Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kernel/cpu/mtrr/main.c
10775 views
1
/* Generic MTRR (Memory Type Range Register) driver.
2
3
Copyright (C) 1997-2000 Richard Gooch
4
Copyright (c) 2002 Patrick Mochel
5
6
This library is free software; you can redistribute it and/or
7
modify it under the terms of the GNU Library General Public
8
License as published by the Free Software Foundation; either
9
version 2 of the License, or (at your option) any later version.
10
11
This library is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
Library General Public License for more details.
15
16
You should have received a copy of the GNU Library General Public
17
License along with this library; if not, write to the Free
18
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20
Richard Gooch may be reached by email at [email protected]
21
The postal address is:
22
Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24
Source: "Pentium Pro Family Developer's Manual, Volume 3:
25
Operating System Writer's Guide" (Intel document number 242692),
26
section 11.11.7
27
28
This was cleaned and made readable by Patrick Mochel <[email protected]>
29
on 6-7 March 2002.
30
Source: Intel Architecture Software Developers Manual, Volume 3:
31
System Programming Guide; Section 9.11. (1997 edition - PPro).
32
*/
33
34
#define DEBUG
35
36
#include <linux/types.h> /* FIXME: kvm_para.h needs this */
37
38
#include <linux/stop_machine.h>
39
#include <linux/kvm_para.h>
40
#include <linux/uaccess.h>
41
#include <linux/module.h>
42
#include <linux/mutex.h>
43
#include <linux/init.h>
44
#include <linux/sort.h>
45
#include <linux/cpu.h>
46
#include <linux/pci.h>
47
#include <linux/smp.h>
48
#include <linux/syscore_ops.h>
49
50
#include <asm/processor.h>
51
#include <asm/e820.h>
52
#include <asm/mtrr.h>
53
#include <asm/msr.h>
54
55
#include "mtrr.h"
56
57
u32 num_var_ranges;
58
59
unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
60
static DEFINE_MUTEX(mtrr_mutex);
61
62
u64 size_or_mask, size_and_mask;
63
static bool mtrr_aps_delayed_init;
64
65
static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
66
67
const struct mtrr_ops *mtrr_if;
68
69
static void set_mtrr(unsigned int reg, unsigned long base,
70
unsigned long size, mtrr_type type);
71
72
void set_mtrr_ops(const struct mtrr_ops *ops)
73
{
74
if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
75
mtrr_ops[ops->vendor] = ops;
76
}
77
78
/* Returns non-zero if we have the write-combining memory type */
79
static int have_wrcomb(void)
80
{
81
struct pci_dev *dev;
82
u8 rev;
83
84
dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
85
if (dev != NULL) {
86
/*
87
* ServerWorks LE chipsets < rev 6 have problems with
88
* write-combining. Don't allow it and leave room for other
89
* chipsets to be tagged
90
*/
91
if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
92
dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
93
pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
94
if (rev <= 5) {
95
pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
96
pci_dev_put(dev);
97
return 0;
98
}
99
}
100
/*
101
* Intel 450NX errata # 23. Non ascending cacheline evictions to
102
* write combining memory may resulting in data corruption
103
*/
104
if (dev->vendor == PCI_VENDOR_ID_INTEL &&
105
dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
106
pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
107
pci_dev_put(dev);
108
return 0;
109
}
110
pci_dev_put(dev);
111
}
112
return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
113
}
114
115
/* This function returns the number of variable MTRRs */
116
static void __init set_num_var_ranges(void)
117
{
118
unsigned long config = 0, dummy;
119
120
if (use_intel())
121
rdmsr(MSR_MTRRcap, config, dummy);
122
else if (is_cpu(AMD))
123
config = 2;
124
else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
125
config = 8;
126
127
num_var_ranges = config & 0xff;
128
}
129
130
static void __init init_table(void)
131
{
132
int i, max;
133
134
max = num_var_ranges;
135
for (i = 0; i < max; i++)
136
mtrr_usage_table[i] = 1;
137
}
138
139
struct set_mtrr_data {
140
atomic_t count;
141
atomic_t gate;
142
unsigned long smp_base;
143
unsigned long smp_size;
144
unsigned int smp_reg;
145
mtrr_type smp_type;
146
};
147
148
static DEFINE_PER_CPU(struct cpu_stop_work, mtrr_work);
149
150
/**
151
* mtrr_work_handler - Synchronisation handler. Executed by "other" CPUs.
152
* @info: pointer to mtrr configuration data
153
*
154
* Returns nothing.
155
*/
156
static int mtrr_work_handler(void *info)
157
{
158
#ifdef CONFIG_SMP
159
struct set_mtrr_data *data = info;
160
unsigned long flags;
161
162
atomic_dec(&data->count);
163
while (!atomic_read(&data->gate))
164
cpu_relax();
165
166
local_irq_save(flags);
167
168
atomic_dec(&data->count);
169
while (atomic_read(&data->gate))
170
cpu_relax();
171
172
/* The master has cleared me to execute */
173
if (data->smp_reg != ~0U) {
174
mtrr_if->set(data->smp_reg, data->smp_base,
175
data->smp_size, data->smp_type);
176
} else if (mtrr_aps_delayed_init) {
177
/*
178
* Initialize the MTRRs inaddition to the synchronisation.
179
*/
180
mtrr_if->set_all();
181
}
182
183
atomic_dec(&data->count);
184
while (!atomic_read(&data->gate))
185
cpu_relax();
186
187
atomic_dec(&data->count);
188
local_irq_restore(flags);
189
#endif
190
return 0;
191
}
192
193
static inline int types_compatible(mtrr_type type1, mtrr_type type2)
194
{
195
return type1 == MTRR_TYPE_UNCACHABLE ||
196
type2 == MTRR_TYPE_UNCACHABLE ||
197
(type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
198
(type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
199
}
200
201
/**
202
* set_mtrr - update mtrrs on all processors
203
* @reg: mtrr in question
204
* @base: mtrr base
205
* @size: mtrr size
206
* @type: mtrr type
207
*
208
* This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
209
*
210
* 1. Queue work to do the following on all processors:
211
* 2. Disable Interrupts
212
* 3. Wait for all procs to do so
213
* 4. Enter no-fill cache mode
214
* 5. Flush caches
215
* 6. Clear PGE bit
216
* 7. Flush all TLBs
217
* 8. Disable all range registers
218
* 9. Update the MTRRs
219
* 10. Enable all range registers
220
* 11. Flush all TLBs and caches again
221
* 12. Enter normal cache mode and reenable caching
222
* 13. Set PGE
223
* 14. Wait for buddies to catch up
224
* 15. Enable interrupts.
225
*
226
* What does that mean for us? Well, first we set data.count to the number
227
* of CPUs. As each CPU announces that it started the rendezvous handler by
228
* decrementing the count, We reset data.count and set the data.gate flag
229
* allowing all the cpu's to proceed with the work. As each cpu disables
230
* interrupts, it'll decrement data.count once. We wait until it hits 0 and
231
* proceed. We clear the data.gate flag and reset data.count. Meanwhile, they
232
* are waiting for that flag to be cleared. Once it's cleared, each
233
* CPU goes through the transition of updating MTRRs.
234
* The CPU vendors may each do it differently,
235
* so we call mtrr_if->set() callback and let them take care of it.
236
* When they're done, they again decrement data->count and wait for data.gate
237
* to be set.
238
* When we finish, we wait for data.count to hit 0 and toggle the data.gate flag
239
* Everyone then enables interrupts and we all continue on.
240
*
241
* Note that the mechanism is the same for UP systems, too; all the SMP stuff
242
* becomes nops.
243
*/
244
static void
245
set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
246
{
247
struct set_mtrr_data data;
248
unsigned long flags;
249
int cpu;
250
251
preempt_disable();
252
253
data.smp_reg = reg;
254
data.smp_base = base;
255
data.smp_size = size;
256
data.smp_type = type;
257
atomic_set(&data.count, num_booting_cpus() - 1);
258
259
/* Make sure data.count is visible before unleashing other CPUs */
260
smp_wmb();
261
atomic_set(&data.gate, 0);
262
263
/* Start the ball rolling on other CPUs */
264
for_each_online_cpu(cpu) {
265
struct cpu_stop_work *work = &per_cpu(mtrr_work, cpu);
266
267
if (cpu == smp_processor_id())
268
continue;
269
270
stop_one_cpu_nowait(cpu, mtrr_work_handler, &data, work);
271
}
272
273
274
while (atomic_read(&data.count))
275
cpu_relax();
276
277
/* Ok, reset count and toggle gate */
278
atomic_set(&data.count, num_booting_cpus() - 1);
279
smp_wmb();
280
atomic_set(&data.gate, 1);
281
282
local_irq_save(flags);
283
284
while (atomic_read(&data.count))
285
cpu_relax();
286
287
/* Ok, reset count and toggle gate */
288
atomic_set(&data.count, num_booting_cpus() - 1);
289
smp_wmb();
290
atomic_set(&data.gate, 0);
291
292
/* Do our MTRR business */
293
294
/*
295
* HACK!
296
*
297
* We use this same function to initialize the mtrrs during boot,
298
* resume, runtime cpu online and on an explicit request to set a
299
* specific MTRR.
300
*
301
* During boot or suspend, the state of the boot cpu's mtrrs has been
302
* saved, and we want to replicate that across all the cpus that come
303
* online (either at the end of boot or resume or during a runtime cpu
304
* online). If we're doing that, @reg is set to something special and on
305
* this cpu we still do mtrr_if->set_all(). During boot/resume, this
306
* is unnecessary if at this point we are still on the cpu that started
307
* the boot/resume sequence. But there is no guarantee that we are still
308
* on the same cpu. So we do mtrr_if->set_all() on this cpu aswell to be
309
* sure that we are in sync with everyone else.
310
*/
311
if (reg != ~0U)
312
mtrr_if->set(reg, base, size, type);
313
else
314
mtrr_if->set_all();
315
316
/* Wait for the others */
317
while (atomic_read(&data.count))
318
cpu_relax();
319
320
atomic_set(&data.count, num_booting_cpus() - 1);
321
smp_wmb();
322
atomic_set(&data.gate, 1);
323
324
/*
325
* Wait here for everyone to have seen the gate change
326
* So we're the last ones to touch 'data'
327
*/
328
while (atomic_read(&data.count))
329
cpu_relax();
330
331
local_irq_restore(flags);
332
preempt_enable();
333
}
334
335
/**
336
* mtrr_add_page - Add a memory type region
337
* @base: Physical base address of region in pages (in units of 4 kB!)
338
* @size: Physical size of region in pages (4 kB)
339
* @type: Type of MTRR desired
340
* @increment: If this is true do usage counting on the region
341
*
342
* Memory type region registers control the caching on newer Intel and
343
* non Intel processors. This function allows drivers to request an
344
* MTRR is added. The details and hardware specifics of each processor's
345
* implementation are hidden from the caller, but nevertheless the
346
* caller should expect to need to provide a power of two size on an
347
* equivalent power of two boundary.
348
*
349
* If the region cannot be added either because all regions are in use
350
* or the CPU cannot support it a negative value is returned. On success
351
* the register number for this entry is returned, but should be treated
352
* as a cookie only.
353
*
354
* On a multiprocessor machine the changes are made to all processors.
355
* This is required on x86 by the Intel processors.
356
*
357
* The available types are
358
*
359
* %MTRR_TYPE_UNCACHABLE - No caching
360
*
361
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
362
*
363
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
364
*
365
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
366
*
367
* BUGS: Needs a quiet flag for the cases where drivers do not mind
368
* failures and do not wish system log messages to be sent.
369
*/
370
int mtrr_add_page(unsigned long base, unsigned long size,
371
unsigned int type, bool increment)
372
{
373
unsigned long lbase, lsize;
374
int i, replace, error;
375
mtrr_type ltype;
376
377
if (!mtrr_if)
378
return -ENXIO;
379
380
error = mtrr_if->validate_add_page(base, size, type);
381
if (error)
382
return error;
383
384
if (type >= MTRR_NUM_TYPES) {
385
pr_warning("mtrr: type: %u invalid\n", type);
386
return -EINVAL;
387
}
388
389
/* If the type is WC, check that this processor supports it */
390
if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
391
pr_warning("mtrr: your processor doesn't support write-combining\n");
392
return -ENOSYS;
393
}
394
395
if (!size) {
396
pr_warning("mtrr: zero sized request\n");
397
return -EINVAL;
398
}
399
400
if (base & size_or_mask || size & size_or_mask) {
401
pr_warning("mtrr: base or size exceeds the MTRR width\n");
402
return -EINVAL;
403
}
404
405
error = -EINVAL;
406
replace = -1;
407
408
/* No CPU hotplug when we change MTRR entries */
409
get_online_cpus();
410
411
/* Search for existing MTRR */
412
mutex_lock(&mtrr_mutex);
413
for (i = 0; i < num_var_ranges; ++i) {
414
mtrr_if->get(i, &lbase, &lsize, &ltype);
415
if (!lsize || base > lbase + lsize - 1 ||
416
base + size - 1 < lbase)
417
continue;
418
/*
419
* At this point we know there is some kind of
420
* overlap/enclosure
421
*/
422
if (base < lbase || base + size - 1 > lbase + lsize - 1) {
423
if (base <= lbase &&
424
base + size - 1 >= lbase + lsize - 1) {
425
/* New region encloses an existing region */
426
if (type == ltype) {
427
replace = replace == -1 ? i : -2;
428
continue;
429
} else if (types_compatible(type, ltype))
430
continue;
431
}
432
pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
433
" 0x%lx000,0x%lx000\n", base, size, lbase,
434
lsize);
435
goto out;
436
}
437
/* New region is enclosed by an existing region */
438
if (ltype != type) {
439
if (types_compatible(type, ltype))
440
continue;
441
pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
442
base, size, mtrr_attrib_to_str(ltype),
443
mtrr_attrib_to_str(type));
444
goto out;
445
}
446
if (increment)
447
++mtrr_usage_table[i];
448
error = i;
449
goto out;
450
}
451
/* Search for an empty MTRR */
452
i = mtrr_if->get_free_region(base, size, replace);
453
if (i >= 0) {
454
set_mtrr(i, base, size, type);
455
if (likely(replace < 0)) {
456
mtrr_usage_table[i] = 1;
457
} else {
458
mtrr_usage_table[i] = mtrr_usage_table[replace];
459
if (increment)
460
mtrr_usage_table[i]++;
461
if (unlikely(replace != i)) {
462
set_mtrr(replace, 0, 0, 0);
463
mtrr_usage_table[replace] = 0;
464
}
465
}
466
} else {
467
pr_info("mtrr: no more MTRRs available\n");
468
}
469
error = i;
470
out:
471
mutex_unlock(&mtrr_mutex);
472
put_online_cpus();
473
return error;
474
}
475
476
static int mtrr_check(unsigned long base, unsigned long size)
477
{
478
if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
479
pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
480
pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base);
481
dump_stack();
482
return -1;
483
}
484
return 0;
485
}
486
487
/**
488
* mtrr_add - Add a memory type region
489
* @base: Physical base address of region
490
* @size: Physical size of region
491
* @type: Type of MTRR desired
492
* @increment: If this is true do usage counting on the region
493
*
494
* Memory type region registers control the caching on newer Intel and
495
* non Intel processors. This function allows drivers to request an
496
* MTRR is added. The details and hardware specifics of each processor's
497
* implementation are hidden from the caller, but nevertheless the
498
* caller should expect to need to provide a power of two size on an
499
* equivalent power of two boundary.
500
*
501
* If the region cannot be added either because all regions are in use
502
* or the CPU cannot support it a negative value is returned. On success
503
* the register number for this entry is returned, but should be treated
504
* as a cookie only.
505
*
506
* On a multiprocessor machine the changes are made to all processors.
507
* This is required on x86 by the Intel processors.
508
*
509
* The available types are
510
*
511
* %MTRR_TYPE_UNCACHABLE - No caching
512
*
513
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
514
*
515
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
516
*
517
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
518
*
519
* BUGS: Needs a quiet flag for the cases where drivers do not mind
520
* failures and do not wish system log messages to be sent.
521
*/
522
int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
523
bool increment)
524
{
525
if (mtrr_check(base, size))
526
return -EINVAL;
527
return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
528
increment);
529
}
530
EXPORT_SYMBOL(mtrr_add);
531
532
/**
533
* mtrr_del_page - delete a memory type region
534
* @reg: Register returned by mtrr_add
535
* @base: Physical base address
536
* @size: Size of region
537
*
538
* If register is supplied then base and size are ignored. This is
539
* how drivers should call it.
540
*
541
* Releases an MTRR region. If the usage count drops to zero the
542
* register is freed and the region returns to default state.
543
* On success the register is returned, on failure a negative error
544
* code.
545
*/
546
int mtrr_del_page(int reg, unsigned long base, unsigned long size)
547
{
548
int i, max;
549
mtrr_type ltype;
550
unsigned long lbase, lsize;
551
int error = -EINVAL;
552
553
if (!mtrr_if)
554
return -ENXIO;
555
556
max = num_var_ranges;
557
/* No CPU hotplug when we change MTRR entries */
558
get_online_cpus();
559
mutex_lock(&mtrr_mutex);
560
if (reg < 0) {
561
/* Search for existing MTRR */
562
for (i = 0; i < max; ++i) {
563
mtrr_if->get(i, &lbase, &lsize, &ltype);
564
if (lbase == base && lsize == size) {
565
reg = i;
566
break;
567
}
568
}
569
if (reg < 0) {
570
pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
571
base, size);
572
goto out;
573
}
574
}
575
if (reg >= max) {
576
pr_warning("mtrr: register: %d too big\n", reg);
577
goto out;
578
}
579
mtrr_if->get(reg, &lbase, &lsize, &ltype);
580
if (lsize < 1) {
581
pr_warning("mtrr: MTRR %d not used\n", reg);
582
goto out;
583
}
584
if (mtrr_usage_table[reg] < 1) {
585
pr_warning("mtrr: reg: %d has count=0\n", reg);
586
goto out;
587
}
588
if (--mtrr_usage_table[reg] < 1)
589
set_mtrr(reg, 0, 0, 0);
590
error = reg;
591
out:
592
mutex_unlock(&mtrr_mutex);
593
put_online_cpus();
594
return error;
595
}
596
597
/**
598
* mtrr_del - delete a memory type region
599
* @reg: Register returned by mtrr_add
600
* @base: Physical base address
601
* @size: Size of region
602
*
603
* If register is supplied then base and size are ignored. This is
604
* how drivers should call it.
605
*
606
* Releases an MTRR region. If the usage count drops to zero the
607
* register is freed and the region returns to default state.
608
* On success the register is returned, on failure a negative error
609
* code.
610
*/
611
int mtrr_del(int reg, unsigned long base, unsigned long size)
612
{
613
if (mtrr_check(base, size))
614
return -EINVAL;
615
return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
616
}
617
EXPORT_SYMBOL(mtrr_del);
618
619
/*
620
* HACK ALERT!
621
* These should be called implicitly, but we can't yet until all the initcall
622
* stuff is done...
623
*/
624
static void __init init_ifs(void)
625
{
626
#ifndef CONFIG_X86_64
627
amd_init_mtrr();
628
cyrix_init_mtrr();
629
centaur_init_mtrr();
630
#endif
631
}
632
633
/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
634
* MTRR driver doesn't require this
635
*/
636
struct mtrr_value {
637
mtrr_type ltype;
638
unsigned long lbase;
639
unsigned long lsize;
640
};
641
642
static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
643
644
static int mtrr_save(void)
645
{
646
int i;
647
648
for (i = 0; i < num_var_ranges; i++) {
649
mtrr_if->get(i, &mtrr_value[i].lbase,
650
&mtrr_value[i].lsize,
651
&mtrr_value[i].ltype);
652
}
653
return 0;
654
}
655
656
static void mtrr_restore(void)
657
{
658
int i;
659
660
for (i = 0; i < num_var_ranges; i++) {
661
if (mtrr_value[i].lsize) {
662
set_mtrr(i, mtrr_value[i].lbase,
663
mtrr_value[i].lsize,
664
mtrr_value[i].ltype);
665
}
666
}
667
}
668
669
670
671
static struct syscore_ops mtrr_syscore_ops = {
672
.suspend = mtrr_save,
673
.resume = mtrr_restore,
674
};
675
676
int __initdata changed_by_mtrr_cleanup;
677
678
/**
679
* mtrr_bp_init - initialize mtrrs on the boot CPU
680
*
681
* This needs to be called early; before any of the other CPUs are
682
* initialized (i.e. before smp_init()).
683
*
684
*/
685
void __init mtrr_bp_init(void)
686
{
687
u32 phys_addr;
688
689
init_ifs();
690
691
phys_addr = 32;
692
693
if (cpu_has_mtrr) {
694
mtrr_if = &generic_mtrr_ops;
695
size_or_mask = 0xff000000; /* 36 bits */
696
size_and_mask = 0x00f00000;
697
phys_addr = 36;
698
699
/*
700
* This is an AMD specific MSR, but we assume(hope?) that
701
* Intel will implement it to when they extend the address
702
* bus of the Xeon.
703
*/
704
if (cpuid_eax(0x80000000) >= 0x80000008) {
705
phys_addr = cpuid_eax(0x80000008) & 0xff;
706
/* CPUID workaround for Intel 0F33/0F34 CPU */
707
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
708
boot_cpu_data.x86 == 0xF &&
709
boot_cpu_data.x86_model == 0x3 &&
710
(boot_cpu_data.x86_mask == 0x3 ||
711
boot_cpu_data.x86_mask == 0x4))
712
phys_addr = 36;
713
714
size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
715
size_and_mask = ~size_or_mask & 0xfffff00000ULL;
716
} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
717
boot_cpu_data.x86 == 6) {
718
/*
719
* VIA C* family have Intel style MTRRs,
720
* but don't support PAE
721
*/
722
size_or_mask = 0xfff00000; /* 32 bits */
723
size_and_mask = 0;
724
phys_addr = 32;
725
}
726
} else {
727
switch (boot_cpu_data.x86_vendor) {
728
case X86_VENDOR_AMD:
729
if (cpu_has_k6_mtrr) {
730
/* Pre-Athlon (K6) AMD CPU MTRRs */
731
mtrr_if = mtrr_ops[X86_VENDOR_AMD];
732
size_or_mask = 0xfff00000; /* 32 bits */
733
size_and_mask = 0;
734
}
735
break;
736
case X86_VENDOR_CENTAUR:
737
if (cpu_has_centaur_mcr) {
738
mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
739
size_or_mask = 0xfff00000; /* 32 bits */
740
size_and_mask = 0;
741
}
742
break;
743
case X86_VENDOR_CYRIX:
744
if (cpu_has_cyrix_arr) {
745
mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
746
size_or_mask = 0xfff00000; /* 32 bits */
747
size_and_mask = 0;
748
}
749
break;
750
default:
751
break;
752
}
753
}
754
755
if (mtrr_if) {
756
set_num_var_ranges();
757
init_table();
758
if (use_intel()) {
759
get_mtrr_state();
760
761
if (mtrr_cleanup(phys_addr)) {
762
changed_by_mtrr_cleanup = 1;
763
mtrr_if->set_all();
764
}
765
}
766
}
767
}
768
769
void mtrr_ap_init(void)
770
{
771
if (!use_intel() || mtrr_aps_delayed_init)
772
return;
773
/*
774
* Ideally we should hold mtrr_mutex here to avoid mtrr entries
775
* changed, but this routine will be called in cpu boot time,
776
* holding the lock breaks it.
777
*
778
* This routine is called in two cases:
779
*
780
* 1. very earily time of software resume, when there absolutely
781
* isn't mtrr entry changes;
782
*
783
* 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
784
* lock to prevent mtrr entry changes
785
*/
786
set_mtrr(~0U, 0, 0, 0);
787
}
788
789
/**
790
* Save current fixed-range MTRR state of the BSP
791
*/
792
void mtrr_save_state(void)
793
{
794
smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
795
}
796
797
void set_mtrr_aps_delayed_init(void)
798
{
799
if (!use_intel())
800
return;
801
802
mtrr_aps_delayed_init = true;
803
}
804
805
/*
806
* Delayed MTRR initialization for all AP's
807
*/
808
void mtrr_aps_init(void)
809
{
810
if (!use_intel())
811
return;
812
813
/*
814
* Check if someone has requested the delay of AP MTRR initialization,
815
* by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
816
* then we are done.
817
*/
818
if (!mtrr_aps_delayed_init)
819
return;
820
821
set_mtrr(~0U, 0, 0, 0);
822
mtrr_aps_delayed_init = false;
823
}
824
825
void mtrr_bp_restore(void)
826
{
827
if (!use_intel())
828
return;
829
830
mtrr_if->set_all();
831
}
832
833
static int __init mtrr_init_finialize(void)
834
{
835
if (!mtrr_if)
836
return 0;
837
838
if (use_intel()) {
839
if (!changed_by_mtrr_cleanup)
840
mtrr_state_warn();
841
return 0;
842
}
843
844
/*
845
* The CPU has no MTRR and seems to not support SMP. They have
846
* specific drivers, we use a tricky method to support
847
* suspend/resume for them.
848
*
849
* TBD: is there any system with such CPU which supports
850
* suspend/resume? If no, we should remove the code.
851
*/
852
register_syscore_ops(&mtrr_syscore_ops);
853
854
return 0;
855
}
856
subsys_initcall(mtrr_init_finialize);
857
858