLE;
3955
ioapics[idx].mp_config.apicaddr = address;
3956
3957
set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
3958
ioapics[idx].mp_config.apicid = io_apic_unique_id(id);
3959
ioapics[idx].mp_config.apicver = io_apic_get_version(idx);
3960
3961
/*
3962
* Build basic GSI lookup table to facilitate gsi->io_apic lookups
3963
* and to prevent reprogramming of IOAPIC pins (PCI GSIs).
3964
*/
3965
entries = io_apic_get_redir_entries(idx);
3966
gsi_cfg = mp_ioapic_gsi_routing(idx);
3967
gsi_cfg->gsi_base = gsi_base;
3968
gsi_cfg->gsi_end = gsi_base + entries - 1;
3969
3970
/*
3971
* The number of IO-APIC IRQ registers (== #pins):
3972
*/
3973
ioapics[idx].nr_registers = entries;
3974
3975
if (gsi_cfg->gsi_end >= gsi_top)
3976
gsi_top = gsi_cfg->gsi_end + 1;
3977
3978
printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
3979
"GSI %d-%d\n", idx, mpc_ioapic_id(idx),
3980
mpc_ioapic_ver(idx), mpc_ioapic_addr(idx),
3981
gsi_cfg->gsi_base, gsi_cfg->gsi_end);
3982
3983
nr_ioapics++;
3984
}
3985
3986
/* Enable IOAPIC early just for system timer */
3987
void __init pre_init_apic_IRQ0(void)
3988
{
3989
struct io_apic_irq_attr attr = { 0, 0, 0, 0 };
3990
3991
printk(KERN_INFO "Early APIC setup for system timer0\n");
3992
#ifndef CONFIG_SMP
3993
physid_set_mask_of_physid(boot_cpu_physical_apicid,
3994
&phys_cpu_present_map);
3995
#endif
3996
setup_local_APIC();
3997
3998
io_apic_setup_irq_pin(0, 0, &attr);
3999
irq_set_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq,
4000
"edge");
4001
}
4002
4003