Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kernel/cpu/common.c
10699 views
1
#include <linux/bootmem.h>
2
#include <linux/linkage.h>
3
#include <linux/bitops.h>
4
#include <linux/kernel.h>
5
#include <linux/module.h>
6
#include <linux/percpu.h>
7
#include <linux/string.h>
8
#include <linux/delay.h>
9
#include <linux/sched.h>
10
#include <linux/init.h>
11
#include <linux/kgdb.h>
12
#include <linux/smp.h>
13
#include <linux/io.h>
14
15
#include <asm/stackprotector.h>
16
#include <asm/perf_event.h>
17
#include <asm/mmu_context.h>
18
#include <asm/hypervisor.h>
19
#include <asm/processor.h>
20
#include <asm/sections.h>
21
#include <linux/topology.h>
22
#include <linux/cpumask.h>
23
#include <asm/pgtable.h>
24
#include <asm/atomic.h>
25
#include <asm/proto.h>
26
#include <asm/setup.h>
27
#include <asm/apic.h>
28
#include <asm/desc.h>
29
#include <asm/i387.h>
30
#include <asm/mtrr.h>
31
#include <linux/numa.h>
32
#include <asm/asm.h>
33
#include <asm/cpu.h>
34
#include <asm/mce.h>
35
#include <asm/msr.h>
36
#include <asm/pat.h>
37
38
#ifdef CONFIG_X86_LOCAL_APIC
39
#include <asm/uv/uv.h>
40
#endif
41
42
#include "cpu.h"
43
44
/* all of these masks are initialized in setup_cpu_local_masks() */
45
cpumask_var_t cpu_initialized_mask;
46
cpumask_var_t cpu_callout_mask;
47
cpumask_var_t cpu_callin_mask;
48
49
/* representing cpus for which sibling maps can be computed */
50
cpumask_var_t cpu_sibling_setup_mask;
51
52
/* correctly size the local cpu masks */
53
void __init setup_cpu_local_masks(void)
54
{
55
alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56
alloc_bootmem_cpumask_var(&cpu_callin_mask);
57
alloc_bootmem_cpumask_var(&cpu_callout_mask);
58
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59
}
60
61
static void __cpuinit default_init(struct cpuinfo_x86 *c)
62
{
63
#ifdef CONFIG_X86_64
64
cpu_detect_cache_sizes(c);
65
#else
66
/* Not much we can do here... */
67
/* Check if at least it has cpuid */
68
if (c->cpuid_level == -1) {
69
/* No cpuid. It must be an ancient CPU */
70
if (c->x86 == 4)
71
strcpy(c->x86_model_id, "486");
72
else if (c->x86 == 3)
73
strcpy(c->x86_model_id, "386");
74
}
75
#endif
76
}
77
78
static const struct cpu_dev __cpuinitconst default_cpu = {
79
.c_init = default_init,
80
.c_vendor = "Unknown",
81
.c_x86_vendor = X86_VENDOR_UNKNOWN,
82
};
83
84
static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
85
86
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
87
#ifdef CONFIG_X86_64
88
/*
89
* We need valid kernel segments for data and code in long mode too
90
* IRET will check the segment types kkeil 2000/10/28
91
* Also sysret mandates a special GDT layout
92
*
93
* TLS descriptors are currently at a different place compared to i386.
94
* Hopefully nobody expects them at a fixed place (Wine?)
95
*/
96
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
102
#else
103
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
107
/*
108
* Segments used for calling PnP BIOS have byte granularity.
109
* They code segments and data segments have fixed 64k limits,
110
* the transfer segment sizes are set at run time.
111
*/
112
/* 32-bit code */
113
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
114
/* 16-bit code */
115
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
116
/* 16-bit data */
117
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
118
/* 16-bit data */
119
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
120
/* 16-bit data */
121
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
122
/*
123
* The APM segments have byte granularity and their bases
124
* are set at run time. All have 64k limits.
125
*/
126
/* 32-bit code */
127
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128
/* 16-bit code */
129
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130
/* data */
131
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
132
133
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135
GDT_STACK_CANARY_INIT
136
#endif
137
} };
138
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
139
140
static int __init x86_xsave_setup(char *s)
141
{
142
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
143
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
144
return 1;
145
}
146
__setup("noxsave", x86_xsave_setup);
147
148
static int __init x86_xsaveopt_setup(char *s)
149
{
150
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
151
return 1;
152
}
153
__setup("noxsaveopt", x86_xsaveopt_setup);
154
155
#ifdef CONFIG_X86_32
156
static int cachesize_override __cpuinitdata = -1;
157
static int disable_x86_serial_nr __cpuinitdata = 1;
158
159
static int __init cachesize_setup(char *str)
160
{
161
get_option(&str, &cachesize_override);
162
return 1;
163
}
164
__setup("cachesize=", cachesize_setup);
165
166
static int __init x86_fxsr_setup(char *s)
167
{
168
setup_clear_cpu_cap(X86_FEATURE_FXSR);
169
setup_clear_cpu_cap(X86_FEATURE_XMM);
170
return 1;
171
}
172
__setup("nofxsr", x86_fxsr_setup);
173
174
static int __init x86_sep_setup(char *s)
175
{
176
setup_clear_cpu_cap(X86_FEATURE_SEP);
177
return 1;
178
}
179
__setup("nosep", x86_sep_setup);
180
181
/* Standard macro to see if a specific flag is changeable */
182
static inline int flag_is_changeable_p(u32 flag)
183
{
184
u32 f1, f2;
185
186
/*
187
* Cyrix and IDT cpus allow disabling of CPUID
188
* so the code below may return different results
189
* when it is executed before and after enabling
190
* the CPUID. Add "volatile" to not allow gcc to
191
* optimize the subsequent calls to this function.
192
*/
193
asm volatile ("pushfl \n\t"
194
"pushfl \n\t"
195
"popl %0 \n\t"
196
"movl %0, %1 \n\t"
197
"xorl %2, %0 \n\t"
198
"pushl %0 \n\t"
199
"popfl \n\t"
200
"pushfl \n\t"
201
"popl %0 \n\t"
202
"popfl \n\t"
203
204
: "=&r" (f1), "=&r" (f2)
205
: "ir" (flag));
206
207
return ((f1^f2) & flag) != 0;
208
}
209
210
/* Probe for the CPUID instruction */
211
static int __cpuinit have_cpuid_p(void)
212
{
213
return flag_is_changeable_p(X86_EFLAGS_ID);
214
}
215
216
static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
217
{
218
unsigned long lo, hi;
219
220
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
221
return;
222
223
/* Disable processor serial number: */
224
225
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
226
lo |= 0x200000;
227
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228
229
printk(KERN_NOTICE "CPU serial number disabled.\n");
230
clear_cpu_cap(c, X86_FEATURE_PN);
231
232
/* Disabling the serial number may affect the cpuid level */
233
c->cpuid_level = cpuid_eax(0);
234
}
235
236
static int __init x86_serial_nr_setup(char *s)
237
{
238
disable_x86_serial_nr = 0;
239
return 1;
240
}
241
__setup("serialnumber", x86_serial_nr_setup);
242
#else
243
static inline int flag_is_changeable_p(u32 flag)
244
{
245
return 1;
246
}
247
/* Probe for the CPUID instruction */
248
static inline int have_cpuid_p(void)
249
{
250
return 1;
251
}
252
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
253
{
254
}
255
#endif
256
257
static int disable_smep __cpuinitdata;
258
static __init int setup_disable_smep(char *arg)
259
{
260
disable_smep = 1;
261
return 1;
262
}
263
__setup("nosmep", setup_disable_smep);
264
265
static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
266
{
267
if (cpu_has(c, X86_FEATURE_SMEP)) {
268
if (unlikely(disable_smep)) {
269
setup_clear_cpu_cap(X86_FEATURE_SMEP);
270
clear_in_cr4(X86_CR4_SMEP);
271
} else
272
set_in_cr4(X86_CR4_SMEP);
273
}
274
}
275
276
/*
277
* Some CPU features depend on higher CPUID levels, which may not always
278
* be available due to CPUID level capping or broken virtualization
279
* software. Add those features to this table to auto-disable them.
280
*/
281
struct cpuid_dependent_feature {
282
u32 feature;
283
u32 level;
284
};
285
286
static const struct cpuid_dependent_feature __cpuinitconst
287
cpuid_dependent_features[] = {
288
{ X86_FEATURE_MWAIT, 0x00000005 },
289
{ X86_FEATURE_DCA, 0x00000009 },
290
{ X86_FEATURE_XSAVE, 0x0000000d },
291
{ 0, 0 }
292
};
293
294
static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
295
{
296
const struct cpuid_dependent_feature *df;
297
298
for (df = cpuid_dependent_features; df->feature; df++) {
299
300
if (!cpu_has(c, df->feature))
301
continue;
302
/*
303
* Note: cpuid_level is set to -1 if unavailable, but
304
* extended_extended_level is set to 0 if unavailable
305
* and the legitimate extended levels are all negative
306
* when signed; hence the weird messing around with
307
* signs here...
308
*/
309
if (!((s32)df->level < 0 ?
310
(u32)df->level > (u32)c->extended_cpuid_level :
311
(s32)df->level > (s32)c->cpuid_level))
312
continue;
313
314
clear_cpu_cap(c, df->feature);
315
if (!warn)
316
continue;
317
318
printk(KERN_WARNING
319
"CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
320
x86_cap_flags[df->feature], df->level);
321
}
322
}
323
324
/*
325
* Naming convention should be: <Name> [(<Codename>)]
326
* This table only is used unless init_<vendor>() below doesn't set it;
327
* in particular, if CPUID levels 0x80000002..4 are supported, this
328
* isn't used
329
*/
330
331
/* Look up CPU names by table lookup. */
332
static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
333
{
334
const struct cpu_model_info *info;
335
336
if (c->x86_model >= 16)
337
return NULL; /* Range check */
338
339
if (!this_cpu)
340
return NULL;
341
342
info = this_cpu->c_models;
343
344
while (info && info->family) {
345
if (info->family == c->x86)
346
return info->model_names[c->x86_model];
347
info++;
348
}
349
return NULL; /* Not found */
350
}
351
352
__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
353
__u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
354
355
void load_percpu_segment(int cpu)
356
{
357
#ifdef CONFIG_X86_32
358
loadsegment(fs, __KERNEL_PERCPU);
359
#else
360
loadsegment(gs, 0);
361
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
362
#endif
363
load_stack_canary_segment();
364
}
365
366
/*
367
* Current gdt points %fs at the "master" per-cpu area: after this,
368
* it's on the real one.
369
*/
370
void switch_to_new_gdt(int cpu)
371
{
372
struct desc_ptr gdt_descr;
373
374
gdt_descr.address = (long)get_cpu_gdt_table(cpu);
375
gdt_descr.size = GDT_SIZE - 1;
376
load_gdt(&gdt_descr);
377
/* Reload the per-cpu base */
378
379
load_percpu_segment(cpu);
380
}
381
382
static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
383
384
static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
385
{
386
unsigned int *v;
387
char *p, *q;
388
389
if (c->extended_cpuid_level < 0x80000004)
390
return;
391
392
v = (unsigned int *)c->x86_model_id;
393
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
394
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
395
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
396
c->x86_model_id[48] = 0;
397
398
/*
399
* Intel chips right-justify this string for some dumb reason;
400
* undo that brain damage:
401
*/
402
p = q = &c->x86_model_id[0];
403
while (*p == ' ')
404
p++;
405
if (p != q) {
406
while (*p)
407
*q++ = *p++;
408
while (q <= &c->x86_model_id[48])
409
*q++ = '\0'; /* Zero-pad the rest */
410
}
411
}
412
413
void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
414
{
415
unsigned int n, dummy, ebx, ecx, edx, l2size;
416
417
n = c->extended_cpuid_level;
418
419
if (n >= 0x80000005) {
420
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
421
c->x86_cache_size = (ecx>>24) + (edx>>24);
422
#ifdef CONFIG_X86_64
423
/* On K8 L1 TLB is inclusive, so don't count it */
424
c->x86_tlbsize = 0;
425
#endif
426
}
427
428
if (n < 0x80000006) /* Some chips just has a large L1. */
429
return;
430
431
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
432
l2size = ecx >> 16;
433
434
#ifdef CONFIG_X86_64
435
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
436
#else
437
/* do processor-specific cache resizing */
438
if (this_cpu->c_size_cache)
439
l2size = this_cpu->c_size_cache(c, l2size);
440
441
/* Allow user to override all this if necessary. */
442
if (cachesize_override != -1)
443
l2size = cachesize_override;
444
445
if (l2size == 0)
446
return; /* Again, no L2 cache is possible */
447
#endif
448
449
c->x86_cache_size = l2size;
450
}
451
452
void __cpuinit detect_ht(struct cpuinfo_x86 *c)
453
{
454
#ifdef CONFIG_X86_HT
455
u32 eax, ebx, ecx, edx;
456
int index_msb, core_bits;
457
static bool printed;
458
459
if (!cpu_has(c, X86_FEATURE_HT))
460
return;
461
462
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
463
goto out;
464
465
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
466
return;
467
468
cpuid(1, &eax, &ebx, &ecx, &edx);
469
470
smp_num_siblings = (ebx & 0xff0000) >> 16;
471
472
if (smp_num_siblings == 1) {
473
printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
474
goto out;
475
}
476
477
if (smp_num_siblings <= 1)
478
goto out;
479
480
index_msb = get_count_order(smp_num_siblings);
481
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
482
483
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
484
485
index_msb = get_count_order(smp_num_siblings);
486
487
core_bits = get_count_order(c->x86_max_cores);
488
489
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
490
((1 << core_bits) - 1);
491
492
out:
493
if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
494
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
495
c->phys_proc_id);
496
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
497
c->cpu_core_id);
498
printed = 1;
499
}
500
#endif
501
}
502
503
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
504
{
505
char *v = c->x86_vendor_id;
506
int i;
507
508
for (i = 0; i < X86_VENDOR_NUM; i++) {
509
if (!cpu_devs[i])
510
break;
511
512
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
513
(cpu_devs[i]->c_ident[1] &&
514
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
515
516
this_cpu = cpu_devs[i];
517
c->x86_vendor = this_cpu->c_x86_vendor;
518
return;
519
}
520
}
521
522
printk_once(KERN_ERR
523
"CPU: vendor_id '%s' unknown, using generic init.\n" \
524
"CPU: Your system may be unstable.\n", v);
525
526
c->x86_vendor = X86_VENDOR_UNKNOWN;
527
this_cpu = &default_cpu;
528
}
529
530
void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
531
{
532
/* Get vendor name */
533
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
534
(unsigned int *)&c->x86_vendor_id[0],
535
(unsigned int *)&c->x86_vendor_id[8],
536
(unsigned int *)&c->x86_vendor_id[4]);
537
538
c->x86 = 4;
539
/* Intel-defined flags: level 0x00000001 */
540
if (c->cpuid_level >= 0x00000001) {
541
u32 junk, tfms, cap0, misc;
542
543
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
544
c->x86 = (tfms >> 8) & 0xf;
545
c->x86_model = (tfms >> 4) & 0xf;
546
c->x86_mask = tfms & 0xf;
547
548
if (c->x86 == 0xf)
549
c->x86 += (tfms >> 20) & 0xff;
550
if (c->x86 >= 0x6)
551
c->x86_model += ((tfms >> 16) & 0xf) << 4;
552
553
if (cap0 & (1<<19)) {
554
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
555
c->x86_cache_alignment = c->x86_clflush_size;
556
}
557
}
558
}
559
560
void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
561
{
562
u32 tfms, xlvl;
563
u32 ebx;
564
565
/* Intel-defined flags: level 0x00000001 */
566
if (c->cpuid_level >= 0x00000001) {
567
u32 capability, excap;
568
569
cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
570
c->x86_capability[0] = capability;
571
c->x86_capability[4] = excap;
572
}
573
574
/* Additional Intel-defined flags: level 0x00000007 */
575
if (c->cpuid_level >= 0x00000007) {
576
u32 eax, ebx, ecx, edx;
577
578
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
579
580
c->x86_capability[9] = ebx;
581
}
582
583
/* AMD-defined flags: level 0x80000001 */
584
xlvl = cpuid_eax(0x80000000);
585
c->extended_cpuid_level = xlvl;
586
587
if ((xlvl & 0xffff0000) == 0x80000000) {
588
if (xlvl >= 0x80000001) {
589
c->x86_capability[1] = cpuid_edx(0x80000001);
590
c->x86_capability[6] = cpuid_ecx(0x80000001);
591
}
592
}
593
594
if (c->extended_cpuid_level >= 0x80000008) {
595
u32 eax = cpuid_eax(0x80000008);
596
597
c->x86_virt_bits = (eax >> 8) & 0xff;
598
c->x86_phys_bits = eax & 0xff;
599
}
600
#ifdef CONFIG_X86_32
601
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
602
c->x86_phys_bits = 36;
603
#endif
604
605
if (c->extended_cpuid_level >= 0x80000007)
606
c->x86_power = cpuid_edx(0x80000007);
607
608
init_scattered_cpuid_features(c);
609
}
610
611
static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
612
{
613
#ifdef CONFIG_X86_32
614
int i;
615
616
/*
617
* First of all, decide if this is a 486 or higher
618
* It's a 486 if we can modify the AC flag
619
*/
620
if (flag_is_changeable_p(X86_EFLAGS_AC))
621
c->x86 = 4;
622
else
623
c->x86 = 3;
624
625
for (i = 0; i < X86_VENDOR_NUM; i++)
626
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
627
c->x86_vendor_id[0] = 0;
628
cpu_devs[i]->c_identify(c);
629
if (c->x86_vendor_id[0]) {
630
get_cpu_vendor(c);
631
break;
632
}
633
}
634
#endif
635
}
636
637
/*
638
* Do minimum CPU detection early.
639
* Fields really needed: vendor, cpuid_level, family, model, mask,
640
* cache alignment.
641
* The others are not touched to avoid unwanted side effects.
642
*
643
* WARNING: this function is only called on the BP. Don't add code here
644
* that is supposed to run on all CPUs.
645
*/
646
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
647
{
648
#ifdef CONFIG_X86_64
649
c->x86_clflush_size = 64;
650
c->x86_phys_bits = 36;
651
c->x86_virt_bits = 48;
652
#else
653
c->x86_clflush_size = 32;
654
c->x86_phys_bits = 32;
655
c->x86_virt_bits = 32;
656
#endif
657
c->x86_cache_alignment = c->x86_clflush_size;
658
659
memset(&c->x86_capability, 0, sizeof c->x86_capability);
660
c->extended_cpuid_level = 0;
661
662
if (!have_cpuid_p())
663
identify_cpu_without_cpuid(c);
664
665
/* cyrix could have cpuid enabled via c_identify()*/
666
if (!have_cpuid_p())
667
return;
668
669
cpu_detect(c);
670
671
get_cpu_vendor(c);
672
673
get_cpu_cap(c);
674
675
if (this_cpu->c_early_init)
676
this_cpu->c_early_init(c);
677
678
#ifdef CONFIG_SMP
679
c->cpu_index = 0;
680
#endif
681
filter_cpuid_features(c, false);
682
683
setup_smep(c);
684
}
685
686
void __init early_cpu_init(void)
687
{
688
const struct cpu_dev *const *cdev;
689
int count = 0;
690
691
#ifdef CONFIG_PROCESSOR_SELECT
692
printk(KERN_INFO "KERNEL supported cpus:\n");
693
#endif
694
695
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
696
const struct cpu_dev *cpudev = *cdev;
697
698
if (count >= X86_VENDOR_NUM)
699
break;
700
cpu_devs[count] = cpudev;
701
count++;
702
703
#ifdef CONFIG_PROCESSOR_SELECT
704
{
705
unsigned int j;
706
707
for (j = 0; j < 2; j++) {
708
if (!cpudev->c_ident[j])
709
continue;
710
printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
711
cpudev->c_ident[j]);
712
}
713
}
714
#endif
715
}
716
early_identify_cpu(&boot_cpu_data);
717
}
718
719
/*
720
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
721
* unfortunately, that's not true in practice because of early VIA
722
* chips and (more importantly) broken virtualizers that are not easy
723
* to detect. In the latter case it doesn't even *fail* reliably, so
724
* probing for it doesn't even work. Disable it completely on 32-bit
725
* unless we can find a reliable way to detect all the broken cases.
726
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
727
*/
728
static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
729
{
730
#ifdef CONFIG_X86_32
731
clear_cpu_cap(c, X86_FEATURE_NOPL);
732
#else
733
set_cpu_cap(c, X86_FEATURE_NOPL);
734
#endif
735
}
736
737
static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
738
{
739
c->extended_cpuid_level = 0;
740
741
if (!have_cpuid_p())
742
identify_cpu_without_cpuid(c);
743
744
/* cyrix could have cpuid enabled via c_identify()*/
745
if (!have_cpuid_p())
746
return;
747
748
cpu_detect(c);
749
750
get_cpu_vendor(c);
751
752
get_cpu_cap(c);
753
754
if (c->cpuid_level >= 0x00000001) {
755
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
756
#ifdef CONFIG_X86_32
757
# ifdef CONFIG_X86_HT
758
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
759
# else
760
c->apicid = c->initial_apicid;
761
# endif
762
#endif
763
764
#ifdef CONFIG_X86_HT
765
c->phys_proc_id = c->initial_apicid;
766
#endif
767
}
768
769
setup_smep(c);
770
771
get_model_name(c); /* Default name */
772
773
detect_nopl(c);
774
}
775
776
/*
777
* This does the hard work of actually picking apart the CPU stuff...
778
*/
779
static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
780
{
781
int i;
782
783
c->loops_per_jiffy = loops_per_jiffy;
784
c->x86_cache_size = -1;
785
c->x86_vendor = X86_VENDOR_UNKNOWN;
786
c->x86_model = c->x86_mask = 0; /* So far unknown... */
787
c->x86_vendor_id[0] = '\0'; /* Unset */
788
c->x86_model_id[0] = '\0'; /* Unset */
789
c->x86_max_cores = 1;
790
c->x86_coreid_bits = 0;
791
#ifdef CONFIG_X86_64
792
c->x86_clflush_size = 64;
793
c->x86_phys_bits = 36;
794
c->x86_virt_bits = 48;
795
#else
796
c->cpuid_level = -1; /* CPUID not detected */
797
c->x86_clflush_size = 32;
798
c->x86_phys_bits = 32;
799
c->x86_virt_bits = 32;
800
#endif
801
c->x86_cache_alignment = c->x86_clflush_size;
802
memset(&c->x86_capability, 0, sizeof c->x86_capability);
803
804
generic_identify(c);
805
806
if (this_cpu->c_identify)
807
this_cpu->c_identify(c);
808
809
/* Clear/Set all flags overriden by options, after probe */
810
for (i = 0; i < NCAPINTS; i++) {
811
c->x86_capability[i] &= ~cpu_caps_cleared[i];
812
c->x86_capability[i] |= cpu_caps_set[i];
813
}
814
815
#ifdef CONFIG_X86_64
816
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
817
#endif
818
819
/*
820
* Vendor-specific initialization. In this section we
821
* canonicalize the feature flags, meaning if there are
822
* features a certain CPU supports which CPUID doesn't
823
* tell us, CPUID claiming incorrect flags, or other bugs,
824
* we handle them here.
825
*
826
* At the end of this section, c->x86_capability better
827
* indicate the features this CPU genuinely supports!
828
*/
829
if (this_cpu->c_init)
830
this_cpu->c_init(c);
831
832
/* Disable the PN if appropriate */
833
squash_the_stupid_serial_number(c);
834
835
/*
836
* The vendor-specific functions might have changed features.
837
* Now we do "generic changes."
838
*/
839
840
/* Filter out anything that depends on CPUID levels we don't have */
841
filter_cpuid_features(c, true);
842
843
/* If the model name is still unset, do table lookup. */
844
if (!c->x86_model_id[0]) {
845
const char *p;
846
p = table_lookup_model(c);
847
if (p)
848
strcpy(c->x86_model_id, p);
849
else
850
/* Last resort... */
851
sprintf(c->x86_model_id, "%02x/%02x",
852
c->x86, c->x86_model);
853
}
854
855
#ifdef CONFIG_X86_64
856
detect_ht(c);
857
#endif
858
859
init_hypervisor(c);
860
861
/*
862
* Clear/Set all flags overriden by options, need do it
863
* before following smp all cpus cap AND.
864
*/
865
for (i = 0; i < NCAPINTS; i++) {
866
c->x86_capability[i] &= ~cpu_caps_cleared[i];
867
c->x86_capability[i] |= cpu_caps_set[i];
868
}
869
870
/*
871
* On SMP, boot_cpu_data holds the common feature set between
872
* all CPUs; so make sure that we indicate which features are
873
* common between the CPUs. The first time this routine gets
874
* executed, c == &boot_cpu_data.
875
*/
876
if (c != &boot_cpu_data) {
877
/* AND the already accumulated flags with these */
878
for (i = 0; i < NCAPINTS; i++)
879
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
880
}
881
882
/* Init Machine Check Exception if available. */
883
mcheck_cpu_init(c);
884
885
select_idle_routine(c);
886
887
#ifdef CONFIG_NUMA
888
numa_add_cpu(smp_processor_id());
889
#endif
890
}
891
892
#ifdef CONFIG_X86_64
893
static void vgetcpu_set_mode(void)
894
{
895
if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
896
vgetcpu_mode = VGETCPU_RDTSCP;
897
else
898
vgetcpu_mode = VGETCPU_LSL;
899
}
900
#endif
901
902
void __init identify_boot_cpu(void)
903
{
904
identify_cpu(&boot_cpu_data);
905
init_amd_e400_c1e_mask();
906
#ifdef CONFIG_X86_32
907
sysenter_setup();
908
enable_sep_cpu();
909
#else
910
vgetcpu_set_mode();
911
#endif
912
}
913
914
void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
915
{
916
BUG_ON(c == &boot_cpu_data);
917
identify_cpu(c);
918
#ifdef CONFIG_X86_32
919
enable_sep_cpu();
920
#endif
921
mtrr_ap_init();
922
}
923
924
struct msr_range {
925
unsigned min;
926
unsigned max;
927
};
928
929
static const struct msr_range msr_range_array[] __cpuinitconst = {
930
{ 0x00000000, 0x00000418},
931
{ 0xc0000000, 0xc000040b},
932
{ 0xc0010000, 0xc0010142},
933
{ 0xc0011000, 0xc001103b},
934
};
935
936
static void __cpuinit print_cpu_msr(void)
937
{
938
unsigned index_min, index_max;
939
unsigned index;
940
u64 val;
941
int i;
942
943
for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
944
index_min = msr_range_array[i].min;
945
index_max = msr_range_array[i].max;
946
947
for (index = index_min; index < index_max; index++) {
948
if (rdmsrl_amd_safe(index, &val))
949
continue;
950
printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
951
}
952
}
953
}
954
955
static int show_msr __cpuinitdata;
956
957
static __init int setup_show_msr(char *arg)
958
{
959
int num;
960
961
get_option(&arg, &num);
962
963
if (num > 0)
964
show_msr = num;
965
return 1;
966
}
967
__setup("show_msr=", setup_show_msr);
968
969
static __init int setup_noclflush(char *arg)
970
{
971
setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
972
return 1;
973
}
974
__setup("noclflush", setup_noclflush);
975
976
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
977
{
978
const char *vendor = NULL;
979
980
if (c->x86_vendor < X86_VENDOR_NUM) {
981
vendor = this_cpu->c_vendor;
982
} else {
983
if (c->cpuid_level >= 0)
984
vendor = c->x86_vendor_id;
985
}
986
987
if (vendor && !strstr(c->x86_model_id, vendor))
988
printk(KERN_CONT "%s ", vendor);
989
990
if (c->x86_model_id[0])
991
printk(KERN_CONT "%s", c->x86_model_id);
992
else
993
printk(KERN_CONT "%d86", c->x86);
994
995
if (c->x86_mask || c->cpuid_level >= 0)
996
printk(KERN_CONT " stepping %02x\n", c->x86_mask);
997
else
998
printk(KERN_CONT "\n");
999
1000
#ifdef CONFIG_SMP
1001
if (c->cpu_index < show_msr)
1002
print_cpu_msr();
1003
#else
1004
if (show_msr)
1005
print_cpu_msr();
1006
#endif
1007
}
1008
1009
static __init int setup_disablecpuid(char *arg)
1010
{
1011
int bit;
1012
1013
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1014
setup_clear_cpu_cap(bit);
1015
else
1016
return 0;
1017
1018
return 1;
1019
}
1020
__setup("clearcpuid=", setup_disablecpuid);
1021
1022
#ifdef CONFIG_X86_64
1023
struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1024
1025
DEFINE_PER_CPU_FIRST(union irq_stack_union,
1026
irq_stack_union) __aligned(PAGE_SIZE);
1027
1028
/*
1029
* The following four percpu variables are hot. Align current_task to
1030
* cacheline size such that all four fall in the same cacheline.
1031
*/
1032
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1033
&init_task;
1034
EXPORT_PER_CPU_SYMBOL(current_task);
1035
1036
DEFINE_PER_CPU(unsigned long, kernel_stack) =
1037
(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1038
EXPORT_PER_CPU_SYMBOL(kernel_stack);
1039
1040
DEFINE_PER_CPU(char *, irq_stack_ptr) =
1041
init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1042
1043
DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1044
1045
/*
1046
* Special IST stacks which the CPU switches to when it calls
1047
* an IST-marked descriptor entry. Up to 7 stacks (hardware
1048
* limit), all of them are 4K, except the debug stack which
1049
* is 8K.
1050
*/
1051
static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1052
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1053
[DEBUG_STACK - 1] = DEBUG_STKSZ
1054
};
1055
1056
static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1057
[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1058
1059
/* May not be marked __init: used by software suspend */
1060
void syscall_init(void)
1061
{
1062
/*
1063
* LSTAR and STAR live in a bit strange symbiosis.
1064
* They both write to the same internal register. STAR allows to
1065
* set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1066
*/
1067
wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1068
wrmsrl(MSR_LSTAR, system_call);
1069
wrmsrl(MSR_CSTAR, ignore_sysret);
1070
1071
#ifdef CONFIG_IA32_EMULATION
1072
syscall32_cpu_init();
1073
#endif
1074
1075
/* Flags to clear on syscall */
1076
wrmsrl(MSR_SYSCALL_MASK,
1077
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1078
}
1079
1080
unsigned long kernel_eflags;
1081
1082
/*
1083
* Copies of the original ist values from the tss are only accessed during
1084
* debugging, no special alignment required.
1085
*/
1086
DEFINE_PER_CPU(struct orig_ist, orig_ist);
1087
1088
#else /* CONFIG_X86_64 */
1089
1090
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1091
EXPORT_PER_CPU_SYMBOL(current_task);
1092
1093
#ifdef CONFIG_CC_STACKPROTECTOR
1094
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1095
#endif
1096
1097
/* Make sure %fs and %gs are initialized properly in idle threads */
1098
struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1099
{
1100
memset(regs, 0, sizeof(struct pt_regs));
1101
regs->fs = __KERNEL_PERCPU;
1102
regs->gs = __KERNEL_STACK_CANARY;
1103
1104
return regs;
1105
}
1106
#endif /* CONFIG_X86_64 */
1107
1108
/*
1109
* Clear all 6 debug registers:
1110
*/
1111
static void clear_all_debug_regs(void)
1112
{
1113
int i;
1114
1115
for (i = 0; i < 8; i++) {
1116
/* Ignore db4, db5 */
1117
if ((i == 4) || (i == 5))
1118
continue;
1119
1120
set_debugreg(0, i);
1121
}
1122
}
1123
1124
#ifdef CONFIG_KGDB
1125
/*
1126
* Restore debug regs if using kgdbwait and you have a kernel debugger
1127
* connection established.
1128
*/
1129
static void dbg_restore_debug_regs(void)
1130
{
1131
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1132
arch_kgdb_ops.correct_hw_break();
1133
}
1134
#else /* ! CONFIG_KGDB */
1135
#define dbg_restore_debug_regs()
1136
#endif /* ! CONFIG_KGDB */
1137
1138
/*
1139
* cpu_init() initializes state that is per-CPU. Some data is already
1140
* initialized (naturally) in the bootstrap process, such as the GDT
1141
* and IDT. We reload them nevertheless, this function acts as a
1142
* 'CPU state barrier', nothing should get across.
1143
* A lot of state is already set up in PDA init for 64 bit
1144
*/
1145
#ifdef CONFIG_X86_64
1146
1147
void __cpuinit cpu_init(void)
1148
{
1149
struct orig_ist *oist;
1150
struct task_struct *me;
1151
struct tss_struct *t;
1152
unsigned long v;
1153
int cpu;
1154
int i;
1155
1156
cpu = stack_smp_processor_id();
1157
t = &per_cpu(init_tss, cpu);
1158
oist = &per_cpu(orig_ist, cpu);
1159
1160
#ifdef CONFIG_NUMA
1161
if (cpu != 0 && percpu_read(numa_node) == 0 &&
1162
early_cpu_to_node(cpu) != NUMA_NO_NODE)
1163
set_numa_node(early_cpu_to_node(cpu));
1164
#endif
1165
1166
me = current;
1167
1168
if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1169
panic("CPU#%d already initialized!\n", cpu);
1170
1171
pr_debug("Initializing CPU#%d\n", cpu);
1172
1173
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1174
1175
/*
1176
* Initialize the per-CPU GDT with the boot GDT,
1177
* and set up the GDT descriptor:
1178
*/
1179
1180
switch_to_new_gdt(cpu);
1181
loadsegment(fs, 0);
1182
1183
load_idt((const struct desc_ptr *)&idt_descr);
1184
1185
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1186
syscall_init();
1187
1188
wrmsrl(MSR_FS_BASE, 0);
1189
wrmsrl(MSR_KERNEL_GS_BASE, 0);
1190
barrier();
1191
1192
x86_configure_nx();
1193
if (cpu != 0)
1194
enable_x2apic();
1195
1196
/*
1197
* set up and load the per-CPU TSS
1198
*/
1199
if (!oist->ist[0]) {
1200
char *estacks = per_cpu(exception_stacks, cpu);
1201
1202
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1203
estacks += exception_stack_sizes[v];
1204
oist->ist[v] = t->x86_tss.ist[v] =
1205
(unsigned long)estacks;
1206
}
1207
}
1208
1209
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1210
1211
/*
1212
* <= is required because the CPU will access up to
1213
* 8 bits beyond the end of the IO permission bitmap.
1214
*/
1215
for (i = 0; i <= IO_BITMAP_LONGS; i++)
1216
t->io_bitmap[i] = ~0UL;
1217
1218
atomic_inc(&init_mm.mm_count);
1219
me->active_mm = &init_mm;
1220
BUG_ON(me->mm);
1221
enter_lazy_tlb(&init_mm, me);
1222
1223
load_sp0(t, &current->thread);
1224
set_tss_desc(cpu, t);
1225
load_TR_desc();
1226
load_LDT(&init_mm.context);
1227
1228
clear_all_debug_regs();
1229
dbg_restore_debug_regs();
1230
1231
fpu_init();
1232
xsave_init();
1233
1234
raw_local_save_flags(kernel_eflags);
1235
1236
if (is_uv_system())
1237
uv_cpu_init();
1238
}
1239
1240
#else
1241
1242
void __cpuinit cpu_init(void)
1243
{
1244
int cpu = smp_processor_id();
1245
struct task_struct *curr = current;
1246
struct tss_struct *t = &per_cpu(init_tss, cpu);
1247
struct thread_struct *thread = &curr->thread;
1248
1249
if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1250
printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1251
for (;;)
1252
local_irq_enable();
1253
}
1254
1255
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1256
1257
if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1258
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1259
1260
load_idt(&idt_descr);
1261
switch_to_new_gdt(cpu);
1262
1263
/*
1264
* Set up and load the per-CPU TSS and LDT
1265
*/
1266
atomic_inc(&init_mm.mm_count);
1267
curr->active_mm = &init_mm;
1268
BUG_ON(curr->mm);
1269
enter_lazy_tlb(&init_mm, curr);
1270
1271
load_sp0(t, thread);
1272
set_tss_desc(cpu, t);
1273
load_TR_desc();
1274
load_LDT(&init_mm.context);
1275
1276
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1277
1278
#ifdef CONFIG_DOUBLEFAULT
1279
/* Set up doublefault TSS pointer in the GDT */
1280
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1281
#endif
1282
1283
clear_all_debug_regs();
1284
dbg_restore_debug_regs();
1285
1286
fpu_init();
1287
xsave_init();
1288
}
1289
#endif
1290
1291