Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kernel/hpet.c
10818 views
1
#include <linux/clocksource.h>
2
#include <linux/clockchips.h>
3
#include <linux/interrupt.h>
4
#include <linux/sysdev.h>
5
#include <linux/delay.h>
6
#include <linux/errno.h>
7
#include <linux/slab.h>
8
#include <linux/hpet.h>
9
#include <linux/init.h>
10
#include <linux/cpu.h>
11
#include <linux/pm.h>
12
#include <linux/io.h>
13
14
#include <asm/fixmap.h>
15
#include <asm/i8253.h>
16
#include <asm/hpet.h>
17
18
#define HPET_MASK CLOCKSOURCE_MASK(32)
19
20
/* FSEC = 10^-15
21
NSEC = 10^-9 */
22
#define FSEC_PER_NSEC 1000000L
23
24
#define HPET_DEV_USED_BIT 2
25
#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26
#define HPET_DEV_VALID 0x8
27
#define HPET_DEV_FSB_CAP 0x1000
28
#define HPET_DEV_PERI_CAP 0x2000
29
30
#define HPET_MIN_CYCLES 128
31
#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32
33
#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
34
35
/*
36
* HPET address is set in acpi/boot.c, when an ACPI entry exists
37
*/
38
unsigned long hpet_address;
39
u8 hpet_blockid; /* OS timer block num */
40
u8 hpet_msi_disable;
41
42
#ifdef CONFIG_PCI_MSI
43
static unsigned long hpet_num_timers;
44
#endif
45
static void __iomem *hpet_virt_address;
46
47
struct hpet_dev {
48
struct clock_event_device evt;
49
unsigned int num;
50
int cpu;
51
unsigned int irq;
52
unsigned int flags;
53
char name[10];
54
};
55
56
inline unsigned int hpet_readl(unsigned int a)
57
{
58
return readl(hpet_virt_address + a);
59
}
60
61
static inline void hpet_writel(unsigned int d, unsigned int a)
62
{
63
writel(d, hpet_virt_address + a);
64
}
65
66
#ifdef CONFIG_X86_64
67
#include <asm/pgtable.h>
68
#endif
69
70
static inline void hpet_set_mapping(void)
71
{
72
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
73
#ifdef CONFIG_X86_64
74
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
75
#endif
76
}
77
78
static inline void hpet_clear_mapping(void)
79
{
80
iounmap(hpet_virt_address);
81
hpet_virt_address = NULL;
82
}
83
84
/*
85
* HPET command line enable / disable
86
*/
87
static int boot_hpet_disable;
88
int hpet_force_user;
89
static int hpet_verbose;
90
91
static int __init hpet_setup(char *str)
92
{
93
if (str) {
94
if (!strncmp("disable", str, 7))
95
boot_hpet_disable = 1;
96
if (!strncmp("force", str, 5))
97
hpet_force_user = 1;
98
if (!strncmp("verbose", str, 7))
99
hpet_verbose = 1;
100
}
101
return 1;
102
}
103
__setup("hpet=", hpet_setup);
104
105
static int __init disable_hpet(char *str)
106
{
107
boot_hpet_disable = 1;
108
return 1;
109
}
110
__setup("nohpet", disable_hpet);
111
112
static inline int is_hpet_capable(void)
113
{
114
return !boot_hpet_disable && hpet_address;
115
}
116
117
/*
118
* HPET timer interrupt enable / disable
119
*/
120
static int hpet_legacy_int_enabled;
121
122
/**
123
* is_hpet_enabled - check whether the hpet timer interrupt is enabled
124
*/
125
int is_hpet_enabled(void)
126
{
127
return is_hpet_capable() && hpet_legacy_int_enabled;
128
}
129
EXPORT_SYMBOL_GPL(is_hpet_enabled);
130
131
static void _hpet_print_config(const char *function, int line)
132
{
133
u32 i, timers, l, h;
134
printk(KERN_INFO "hpet: %s(%d):\n", function, line);
135
l = hpet_readl(HPET_ID);
136
h = hpet_readl(HPET_PERIOD);
137
timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138
printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
139
l = hpet_readl(HPET_CFG);
140
h = hpet_readl(HPET_STATUS);
141
printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
142
l = hpet_readl(HPET_COUNTER);
143
h = hpet_readl(HPET_COUNTER+4);
144
printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
145
146
for (i = 0; i < timers; i++) {
147
l = hpet_readl(HPET_Tn_CFG(i));
148
h = hpet_readl(HPET_Tn_CFG(i)+4);
149
printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
150
i, l, h);
151
l = hpet_readl(HPET_Tn_CMP(i));
152
h = hpet_readl(HPET_Tn_CMP(i)+4);
153
printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
154
i, l, h);
155
l = hpet_readl(HPET_Tn_ROUTE(i));
156
h = hpet_readl(HPET_Tn_ROUTE(i)+4);
157
printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
158
i, l, h);
159
}
160
}
161
162
#define hpet_print_config() \
163
do { \
164
if (hpet_verbose) \
165
_hpet_print_config(__FUNCTION__, __LINE__); \
166
} while (0)
167
168
/*
169
* When the hpet driver (/dev/hpet) is enabled, we need to reserve
170
* timer 0 and timer 1 in case of RTC emulation.
171
*/
172
#ifdef CONFIG_HPET
173
174
static void hpet_reserve_msi_timers(struct hpet_data *hd);
175
176
static void hpet_reserve_platform_timers(unsigned int id)
177
{
178
struct hpet __iomem *hpet = hpet_virt_address;
179
struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
180
unsigned int nrtimers, i;
181
struct hpet_data hd;
182
183
nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
184
185
memset(&hd, 0, sizeof(hd));
186
hd.hd_phys_address = hpet_address;
187
hd.hd_address = hpet;
188
hd.hd_nirqs = nrtimers;
189
hpet_reserve_timer(&hd, 0);
190
191
#ifdef CONFIG_HPET_EMULATE_RTC
192
hpet_reserve_timer(&hd, 1);
193
#endif
194
195
/*
196
* NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
197
* is wrong for i8259!) not the output IRQ. Many BIOS writers
198
* don't bother configuring *any* comparator interrupts.
199
*/
200
hd.hd_irq[0] = HPET_LEGACY_8254;
201
hd.hd_irq[1] = HPET_LEGACY_RTC;
202
203
for (i = 2; i < nrtimers; timer++, i++) {
204
hd.hd_irq[i] = (readl(&timer->hpet_config) &
205
Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
206
}
207
208
hpet_reserve_msi_timers(&hd);
209
210
hpet_alloc(&hd);
211
212
}
213
#else
214
static void hpet_reserve_platform_timers(unsigned int id) { }
215
#endif
216
217
/*
218
* Common hpet info
219
*/
220
static unsigned long hpet_freq;
221
222
static void hpet_legacy_set_mode(enum clock_event_mode mode,
223
struct clock_event_device *evt);
224
static int hpet_legacy_next_event(unsigned long delta,
225
struct clock_event_device *evt);
226
227
/*
228
* The hpet clock event device
229
*/
230
static struct clock_event_device hpet_clockevent = {
231
.name = "hpet",
232
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233
.set_mode = hpet_legacy_set_mode,
234
.set_next_event = hpet_legacy_next_event,
235
.irq = 0,
236
.rating = 50,
237
};
238
239
static void hpet_stop_counter(void)
240
{
241
unsigned long cfg = hpet_readl(HPET_CFG);
242
cfg &= ~HPET_CFG_ENABLE;
243
hpet_writel(cfg, HPET_CFG);
244
}
245
246
static void hpet_reset_counter(void)
247
{
248
hpet_writel(0, HPET_COUNTER);
249
hpet_writel(0, HPET_COUNTER + 4);
250
}
251
252
static void hpet_start_counter(void)
253
{
254
unsigned int cfg = hpet_readl(HPET_CFG);
255
cfg |= HPET_CFG_ENABLE;
256
hpet_writel(cfg, HPET_CFG);
257
}
258
259
static void hpet_restart_counter(void)
260
{
261
hpet_stop_counter();
262
hpet_reset_counter();
263
hpet_start_counter();
264
}
265
266
static void hpet_resume_device(void)
267
{
268
force_hpet_resume();
269
}
270
271
static void hpet_resume_counter(struct clocksource *cs)
272
{
273
hpet_resume_device();
274
hpet_restart_counter();
275
}
276
277
static void hpet_enable_legacy_int(void)
278
{
279
unsigned int cfg = hpet_readl(HPET_CFG);
280
281
cfg |= HPET_CFG_LEGACY;
282
hpet_writel(cfg, HPET_CFG);
283
hpet_legacy_int_enabled = 1;
284
}
285
286
static void hpet_legacy_clockevent_register(void)
287
{
288
/* Start HPET legacy interrupts */
289
hpet_enable_legacy_int();
290
291
/*
292
* Start hpet with the boot cpu mask and make it
293
* global after the IO_APIC has been initialized.
294
*/
295
hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
296
clockevents_config_and_register(&hpet_clockevent, hpet_freq,
297
HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
298
global_clock_event = &hpet_clockevent;
299
printk(KERN_DEBUG "hpet clockevent registered\n");
300
}
301
302
static int hpet_setup_msi_irq(unsigned int irq);
303
304
static void hpet_set_mode(enum clock_event_mode mode,
305
struct clock_event_device *evt, int timer)
306
{
307
unsigned int cfg, cmp, now;
308
uint64_t delta;
309
310
switch (mode) {
311
case CLOCK_EVT_MODE_PERIODIC:
312
hpet_stop_counter();
313
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
314
delta >>= evt->shift;
315
now = hpet_readl(HPET_COUNTER);
316
cmp = now + (unsigned int) delta;
317
cfg = hpet_readl(HPET_Tn_CFG(timer));
318
/* Make sure we use edge triggered interrupts */
319
cfg &= ~HPET_TN_LEVEL;
320
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
321
HPET_TN_SETVAL | HPET_TN_32BIT;
322
hpet_writel(cfg, HPET_Tn_CFG(timer));
323
hpet_writel(cmp, HPET_Tn_CMP(timer));
324
udelay(1);
325
/*
326
* HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
327
* cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
328
* bit is automatically cleared after the first write.
329
* (See AMD-8111 HyperTransport I/O Hub Data Sheet,
330
* Publication # 24674)
331
*/
332
hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
333
hpet_start_counter();
334
hpet_print_config();
335
break;
336
337
case CLOCK_EVT_MODE_ONESHOT:
338
cfg = hpet_readl(HPET_Tn_CFG(timer));
339
cfg &= ~HPET_TN_PERIODIC;
340
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
341
hpet_writel(cfg, HPET_Tn_CFG(timer));
342
break;
343
344
case CLOCK_EVT_MODE_UNUSED:
345
case CLOCK_EVT_MODE_SHUTDOWN:
346
cfg = hpet_readl(HPET_Tn_CFG(timer));
347
cfg &= ~HPET_TN_ENABLE;
348
hpet_writel(cfg, HPET_Tn_CFG(timer));
349
break;
350
351
case CLOCK_EVT_MODE_RESUME:
352
if (timer == 0) {
353
hpet_enable_legacy_int();
354
} else {
355
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
356
hpet_setup_msi_irq(hdev->irq);
357
disable_irq(hdev->irq);
358
irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359
enable_irq(hdev->irq);
360
}
361
hpet_print_config();
362
break;
363
}
364
}
365
366
static int hpet_next_event(unsigned long delta,
367
struct clock_event_device *evt, int timer)
368
{
369
u32 cnt;
370
s32 res;
371
372
cnt = hpet_readl(HPET_COUNTER);
373
cnt += (u32) delta;
374
hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376
/*
377
* HPETs are a complete disaster. The compare register is
378
* based on a equal comparison and neither provides a less
379
* than or equal functionality (which would require to take
380
* the wraparound into account) nor a simple count down event
381
* mode. Further the write to the comparator register is
382
* delayed internally up to two HPET clock cycles in certain
383
* chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384
* longer delays. We worked around that by reading back the
385
* compare register, but that required another workaround for
386
* ICH9,10 chips where the first readout after write can
387
* return the old stale value. We already had a minimum
388
* programming delta of 5us enforced, but a NMI or SMI hitting
389
* between the counter readout and the comparator write can
390
* move us behind that point easily. Now instead of reading
391
* the compare register back several times, we make the ETIME
392
* decision based on the following: Return ETIME if the
393
* counter value after the write is less than HPET_MIN_CYCLES
394
* away from the event or if the counter is already ahead of
395
* the event. The minimum programming delta for the generic
396
* clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397
*/
398
res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399
400
return res < HPET_MIN_CYCLES ? -ETIME : 0;
401
}
402
403
static void hpet_legacy_set_mode(enum clock_event_mode mode,
404
struct clock_event_device *evt)
405
{
406
hpet_set_mode(mode, evt, 0);
407
}
408
409
static int hpet_legacy_next_event(unsigned long delta,
410
struct clock_event_device *evt)
411
{
412
return hpet_next_event(delta, evt, 0);
413
}
414
415
/*
416
* HPET MSI Support
417
*/
418
#ifdef CONFIG_PCI_MSI
419
420
static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
421
static struct hpet_dev *hpet_devs;
422
423
void hpet_msi_unmask(struct irq_data *data)
424
{
425
struct hpet_dev *hdev = data->handler_data;
426
unsigned int cfg;
427
428
/* unmask it */
429
cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
430
cfg |= HPET_TN_FSB;
431
hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
432
}
433
434
void hpet_msi_mask(struct irq_data *data)
435
{
436
struct hpet_dev *hdev = data->handler_data;
437
unsigned int cfg;
438
439
/* mask it */
440
cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
441
cfg &= ~HPET_TN_FSB;
442
hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
443
}
444
445
void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
446
{
447
hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
448
hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
449
}
450
451
void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
452
{
453
msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
454
msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
455
msg->address_hi = 0;
456
}
457
458
static void hpet_msi_set_mode(enum clock_event_mode mode,
459
struct clock_event_device *evt)
460
{
461
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
462
hpet_set_mode(mode, evt, hdev->num);
463
}
464
465
static int hpet_msi_next_event(unsigned long delta,
466
struct clock_event_device *evt)
467
{
468
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
469
return hpet_next_event(delta, evt, hdev->num);
470
}
471
472
static int hpet_setup_msi_irq(unsigned int irq)
473
{
474
if (arch_setup_hpet_msi(irq, hpet_blockid)) {
475
destroy_irq(irq);
476
return -EINVAL;
477
}
478
return 0;
479
}
480
481
static int hpet_assign_irq(struct hpet_dev *dev)
482
{
483
unsigned int irq;
484
485
irq = create_irq_nr(0, -1);
486
if (!irq)
487
return -EINVAL;
488
489
irq_set_handler_data(irq, dev);
490
491
if (hpet_setup_msi_irq(irq))
492
return -EINVAL;
493
494
dev->irq = irq;
495
return 0;
496
}
497
498
static irqreturn_t hpet_interrupt_handler(int irq, void *data)
499
{
500
struct hpet_dev *dev = (struct hpet_dev *)data;
501
struct clock_event_device *hevt = &dev->evt;
502
503
if (!hevt->event_handler) {
504
printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
505
dev->num);
506
return IRQ_HANDLED;
507
}
508
509
hevt->event_handler(hevt);
510
return IRQ_HANDLED;
511
}
512
513
static int hpet_setup_irq(struct hpet_dev *dev)
514
{
515
516
if (request_irq(dev->irq, hpet_interrupt_handler,
517
IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
518
dev->name, dev))
519
return -1;
520
521
disable_irq(dev->irq);
522
irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
523
enable_irq(dev->irq);
524
525
printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
526
dev->name, dev->irq);
527
528
return 0;
529
}
530
531
/* This should be called in specific @cpu */
532
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
533
{
534
struct clock_event_device *evt = &hdev->evt;
535
536
WARN_ON(cpu != smp_processor_id());
537
if (!(hdev->flags & HPET_DEV_VALID))
538
return;
539
540
if (hpet_setup_msi_irq(hdev->irq))
541
return;
542
543
hdev->cpu = cpu;
544
per_cpu(cpu_hpet_dev, cpu) = hdev;
545
evt->name = hdev->name;
546
hpet_setup_irq(hdev);
547
evt->irq = hdev->irq;
548
549
evt->rating = 110;
550
evt->features = CLOCK_EVT_FEAT_ONESHOT;
551
if (hdev->flags & HPET_DEV_PERI_CAP)
552
evt->features |= CLOCK_EVT_FEAT_PERIODIC;
553
554
evt->set_mode = hpet_msi_set_mode;
555
evt->set_next_event = hpet_msi_next_event;
556
evt->cpumask = cpumask_of(hdev->cpu);
557
558
clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
559
0x7FFFFFFF);
560
}
561
562
#ifdef CONFIG_HPET
563
/* Reserve at least one timer for userspace (/dev/hpet) */
564
#define RESERVE_TIMERS 1
565
#else
566
#define RESERVE_TIMERS 0
567
#endif
568
569
static void hpet_msi_capability_lookup(unsigned int start_timer)
570
{
571
unsigned int id;
572
unsigned int num_timers;
573
unsigned int num_timers_used = 0;
574
int i;
575
576
if (hpet_msi_disable)
577
return;
578
579
if (boot_cpu_has(X86_FEATURE_ARAT))
580
return;
581
id = hpet_readl(HPET_ID);
582
583
num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
584
num_timers++; /* Value read out starts from 0 */
585
hpet_print_config();
586
587
hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
588
if (!hpet_devs)
589
return;
590
591
hpet_num_timers = num_timers;
592
593
for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
594
struct hpet_dev *hdev = &hpet_devs[num_timers_used];
595
unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
596
597
/* Only consider HPET timer with MSI support */
598
if (!(cfg & HPET_TN_FSB_CAP))
599
continue;
600
601
hdev->flags = 0;
602
if (cfg & HPET_TN_PERIODIC_CAP)
603
hdev->flags |= HPET_DEV_PERI_CAP;
604
hdev->num = i;
605
606
sprintf(hdev->name, "hpet%d", i);
607
if (hpet_assign_irq(hdev))
608
continue;
609
610
hdev->flags |= HPET_DEV_FSB_CAP;
611
hdev->flags |= HPET_DEV_VALID;
612
num_timers_used++;
613
if (num_timers_used == num_possible_cpus())
614
break;
615
}
616
617
printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
618
num_timers, num_timers_used);
619
}
620
621
#ifdef CONFIG_HPET
622
static void hpet_reserve_msi_timers(struct hpet_data *hd)
623
{
624
int i;
625
626
if (!hpet_devs)
627
return;
628
629
for (i = 0; i < hpet_num_timers; i++) {
630
struct hpet_dev *hdev = &hpet_devs[i];
631
632
if (!(hdev->flags & HPET_DEV_VALID))
633
continue;
634
635
hd->hd_irq[hdev->num] = hdev->irq;
636
hpet_reserve_timer(hd, hdev->num);
637
}
638
}
639
#endif
640
641
static struct hpet_dev *hpet_get_unused_timer(void)
642
{
643
int i;
644
645
if (!hpet_devs)
646
return NULL;
647
648
for (i = 0; i < hpet_num_timers; i++) {
649
struct hpet_dev *hdev = &hpet_devs[i];
650
651
if (!(hdev->flags & HPET_DEV_VALID))
652
continue;
653
if (test_and_set_bit(HPET_DEV_USED_BIT,
654
(unsigned long *)&hdev->flags))
655
continue;
656
return hdev;
657
}
658
return NULL;
659
}
660
661
struct hpet_work_struct {
662
struct delayed_work work;
663
struct completion complete;
664
};
665
666
static void hpet_work(struct work_struct *w)
667
{
668
struct hpet_dev *hdev;
669
int cpu = smp_processor_id();
670
struct hpet_work_struct *hpet_work;
671
672
hpet_work = container_of(w, struct hpet_work_struct, work.work);
673
674
hdev = hpet_get_unused_timer();
675
if (hdev)
676
init_one_hpet_msi_clockevent(hdev, cpu);
677
678
complete(&hpet_work->complete);
679
}
680
681
static int hpet_cpuhp_notify(struct notifier_block *n,
682
unsigned long action, void *hcpu)
683
{
684
unsigned long cpu = (unsigned long)hcpu;
685
struct hpet_work_struct work;
686
struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
687
688
switch (action & 0xf) {
689
case CPU_ONLINE:
690
INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
691
init_completion(&work.complete);
692
/* FIXME: add schedule_work_on() */
693
schedule_delayed_work_on(cpu, &work.work, 0);
694
wait_for_completion(&work.complete);
695
destroy_timer_on_stack(&work.work.timer);
696
break;
697
case CPU_DEAD:
698
if (hdev) {
699
free_irq(hdev->irq, hdev);
700
hdev->flags &= ~HPET_DEV_USED;
701
per_cpu(cpu_hpet_dev, cpu) = NULL;
702
}
703
break;
704
}
705
return NOTIFY_OK;
706
}
707
#else
708
709
static int hpet_setup_msi_irq(unsigned int irq)
710
{
711
return 0;
712
}
713
static void hpet_msi_capability_lookup(unsigned int start_timer)
714
{
715
return;
716
}
717
718
#ifdef CONFIG_HPET
719
static void hpet_reserve_msi_timers(struct hpet_data *hd)
720
{
721
return;
722
}
723
#endif
724
725
static int hpet_cpuhp_notify(struct notifier_block *n,
726
unsigned long action, void *hcpu)
727
{
728
return NOTIFY_OK;
729
}
730
731
#endif
732
733
/*
734
* Clock source related code
735
*/
736
static cycle_t read_hpet(struct clocksource *cs)
737
{
738
return (cycle_t)hpet_readl(HPET_COUNTER);
739
}
740
741
#ifdef CONFIG_X86_64
742
static cycle_t __vsyscall_fn vread_hpet(void)
743
{
744
return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
745
}
746
#endif
747
748
static struct clocksource clocksource_hpet = {
749
.name = "hpet",
750
.rating = 250,
751
.read = read_hpet,
752
.mask = HPET_MASK,
753
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
754
.resume = hpet_resume_counter,
755
#ifdef CONFIG_X86_64
756
.vread = vread_hpet,
757
#endif
758
};
759
760
static int hpet_clocksource_register(void)
761
{
762
u64 start, now;
763
cycle_t t1;
764
765
/* Start the counter */
766
hpet_restart_counter();
767
768
/* Verify whether hpet counter works */
769
t1 = hpet_readl(HPET_COUNTER);
770
rdtscll(start);
771
772
/*
773
* We don't know the TSC frequency yet, but waiting for
774
* 200000 TSC cycles is safe:
775
* 4 GHz == 50us
776
* 1 GHz == 200us
777
*/
778
do {
779
rep_nop();
780
rdtscll(now);
781
} while ((now - start) < 200000UL);
782
783
if (t1 == hpet_readl(HPET_COUNTER)) {
784
printk(KERN_WARNING
785
"HPET counter not counting. HPET disabled\n");
786
return -ENODEV;
787
}
788
789
clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
790
return 0;
791
}
792
793
/**
794
* hpet_enable - Try to setup the HPET timer. Returns 1 on success.
795
*/
796
int __init hpet_enable(void)
797
{
798
unsigned long hpet_period;
799
unsigned int id;
800
u64 freq;
801
int i;
802
803
if (!is_hpet_capable())
804
return 0;
805
806
hpet_set_mapping();
807
808
/*
809
* Read the period and check for a sane value:
810
*/
811
hpet_period = hpet_readl(HPET_PERIOD);
812
813
/*
814
* AMD SB700 based systems with spread spectrum enabled use a
815
* SMM based HPET emulation to provide proper frequency
816
* setting. The SMM code is initialized with the first HPET
817
* register access and takes some time to complete. During
818
* this time the config register reads 0xffffffff. We check
819
* for max. 1000 loops whether the config register reads a non
820
* 0xffffffff value to make sure that HPET is up and running
821
* before we go further. A counting loop is safe, as the HPET
822
* access takes thousands of CPU cycles. On non SB700 based
823
* machines this check is only done once and has no side
824
* effects.
825
*/
826
for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
827
if (i == 1000) {
828
printk(KERN_WARNING
829
"HPET config register value = 0xFFFFFFFF. "
830
"Disabling HPET\n");
831
goto out_nohpet;
832
}
833
}
834
835
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
836
goto out_nohpet;
837
838
/*
839
* The period is a femto seconds value. Convert it to a
840
* frequency.
841
*/
842
freq = FSEC_PER_SEC;
843
do_div(freq, hpet_period);
844
hpet_freq = freq;
845
846
/*
847
* Read the HPET ID register to retrieve the IRQ routing
848
* information and the number of channels
849
*/
850
id = hpet_readl(HPET_ID);
851
hpet_print_config();
852
853
#ifdef CONFIG_HPET_EMULATE_RTC
854
/*
855
* The legacy routing mode needs at least two channels, tick timer
856
* and the rtc emulation channel.
857
*/
858
if (!(id & HPET_ID_NUMBER))
859
goto out_nohpet;
860
#endif
861
862
if (hpet_clocksource_register())
863
goto out_nohpet;
864
865
if (id & HPET_ID_LEGSUP) {
866
hpet_legacy_clockevent_register();
867
return 1;
868
}
869
return 0;
870
871
out_nohpet:
872
hpet_clear_mapping();
873
hpet_address = 0;
874
return 0;
875
}
876
877
/*
878
* Needs to be late, as the reserve_timer code calls kalloc !
879
*
880
* Not a problem on i386 as hpet_enable is called from late_time_init,
881
* but on x86_64 it is necessary !
882
*/
883
static __init int hpet_late_init(void)
884
{
885
int cpu;
886
887
if (boot_hpet_disable)
888
return -ENODEV;
889
890
if (!hpet_address) {
891
if (!force_hpet_address)
892
return -ENODEV;
893
894
hpet_address = force_hpet_address;
895
hpet_enable();
896
}
897
898
if (!hpet_virt_address)
899
return -ENODEV;
900
901
if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
902
hpet_msi_capability_lookup(2);
903
else
904
hpet_msi_capability_lookup(0);
905
906
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
907
hpet_print_config();
908
909
if (hpet_msi_disable)
910
return 0;
911
912
if (boot_cpu_has(X86_FEATURE_ARAT))
913
return 0;
914
915
for_each_online_cpu(cpu) {
916
hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
917
}
918
919
/* This notifier should be called after workqueue is ready */
920
hotcpu_notifier(hpet_cpuhp_notify, -20);
921
922
return 0;
923
}
924
fs_initcall(hpet_late_init);
925
926
void hpet_disable(void)
927
{
928
if (is_hpet_capable() && hpet_virt_address) {
929
unsigned int cfg = hpet_readl(HPET_CFG);
930
931
if (hpet_legacy_int_enabled) {
932
cfg &= ~HPET_CFG_LEGACY;
933
hpet_legacy_int_enabled = 0;
934
}
935
cfg &= ~HPET_CFG_ENABLE;
936
hpet_writel(cfg, HPET_CFG);
937
}
938
}
939
940
#ifdef CONFIG_HPET_EMULATE_RTC
941
942
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
943
* is enabled, we support RTC interrupt functionality in software.
944
* RTC has 3 kinds of interrupts:
945
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
946
* is updated
947
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
948
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
949
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
950
* (1) and (2) above are implemented using polling at a frequency of
951
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
952
* overhead. (DEFAULT_RTC_INT_FREQ)
953
* For (3), we use interrupts at 64Hz or user specified periodic
954
* frequency, whichever is higher.
955
*/
956
#include <linux/mc146818rtc.h>
957
#include <linux/rtc.h>
958
#include <asm/rtc.h>
959
960
#define DEFAULT_RTC_INT_FREQ 64
961
#define DEFAULT_RTC_SHIFT 6
962
#define RTC_NUM_INTS 1
963
964
static unsigned long hpet_rtc_flags;
965
static int hpet_prev_update_sec;
966
static struct rtc_time hpet_alarm_time;
967
static unsigned long hpet_pie_count;
968
static u32 hpet_t1_cmp;
969
static u32 hpet_default_delta;
970
static u32 hpet_pie_delta;
971
static unsigned long hpet_pie_limit;
972
973
static rtc_irq_handler irq_handler;
974
975
/*
976
* Check that the hpet counter c1 is ahead of the c2
977
*/
978
static inline int hpet_cnt_ahead(u32 c1, u32 c2)
979
{
980
return (s32)(c2 - c1) < 0;
981
}
982
983
/*
984
* Registers a IRQ handler.
985
*/
986
int hpet_register_irq_handler(rtc_irq_handler handler)
987
{
988
if (!is_hpet_enabled())
989
return -ENODEV;
990
if (irq_handler)
991
return -EBUSY;
992
993
irq_handler = handler;
994
995
return 0;
996
}
997
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
998
999
/*
1000
* Deregisters the IRQ handler registered with hpet_register_irq_handler()
1001
* and does cleanup.
1002
*/
1003
void hpet_unregister_irq_handler(rtc_irq_handler handler)
1004
{
1005
if (!is_hpet_enabled())
1006
return;
1007
1008
irq_handler = NULL;
1009
hpet_rtc_flags = 0;
1010
}
1011
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1012
1013
/*
1014
* Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1015
* is not supported by all HPET implementations for timer 1.
1016
*
1017
* hpet_rtc_timer_init() is called when the rtc is initialized.
1018
*/
1019
int hpet_rtc_timer_init(void)
1020
{
1021
unsigned int cfg, cnt, delta;
1022
unsigned long flags;
1023
1024
if (!is_hpet_enabled())
1025
return 0;
1026
1027
if (!hpet_default_delta) {
1028
uint64_t clc;
1029
1030
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1031
clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1032
hpet_default_delta = clc;
1033
}
1034
1035
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1036
delta = hpet_default_delta;
1037
else
1038
delta = hpet_pie_delta;
1039
1040
local_irq_save(flags);
1041
1042
cnt = delta + hpet_readl(HPET_COUNTER);
1043
hpet_writel(cnt, HPET_T1_CMP);
1044
hpet_t1_cmp = cnt;
1045
1046
cfg = hpet_readl(HPET_T1_CFG);
1047
cfg &= ~HPET_TN_PERIODIC;
1048
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1049
hpet_writel(cfg, HPET_T1_CFG);
1050
1051
local_irq_restore(flags);
1052
1053
return 1;
1054
}
1055
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1056
1057
/*
1058
* The functions below are called from rtc driver.
1059
* Return 0 if HPET is not being used.
1060
* Otherwise do the necessary changes and return 1.
1061
*/
1062
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1063
{
1064
if (!is_hpet_enabled())
1065
return 0;
1066
1067
hpet_rtc_flags &= ~bit_mask;
1068
return 1;
1069
}
1070
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1071
1072
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1073
{
1074
unsigned long oldbits = hpet_rtc_flags;
1075
1076
if (!is_hpet_enabled())
1077
return 0;
1078
1079
hpet_rtc_flags |= bit_mask;
1080
1081
if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1082
hpet_prev_update_sec = -1;
1083
1084
if (!oldbits)
1085
hpet_rtc_timer_init();
1086
1087
return 1;
1088
}
1089
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1090
1091
int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1092
unsigned char sec)
1093
{
1094
if (!is_hpet_enabled())
1095
return 0;
1096
1097
hpet_alarm_time.tm_hour = hrs;
1098
hpet_alarm_time.tm_min = min;
1099
hpet_alarm_time.tm_sec = sec;
1100
1101
return 1;
1102
}
1103
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1104
1105
int hpet_set_periodic_freq(unsigned long freq)
1106
{
1107
uint64_t clc;
1108
1109
if (!is_hpet_enabled())
1110
return 0;
1111
1112
if (freq <= DEFAULT_RTC_INT_FREQ)
1113
hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1114
else {
1115
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1116
do_div(clc, freq);
1117
clc >>= hpet_clockevent.shift;
1118
hpet_pie_delta = clc;
1119
hpet_pie_limit = 0;
1120
}
1121
return 1;
1122
}
1123
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1124
1125
int hpet_rtc_dropped_irq(void)
1126
{
1127
return is_hpet_enabled();
1128
}
1129
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1130
1131
static void hpet_rtc_timer_reinit(void)
1132
{
1133
unsigned int cfg, delta;
1134
int lost_ints = -1;
1135
1136
if (unlikely(!hpet_rtc_flags)) {
1137
cfg = hpet_readl(HPET_T1_CFG);
1138
cfg &= ~HPET_TN_ENABLE;
1139
hpet_writel(cfg, HPET_T1_CFG);
1140
return;
1141
}
1142
1143
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1144
delta = hpet_default_delta;
1145
else
1146
delta = hpet_pie_delta;
1147
1148
/*
1149
* Increment the comparator value until we are ahead of the
1150
* current count.
1151
*/
1152
do {
1153
hpet_t1_cmp += delta;
1154
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1155
lost_ints++;
1156
} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1157
1158
if (lost_ints) {
1159
if (hpet_rtc_flags & RTC_PIE)
1160
hpet_pie_count += lost_ints;
1161
if (printk_ratelimit())
1162
printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1163
lost_ints);
1164
}
1165
}
1166
1167
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1168
{
1169
struct rtc_time curr_time;
1170
unsigned long rtc_int_flag = 0;
1171
1172
hpet_rtc_timer_reinit();
1173
memset(&curr_time, 0, sizeof(struct rtc_time));
1174
1175
if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1176
get_rtc_time(&curr_time);
1177
1178
if (hpet_rtc_flags & RTC_UIE &&
1179
curr_time.tm_sec != hpet_prev_update_sec) {
1180
if (hpet_prev_update_sec >= 0)
1181
rtc_int_flag = RTC_UF;
1182
hpet_prev_update_sec = curr_time.tm_sec;
1183
}
1184
1185
if (hpet_rtc_flags & RTC_PIE &&
1186
++hpet_pie_count >= hpet_pie_limit) {
1187
rtc_int_flag |= RTC_PF;
1188
hpet_pie_count = 0;
1189
}
1190
1191
if (hpet_rtc_flags & RTC_AIE &&
1192
(curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1193
(curr_time.tm_min == hpet_alarm_time.tm_min) &&
1194
(curr_time.tm_hour == hpet_alarm_time.tm_hour))
1195
rtc_int_flag |= RTC_AF;
1196
1197
if (rtc_int_flag) {
1198
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1199
if (irq_handler)
1200
irq_handler(rtc_int_flag, dev_id);
1201
}
1202
return IRQ_HANDLED;
1203
}
1204
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1205
#endif
1206
1207