Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kvm/i8254.c
10817 views
1
/*
2
* 8253/8254 interval timer emulation
3
*
4
* Copyright (c) 2003-2004 Fabrice Bellard
5
* Copyright (c) 2006 Intel Corporation
6
* Copyright (c) 2007 Keir Fraser, XenSource Inc
7
* Copyright (c) 2008 Intel Corporation
8
* Copyright 2009 Red Hat, Inc. and/or its affiliates.
9
*
10
* Permission is hereby granted, free of charge, to any person obtaining a copy
11
* of this software and associated documentation files (the "Software"), to deal
12
* in the Software without restriction, including without limitation the rights
13
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14
* copies of the Software, and to permit persons to whom the Software is
15
* furnished to do so, subject to the following conditions:
16
*
17
* The above copyright notice and this permission notice shall be included in
18
* all copies or substantial portions of the Software.
19
*
20
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26
* THE SOFTWARE.
27
*
28
* Authors:
29
* Sheng Yang <[email protected]>
30
* Based on QEMU and Xen.
31
*/
32
33
#define pr_fmt(fmt) "pit: " fmt
34
35
#include <linux/kvm_host.h>
36
#include <linux/slab.h>
37
#include <linux/workqueue.h>
38
39
#include "irq.h"
40
#include "i8254.h"
41
42
#ifndef CONFIG_X86_64
43
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44
#else
45
#define mod_64(x, y) ((x) % (y))
46
#endif
47
48
#define RW_STATE_LSB 1
49
#define RW_STATE_MSB 2
50
#define RW_STATE_WORD0 3
51
#define RW_STATE_WORD1 4
52
53
/* Compute with 96 bit intermediate result: (a*b)/c */
54
static u64 muldiv64(u64 a, u32 b, u32 c)
55
{
56
union {
57
u64 ll;
58
struct {
59
u32 low, high;
60
} l;
61
} u, res;
62
u64 rl, rh;
63
64
u.ll = a;
65
rl = (u64)u.l.low * (u64)b;
66
rh = (u64)u.l.high * (u64)b;
67
rh += (rl >> 32);
68
res.l.high = div64_u64(rh, c);
69
res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70
return res.ll;
71
}
72
73
static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
74
{
75
struct kvm_kpit_channel_state *c =
76
&kvm->arch.vpit->pit_state.channels[channel];
77
78
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79
80
switch (c->mode) {
81
default:
82
case 0:
83
case 4:
84
/* XXX: just disable/enable counting */
85
break;
86
case 1:
87
case 2:
88
case 3:
89
case 5:
90
/* Restart counting on rising edge. */
91
if (c->gate < val)
92
c->count_load_time = ktime_get();
93
break;
94
}
95
96
c->gate = val;
97
}
98
99
static int pit_get_gate(struct kvm *kvm, int channel)
100
{
101
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
102
103
return kvm->arch.vpit->pit_state.channels[channel].gate;
104
}
105
106
static s64 __kpit_elapsed(struct kvm *kvm)
107
{
108
s64 elapsed;
109
ktime_t remaining;
110
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
111
112
if (!ps->pit_timer.period)
113
return 0;
114
115
/*
116
* The Counter does not stop when it reaches zero. In
117
* Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118
* the highest count, either FFFF hex for binary counting
119
* or 9999 for BCD counting, and continues counting.
120
* Modes 2 and 3 are periodic; the Counter reloads
121
* itself with the initial count and continues counting
122
* from there.
123
*/
124
remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
125
elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
126
elapsed = mod_64(elapsed, ps->pit_timer.period);
127
128
return elapsed;
129
}
130
131
static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
132
int channel)
133
{
134
if (channel == 0)
135
return __kpit_elapsed(kvm);
136
137
return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
138
}
139
140
static int pit_get_count(struct kvm *kvm, int channel)
141
{
142
struct kvm_kpit_channel_state *c =
143
&kvm->arch.vpit->pit_state.channels[channel];
144
s64 d, t;
145
int counter;
146
147
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
148
149
t = kpit_elapsed(kvm, c, channel);
150
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
151
152
switch (c->mode) {
153
case 0:
154
case 1:
155
case 4:
156
case 5:
157
counter = (c->count - d) & 0xffff;
158
break;
159
case 3:
160
/* XXX: may be incorrect for odd counts */
161
counter = c->count - (mod_64((2 * d), c->count));
162
break;
163
default:
164
counter = c->count - mod_64(d, c->count);
165
break;
166
}
167
return counter;
168
}
169
170
static int pit_get_out(struct kvm *kvm, int channel)
171
{
172
struct kvm_kpit_channel_state *c =
173
&kvm->arch.vpit->pit_state.channels[channel];
174
s64 d, t;
175
int out;
176
177
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
178
179
t = kpit_elapsed(kvm, c, channel);
180
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
181
182
switch (c->mode) {
183
default:
184
case 0:
185
out = (d >= c->count);
186
break;
187
case 1:
188
out = (d < c->count);
189
break;
190
case 2:
191
out = ((mod_64(d, c->count) == 0) && (d != 0));
192
break;
193
case 3:
194
out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
195
break;
196
case 4:
197
case 5:
198
out = (d == c->count);
199
break;
200
}
201
202
return out;
203
}
204
205
static void pit_latch_count(struct kvm *kvm, int channel)
206
{
207
struct kvm_kpit_channel_state *c =
208
&kvm->arch.vpit->pit_state.channels[channel];
209
210
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211
212
if (!c->count_latched) {
213
c->latched_count = pit_get_count(kvm, channel);
214
c->count_latched = c->rw_mode;
215
}
216
}
217
218
static void pit_latch_status(struct kvm *kvm, int channel)
219
{
220
struct kvm_kpit_channel_state *c =
221
&kvm->arch.vpit->pit_state.channels[channel];
222
223
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
224
225
if (!c->status_latched) {
226
/* TODO: Return NULL COUNT (bit 6). */
227
c->status = ((pit_get_out(kvm, channel) << 7) |
228
(c->rw_mode << 4) |
229
(c->mode << 1) |
230
c->bcd);
231
c->status_latched = 1;
232
}
233
}
234
235
static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
236
{
237
struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
238
irq_ack_notifier);
239
int value;
240
241
spin_lock(&ps->inject_lock);
242
value = atomic_dec_return(&ps->pit_timer.pending);
243
if (value < 0)
244
/* spurious acks can be generated if, for example, the
245
* PIC is being reset. Handle it gracefully here
246
*/
247
atomic_inc(&ps->pit_timer.pending);
248
else if (value > 0)
249
/* in this case, we had multiple outstanding pit interrupts
250
* that we needed to inject. Reinject
251
*/
252
queue_work(ps->pit->wq, &ps->pit->expired);
253
ps->irq_ack = 1;
254
spin_unlock(&ps->inject_lock);
255
}
256
257
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
258
{
259
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
260
struct hrtimer *timer;
261
262
if (!kvm_vcpu_is_bsp(vcpu) || !pit)
263
return;
264
265
timer = &pit->pit_state.pit_timer.timer;
266
if (hrtimer_cancel(timer))
267
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
268
}
269
270
static void destroy_pit_timer(struct kvm_pit *pit)
271
{
272
hrtimer_cancel(&pit->pit_state.pit_timer.timer);
273
cancel_work_sync(&pit->expired);
274
}
275
276
static bool kpit_is_periodic(struct kvm_timer *ktimer)
277
{
278
struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
279
pit_timer);
280
return ps->is_periodic;
281
}
282
283
static struct kvm_timer_ops kpit_ops = {
284
.is_periodic = kpit_is_periodic,
285
};
286
287
static void pit_do_work(struct work_struct *work)
288
{
289
struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
290
struct kvm *kvm = pit->kvm;
291
struct kvm_vcpu *vcpu;
292
int i;
293
struct kvm_kpit_state *ps = &pit->pit_state;
294
int inject = 0;
295
296
/* Try to inject pending interrupts when
297
* last one has been acked.
298
*/
299
spin_lock(&ps->inject_lock);
300
if (ps->irq_ack) {
301
ps->irq_ack = 0;
302
inject = 1;
303
}
304
spin_unlock(&ps->inject_lock);
305
if (inject) {
306
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
307
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
308
309
/*
310
* Provides NMI watchdog support via Virtual Wire mode.
311
* The route is: PIT -> PIC -> LVT0 in NMI mode.
312
*
313
* Note: Our Virtual Wire implementation is simplified, only
314
* propagating PIT interrupts to all VCPUs when they have set
315
* LVT0 to NMI delivery. Other PIC interrupts are just sent to
316
* VCPU0, and only if its LVT0 is in EXTINT mode.
317
*/
318
if (kvm->arch.vapics_in_nmi_mode > 0)
319
kvm_for_each_vcpu(i, vcpu, kvm)
320
kvm_apic_nmi_wd_deliver(vcpu);
321
}
322
}
323
324
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
325
{
326
struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
327
struct kvm_pit *pt = ktimer->kvm->arch.vpit;
328
329
if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
330
atomic_inc(&ktimer->pending);
331
queue_work(pt->wq, &pt->expired);
332
}
333
334
if (ktimer->t_ops->is_periodic(ktimer)) {
335
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
336
return HRTIMER_RESTART;
337
} else
338
return HRTIMER_NORESTART;
339
}
340
341
static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
342
{
343
struct kvm_timer *pt = &ps->pit_timer;
344
s64 interval;
345
346
interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
347
348
pr_debug("create pit timer, interval is %llu nsec\n", interval);
349
350
/* TODO The new value only affected after the retriggered */
351
hrtimer_cancel(&pt->timer);
352
cancel_work_sync(&ps->pit->expired);
353
pt->period = interval;
354
ps->is_periodic = is_period;
355
356
pt->timer.function = pit_timer_fn;
357
pt->t_ops = &kpit_ops;
358
pt->kvm = ps->pit->kvm;
359
360
atomic_set(&pt->pending, 0);
361
ps->irq_ack = 1;
362
363
hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
364
HRTIMER_MODE_ABS);
365
}
366
367
static void pit_load_count(struct kvm *kvm, int channel, u32 val)
368
{
369
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
370
371
WARN_ON(!mutex_is_locked(&ps->lock));
372
373
pr_debug("load_count val is %d, channel is %d\n", val, channel);
374
375
/*
376
* The largest possible initial count is 0; this is equivalent
377
* to 216 for binary counting and 104 for BCD counting.
378
*/
379
if (val == 0)
380
val = 0x10000;
381
382
ps->channels[channel].count = val;
383
384
if (channel != 0) {
385
ps->channels[channel].count_load_time = ktime_get();
386
return;
387
}
388
389
/* Two types of timer
390
* mode 1 is one shot, mode 2 is period, otherwise del timer */
391
switch (ps->channels[0].mode) {
392
case 0:
393
case 1:
394
/* FIXME: enhance mode 4 precision */
395
case 4:
396
if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
397
create_pit_timer(ps, val, 0);
398
}
399
break;
400
case 2:
401
case 3:
402
if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
403
create_pit_timer(ps, val, 1);
404
}
405
break;
406
default:
407
destroy_pit_timer(kvm->arch.vpit);
408
}
409
}
410
411
void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
412
{
413
u8 saved_mode;
414
if (hpet_legacy_start) {
415
/* save existing mode for later reenablement */
416
saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
417
kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
418
pit_load_count(kvm, channel, val);
419
kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
420
} else {
421
pit_load_count(kvm, channel, val);
422
}
423
}
424
425
static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
426
{
427
return container_of(dev, struct kvm_pit, dev);
428
}
429
430
static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
431
{
432
return container_of(dev, struct kvm_pit, speaker_dev);
433
}
434
435
static inline int pit_in_range(gpa_t addr)
436
{
437
return ((addr >= KVM_PIT_BASE_ADDRESS) &&
438
(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
439
}
440
441
static int pit_ioport_write(struct kvm_io_device *this,
442
gpa_t addr, int len, const void *data)
443
{
444
struct kvm_pit *pit = dev_to_pit(this);
445
struct kvm_kpit_state *pit_state = &pit->pit_state;
446
struct kvm *kvm = pit->kvm;
447
int channel, access;
448
struct kvm_kpit_channel_state *s;
449
u32 val = *(u32 *) data;
450
if (!pit_in_range(addr))
451
return -EOPNOTSUPP;
452
453
val &= 0xff;
454
addr &= KVM_PIT_CHANNEL_MASK;
455
456
mutex_lock(&pit_state->lock);
457
458
if (val != 0)
459
pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
460
(unsigned int)addr, len, val);
461
462
if (addr == 3) {
463
channel = val >> 6;
464
if (channel == 3) {
465
/* Read-Back Command. */
466
for (channel = 0; channel < 3; channel++) {
467
s = &pit_state->channels[channel];
468
if (val & (2 << channel)) {
469
if (!(val & 0x20))
470
pit_latch_count(kvm, channel);
471
if (!(val & 0x10))
472
pit_latch_status(kvm, channel);
473
}
474
}
475
} else {
476
/* Select Counter <channel>. */
477
s = &pit_state->channels[channel];
478
access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
479
if (access == 0) {
480
pit_latch_count(kvm, channel);
481
} else {
482
s->rw_mode = access;
483
s->read_state = access;
484
s->write_state = access;
485
s->mode = (val >> 1) & 7;
486
if (s->mode > 5)
487
s->mode -= 4;
488
s->bcd = val & 1;
489
}
490
}
491
} else {
492
/* Write Count. */
493
s = &pit_state->channels[addr];
494
switch (s->write_state) {
495
default:
496
case RW_STATE_LSB:
497
pit_load_count(kvm, addr, val);
498
break;
499
case RW_STATE_MSB:
500
pit_load_count(kvm, addr, val << 8);
501
break;
502
case RW_STATE_WORD0:
503
s->write_latch = val;
504
s->write_state = RW_STATE_WORD1;
505
break;
506
case RW_STATE_WORD1:
507
pit_load_count(kvm, addr, s->write_latch | (val << 8));
508
s->write_state = RW_STATE_WORD0;
509
break;
510
}
511
}
512
513
mutex_unlock(&pit_state->lock);
514
return 0;
515
}
516
517
static int pit_ioport_read(struct kvm_io_device *this,
518
gpa_t addr, int len, void *data)
519
{
520
struct kvm_pit *pit = dev_to_pit(this);
521
struct kvm_kpit_state *pit_state = &pit->pit_state;
522
struct kvm *kvm = pit->kvm;
523
int ret, count;
524
struct kvm_kpit_channel_state *s;
525
if (!pit_in_range(addr))
526
return -EOPNOTSUPP;
527
528
addr &= KVM_PIT_CHANNEL_MASK;
529
if (addr == 3)
530
return 0;
531
532
s = &pit_state->channels[addr];
533
534
mutex_lock(&pit_state->lock);
535
536
if (s->status_latched) {
537
s->status_latched = 0;
538
ret = s->status;
539
} else if (s->count_latched) {
540
switch (s->count_latched) {
541
default:
542
case RW_STATE_LSB:
543
ret = s->latched_count & 0xff;
544
s->count_latched = 0;
545
break;
546
case RW_STATE_MSB:
547
ret = s->latched_count >> 8;
548
s->count_latched = 0;
549
break;
550
case RW_STATE_WORD0:
551
ret = s->latched_count & 0xff;
552
s->count_latched = RW_STATE_MSB;
553
break;
554
}
555
} else {
556
switch (s->read_state) {
557
default:
558
case RW_STATE_LSB:
559
count = pit_get_count(kvm, addr);
560
ret = count & 0xff;
561
break;
562
case RW_STATE_MSB:
563
count = pit_get_count(kvm, addr);
564
ret = (count >> 8) & 0xff;
565
break;
566
case RW_STATE_WORD0:
567
count = pit_get_count(kvm, addr);
568
ret = count & 0xff;
569
s->read_state = RW_STATE_WORD1;
570
break;
571
case RW_STATE_WORD1:
572
count = pit_get_count(kvm, addr);
573
ret = (count >> 8) & 0xff;
574
s->read_state = RW_STATE_WORD0;
575
break;
576
}
577
}
578
579
if (len > sizeof(ret))
580
len = sizeof(ret);
581
memcpy(data, (char *)&ret, len);
582
583
mutex_unlock(&pit_state->lock);
584
return 0;
585
}
586
587
static int speaker_ioport_write(struct kvm_io_device *this,
588
gpa_t addr, int len, const void *data)
589
{
590
struct kvm_pit *pit = speaker_to_pit(this);
591
struct kvm_kpit_state *pit_state = &pit->pit_state;
592
struct kvm *kvm = pit->kvm;
593
u32 val = *(u32 *) data;
594
if (addr != KVM_SPEAKER_BASE_ADDRESS)
595
return -EOPNOTSUPP;
596
597
mutex_lock(&pit_state->lock);
598
pit_state->speaker_data_on = (val >> 1) & 1;
599
pit_set_gate(kvm, 2, val & 1);
600
mutex_unlock(&pit_state->lock);
601
return 0;
602
}
603
604
static int speaker_ioport_read(struct kvm_io_device *this,
605
gpa_t addr, int len, void *data)
606
{
607
struct kvm_pit *pit = speaker_to_pit(this);
608
struct kvm_kpit_state *pit_state = &pit->pit_state;
609
struct kvm *kvm = pit->kvm;
610
unsigned int refresh_clock;
611
int ret;
612
if (addr != KVM_SPEAKER_BASE_ADDRESS)
613
return -EOPNOTSUPP;
614
615
/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
616
refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
617
618
mutex_lock(&pit_state->lock);
619
ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
620
(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
621
if (len > sizeof(ret))
622
len = sizeof(ret);
623
memcpy(data, (char *)&ret, len);
624
mutex_unlock(&pit_state->lock);
625
return 0;
626
}
627
628
void kvm_pit_reset(struct kvm_pit *pit)
629
{
630
int i;
631
struct kvm_kpit_channel_state *c;
632
633
mutex_lock(&pit->pit_state.lock);
634
pit->pit_state.flags = 0;
635
for (i = 0; i < 3; i++) {
636
c = &pit->pit_state.channels[i];
637
c->mode = 0xff;
638
c->gate = (i != 2);
639
pit_load_count(pit->kvm, i, 0);
640
}
641
mutex_unlock(&pit->pit_state.lock);
642
643
atomic_set(&pit->pit_state.pit_timer.pending, 0);
644
pit->pit_state.irq_ack = 1;
645
}
646
647
static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
648
{
649
struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
650
651
if (!mask) {
652
atomic_set(&pit->pit_state.pit_timer.pending, 0);
653
pit->pit_state.irq_ack = 1;
654
}
655
}
656
657
static const struct kvm_io_device_ops pit_dev_ops = {
658
.read = pit_ioport_read,
659
.write = pit_ioport_write,
660
};
661
662
static const struct kvm_io_device_ops speaker_dev_ops = {
663
.read = speaker_ioport_read,
664
.write = speaker_ioport_write,
665
};
666
667
/* Caller must hold slots_lock */
668
struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
669
{
670
struct kvm_pit *pit;
671
struct kvm_kpit_state *pit_state;
672
int ret;
673
674
pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
675
if (!pit)
676
return NULL;
677
678
pit->irq_source_id = kvm_request_irq_source_id(kvm);
679
if (pit->irq_source_id < 0) {
680
kfree(pit);
681
return NULL;
682
}
683
684
mutex_init(&pit->pit_state.lock);
685
mutex_lock(&pit->pit_state.lock);
686
spin_lock_init(&pit->pit_state.inject_lock);
687
688
pit->wq = create_singlethread_workqueue("kvm-pit-wq");
689
if (!pit->wq) {
690
mutex_unlock(&pit->pit_state.lock);
691
kvm_free_irq_source_id(kvm, pit->irq_source_id);
692
kfree(pit);
693
return NULL;
694
}
695
INIT_WORK(&pit->expired, pit_do_work);
696
697
kvm->arch.vpit = pit;
698
pit->kvm = kvm;
699
700
pit_state = &pit->pit_state;
701
pit_state->pit = pit;
702
hrtimer_init(&pit_state->pit_timer.timer,
703
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
704
pit_state->irq_ack_notifier.gsi = 0;
705
pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
706
kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
707
pit_state->pit_timer.reinject = true;
708
mutex_unlock(&pit->pit_state.lock);
709
710
kvm_pit_reset(pit);
711
712
pit->mask_notifier.func = pit_mask_notifer;
713
kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
714
715
kvm_iodevice_init(&pit->dev, &pit_dev_ops);
716
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &pit->dev);
717
if (ret < 0)
718
goto fail;
719
720
if (flags & KVM_PIT_SPEAKER_DUMMY) {
721
kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
722
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
723
&pit->speaker_dev);
724
if (ret < 0)
725
goto fail_unregister;
726
}
727
728
return pit;
729
730
fail_unregister:
731
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
732
733
fail:
734
kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
735
kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
736
kvm_free_irq_source_id(kvm, pit->irq_source_id);
737
destroy_workqueue(pit->wq);
738
kfree(pit);
739
return NULL;
740
}
741
742
void kvm_free_pit(struct kvm *kvm)
743
{
744
struct hrtimer *timer;
745
746
if (kvm->arch.vpit) {
747
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
748
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
749
&kvm->arch.vpit->speaker_dev);
750
kvm_unregister_irq_mask_notifier(kvm, 0,
751
&kvm->arch.vpit->mask_notifier);
752
kvm_unregister_irq_ack_notifier(kvm,
753
&kvm->arch.vpit->pit_state.irq_ack_notifier);
754
mutex_lock(&kvm->arch.vpit->pit_state.lock);
755
timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
756
hrtimer_cancel(timer);
757
cancel_work_sync(&kvm->arch.vpit->expired);
758
kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
759
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
760
destroy_workqueue(kvm->arch.vpit->wq);
761
kfree(kvm->arch.vpit);
762
}
763
}
764
765