Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kvm/mmu.c
10817 views
1
/*
2
* Kernel-based Virtual Machine driver for Linux
3
*
4
* This module enables machines with Intel VT-x extensions to run virtual
5
* machines without emulation or binary translation.
6
*
7
* MMU support
8
*
9
* Copyright (C) 2006 Qumranet, Inc.
10
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
11
*
12
* Authors:
13
* Yaniv Kamay <[email protected]>
14
* Avi Kivity <[email protected]>
15
*
16
* This work is licensed under the terms of the GNU GPL, version 2. See
17
* the COPYING file in the top-level directory.
18
*
19
*/
20
21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
24
#include "kvm_cache_regs.h"
25
#include "x86.h"
26
27
#include <linux/kvm_host.h>
28
#include <linux/types.h>
29
#include <linux/string.h>
30
#include <linux/mm.h>
31
#include <linux/highmem.h>
32
#include <linux/module.h>
33
#include <linux/swap.h>
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
39
40
#include <asm/page.h>
41
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
44
45
/*
46
* When setting this variable to true it enables Two-Dimensional-Paging
47
* where the hardware walks 2 page tables:
48
* 1. the guest-virtual to guest-physical
49
* 2. while doing 1. it walks guest-physical to host-physical
50
* If the hardware supports that we don't need to do shadow paging.
51
*/
52
bool tdp_enabled = false;
53
54
enum {
55
AUDIT_PRE_PAGE_FAULT,
56
AUDIT_POST_PAGE_FAULT,
57
AUDIT_PRE_PTE_WRITE,
58
AUDIT_POST_PTE_WRITE,
59
AUDIT_PRE_SYNC,
60
AUDIT_POST_SYNC
61
};
62
63
char *audit_point_name[] = {
64
"pre page fault",
65
"post page fault",
66
"pre pte write",
67
"post pte write",
68
"pre sync",
69
"post sync"
70
};
71
72
#undef MMU_DEBUG
73
74
#ifdef MMU_DEBUG
75
76
#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79
#else
80
81
#define pgprintk(x...) do { } while (0)
82
#define rmap_printk(x...) do { } while (0)
83
84
#endif
85
86
#ifdef MMU_DEBUG
87
static int dbg = 0;
88
module_param(dbg, bool, 0644);
89
#endif
90
91
static int oos_shadow = 1;
92
module_param(oos_shadow, bool, 0644);
93
94
#ifndef MMU_DEBUG
95
#define ASSERT(x) do { } while (0)
96
#else
97
#define ASSERT(x) \
98
if (!(x)) { \
99
printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100
__FILE__, __LINE__, #x); \
101
}
102
#endif
103
104
#define PTE_PREFETCH_NUM 8
105
106
#define PT_FIRST_AVAIL_BITS_SHIFT 9
107
#define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109
#define PT64_LEVEL_BITS 9
110
111
#define PT64_LEVEL_SHIFT(level) \
112
(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114
#define PT64_INDEX(address, level)\
115
(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116
117
118
#define PT32_LEVEL_BITS 10
119
120
#define PT32_LEVEL_SHIFT(level) \
121
(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123
#define PT32_LVL_OFFSET_MASK(level) \
124
(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125
* PT32_LEVEL_BITS))) - 1))
126
127
#define PT32_INDEX(address, level)\
128
(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132
#define PT64_DIR_BASE_ADDR_MASK \
133
(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134
#define PT64_LVL_ADDR_MASK(level) \
135
(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136
* PT64_LEVEL_BITS))) - 1))
137
#define PT64_LVL_OFFSET_MASK(level) \
138
(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139
* PT64_LEVEL_BITS))) - 1))
140
141
#define PT32_BASE_ADDR_MASK PAGE_MASK
142
#define PT32_DIR_BASE_ADDR_MASK \
143
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144
#define PT32_LVL_ADDR_MASK(level) \
145
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146
* PT32_LEVEL_BITS))) - 1))
147
148
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149
| PT64_NX_MASK)
150
151
#define RMAP_EXT 4
152
153
#define ACC_EXEC_MASK 1
154
#define ACC_WRITE_MASK PT_WRITABLE_MASK
155
#define ACC_USER_MASK PT_USER_MASK
156
#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157
158
#include <trace/events/kvm.h>
159
160
#define CREATE_TRACE_POINTS
161
#include "mmutrace.h"
162
163
#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164
165
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166
167
struct kvm_rmap_desc {
168
u64 *sptes[RMAP_EXT];
169
struct kvm_rmap_desc *more;
170
};
171
172
struct kvm_shadow_walk_iterator {
173
u64 addr;
174
hpa_t shadow_addr;
175
int level;
176
u64 *sptep;
177
unsigned index;
178
};
179
180
#define for_each_shadow_entry(_vcpu, _addr, _walker) \
181
for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182
shadow_walk_okay(&(_walker)); \
183
shadow_walk_next(&(_walker)))
184
185
typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
186
187
static struct kmem_cache *pte_chain_cache;
188
static struct kmem_cache *rmap_desc_cache;
189
static struct kmem_cache *mmu_page_header_cache;
190
static struct percpu_counter kvm_total_used_mmu_pages;
191
192
static u64 __read_mostly shadow_trap_nonpresent_pte;
193
static u64 __read_mostly shadow_notrap_nonpresent_pte;
194
static u64 __read_mostly shadow_nx_mask;
195
static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196
static u64 __read_mostly shadow_user_mask;
197
static u64 __read_mostly shadow_accessed_mask;
198
static u64 __read_mostly shadow_dirty_mask;
199
200
static inline u64 rsvd_bits(int s, int e)
201
{
202
return ((1ULL << (e - s + 1)) - 1) << s;
203
}
204
205
void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
206
{
207
shadow_trap_nonpresent_pte = trap_pte;
208
shadow_notrap_nonpresent_pte = notrap_pte;
209
}
210
EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
211
212
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
213
u64 dirty_mask, u64 nx_mask, u64 x_mask)
214
{
215
shadow_user_mask = user_mask;
216
shadow_accessed_mask = accessed_mask;
217
shadow_dirty_mask = dirty_mask;
218
shadow_nx_mask = nx_mask;
219
shadow_x_mask = x_mask;
220
}
221
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
222
223
static bool is_write_protection(struct kvm_vcpu *vcpu)
224
{
225
return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
226
}
227
228
static int is_cpuid_PSE36(void)
229
{
230
return 1;
231
}
232
233
static int is_nx(struct kvm_vcpu *vcpu)
234
{
235
return vcpu->arch.efer & EFER_NX;
236
}
237
238
static int is_shadow_present_pte(u64 pte)
239
{
240
return pte != shadow_trap_nonpresent_pte
241
&& pte != shadow_notrap_nonpresent_pte;
242
}
243
244
static int is_large_pte(u64 pte)
245
{
246
return pte & PT_PAGE_SIZE_MASK;
247
}
248
249
static int is_writable_pte(unsigned long pte)
250
{
251
return pte & PT_WRITABLE_MASK;
252
}
253
254
static int is_dirty_gpte(unsigned long pte)
255
{
256
return pte & PT_DIRTY_MASK;
257
}
258
259
static int is_rmap_spte(u64 pte)
260
{
261
return is_shadow_present_pte(pte);
262
}
263
264
static int is_last_spte(u64 pte, int level)
265
{
266
if (level == PT_PAGE_TABLE_LEVEL)
267
return 1;
268
if (is_large_pte(pte))
269
return 1;
270
return 0;
271
}
272
273
static pfn_t spte_to_pfn(u64 pte)
274
{
275
return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
276
}
277
278
static gfn_t pse36_gfn_delta(u32 gpte)
279
{
280
int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
281
282
return (gpte & PT32_DIR_PSE36_MASK) << shift;
283
}
284
285
static void __set_spte(u64 *sptep, u64 spte)
286
{
287
set_64bit(sptep, spte);
288
}
289
290
static u64 __xchg_spte(u64 *sptep, u64 new_spte)
291
{
292
#ifdef CONFIG_X86_64
293
return xchg(sptep, new_spte);
294
#else
295
u64 old_spte;
296
297
do {
298
old_spte = *sptep;
299
} while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
300
301
return old_spte;
302
#endif
303
}
304
305
static bool spte_has_volatile_bits(u64 spte)
306
{
307
if (!shadow_accessed_mask)
308
return false;
309
310
if (!is_shadow_present_pte(spte))
311
return false;
312
313
if ((spte & shadow_accessed_mask) &&
314
(!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
315
return false;
316
317
return true;
318
}
319
320
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
321
{
322
return (old_spte & bit_mask) && !(new_spte & bit_mask);
323
}
324
325
static void update_spte(u64 *sptep, u64 new_spte)
326
{
327
u64 mask, old_spte = *sptep;
328
329
WARN_ON(!is_rmap_spte(new_spte));
330
331
new_spte |= old_spte & shadow_dirty_mask;
332
333
mask = shadow_accessed_mask;
334
if (is_writable_pte(old_spte))
335
mask |= shadow_dirty_mask;
336
337
if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
338
__set_spte(sptep, new_spte);
339
else
340
old_spte = __xchg_spte(sptep, new_spte);
341
342
if (!shadow_accessed_mask)
343
return;
344
345
if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
346
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
347
if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
348
kvm_set_pfn_dirty(spte_to_pfn(old_spte));
349
}
350
351
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
352
struct kmem_cache *base_cache, int min)
353
{
354
void *obj;
355
356
if (cache->nobjs >= min)
357
return 0;
358
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
359
obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
360
if (!obj)
361
return -ENOMEM;
362
cache->objects[cache->nobjs++] = obj;
363
}
364
return 0;
365
}
366
367
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
368
struct kmem_cache *cache)
369
{
370
while (mc->nobjs)
371
kmem_cache_free(cache, mc->objects[--mc->nobjs]);
372
}
373
374
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
375
int min)
376
{
377
void *page;
378
379
if (cache->nobjs >= min)
380
return 0;
381
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
382
page = (void *)__get_free_page(GFP_KERNEL);
383
if (!page)
384
return -ENOMEM;
385
cache->objects[cache->nobjs++] = page;
386
}
387
return 0;
388
}
389
390
static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
391
{
392
while (mc->nobjs)
393
free_page((unsigned long)mc->objects[--mc->nobjs]);
394
}
395
396
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
397
{
398
int r;
399
400
r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
401
pte_chain_cache, 4);
402
if (r)
403
goto out;
404
r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
405
rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
406
if (r)
407
goto out;
408
r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
409
if (r)
410
goto out;
411
r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
412
mmu_page_header_cache, 4);
413
out:
414
return r;
415
}
416
417
static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
418
{
419
mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
420
mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
421
mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
422
mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
423
mmu_page_header_cache);
424
}
425
426
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
427
size_t size)
428
{
429
void *p;
430
431
BUG_ON(!mc->nobjs);
432
p = mc->objects[--mc->nobjs];
433
return p;
434
}
435
436
static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
437
{
438
return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
439
sizeof(struct kvm_pte_chain));
440
}
441
442
static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
443
{
444
kmem_cache_free(pte_chain_cache, pc);
445
}
446
447
static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
448
{
449
return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
450
sizeof(struct kvm_rmap_desc));
451
}
452
453
static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
454
{
455
kmem_cache_free(rmap_desc_cache, rd);
456
}
457
458
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
459
{
460
if (!sp->role.direct)
461
return sp->gfns[index];
462
463
return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
464
}
465
466
static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
467
{
468
if (sp->role.direct)
469
BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
470
else
471
sp->gfns[index] = gfn;
472
}
473
474
/*
475
* Return the pointer to the large page information for a given gfn,
476
* handling slots that are not large page aligned.
477
*/
478
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
479
struct kvm_memory_slot *slot,
480
int level)
481
{
482
unsigned long idx;
483
484
idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
485
(slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
486
return &slot->lpage_info[level - 2][idx];
487
}
488
489
static void account_shadowed(struct kvm *kvm, gfn_t gfn)
490
{
491
struct kvm_memory_slot *slot;
492
struct kvm_lpage_info *linfo;
493
int i;
494
495
slot = gfn_to_memslot(kvm, gfn);
496
for (i = PT_DIRECTORY_LEVEL;
497
i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
498
linfo = lpage_info_slot(gfn, slot, i);
499
linfo->write_count += 1;
500
}
501
}
502
503
static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
504
{
505
struct kvm_memory_slot *slot;
506
struct kvm_lpage_info *linfo;
507
int i;
508
509
slot = gfn_to_memslot(kvm, gfn);
510
for (i = PT_DIRECTORY_LEVEL;
511
i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
512
linfo = lpage_info_slot(gfn, slot, i);
513
linfo->write_count -= 1;
514
WARN_ON(linfo->write_count < 0);
515
}
516
}
517
518
static int has_wrprotected_page(struct kvm *kvm,
519
gfn_t gfn,
520
int level)
521
{
522
struct kvm_memory_slot *slot;
523
struct kvm_lpage_info *linfo;
524
525
slot = gfn_to_memslot(kvm, gfn);
526
if (slot) {
527
linfo = lpage_info_slot(gfn, slot, level);
528
return linfo->write_count;
529
}
530
531
return 1;
532
}
533
534
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
535
{
536
unsigned long page_size;
537
int i, ret = 0;
538
539
page_size = kvm_host_page_size(kvm, gfn);
540
541
for (i = PT_PAGE_TABLE_LEVEL;
542
i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
543
if (page_size >= KVM_HPAGE_SIZE(i))
544
ret = i;
545
else
546
break;
547
}
548
549
return ret;
550
}
551
552
static struct kvm_memory_slot *
553
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
554
bool no_dirty_log)
555
{
556
struct kvm_memory_slot *slot;
557
558
slot = gfn_to_memslot(vcpu->kvm, gfn);
559
if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
560
(no_dirty_log && slot->dirty_bitmap))
561
slot = NULL;
562
563
return slot;
564
}
565
566
static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
567
{
568
return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
569
}
570
571
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
572
{
573
int host_level, level, max_level;
574
575
host_level = host_mapping_level(vcpu->kvm, large_gfn);
576
577
if (host_level == PT_PAGE_TABLE_LEVEL)
578
return host_level;
579
580
max_level = kvm_x86_ops->get_lpage_level() < host_level ?
581
kvm_x86_ops->get_lpage_level() : host_level;
582
583
for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
584
if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
585
break;
586
587
return level - 1;
588
}
589
590
/*
591
* Take gfn and return the reverse mapping to it.
592
*/
593
594
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
595
{
596
struct kvm_memory_slot *slot;
597
struct kvm_lpage_info *linfo;
598
599
slot = gfn_to_memslot(kvm, gfn);
600
if (likely(level == PT_PAGE_TABLE_LEVEL))
601
return &slot->rmap[gfn - slot->base_gfn];
602
603
linfo = lpage_info_slot(gfn, slot, level);
604
605
return &linfo->rmap_pde;
606
}
607
608
/*
609
* Reverse mapping data structures:
610
*
611
* If rmapp bit zero is zero, then rmapp point to the shadw page table entry
612
* that points to page_address(page).
613
*
614
* If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
615
* containing more mappings.
616
*
617
* Returns the number of rmap entries before the spte was added or zero if
618
* the spte was not added.
619
*
620
*/
621
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
622
{
623
struct kvm_mmu_page *sp;
624
struct kvm_rmap_desc *desc;
625
unsigned long *rmapp;
626
int i, count = 0;
627
628
if (!is_rmap_spte(*spte))
629
return count;
630
sp = page_header(__pa(spte));
631
kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
632
rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
633
if (!*rmapp) {
634
rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
635
*rmapp = (unsigned long)spte;
636
} else if (!(*rmapp & 1)) {
637
rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
638
desc = mmu_alloc_rmap_desc(vcpu);
639
desc->sptes[0] = (u64 *)*rmapp;
640
desc->sptes[1] = spte;
641
*rmapp = (unsigned long)desc | 1;
642
++count;
643
} else {
644
rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
645
desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
646
while (desc->sptes[RMAP_EXT-1] && desc->more) {
647
desc = desc->more;
648
count += RMAP_EXT;
649
}
650
if (desc->sptes[RMAP_EXT-1]) {
651
desc->more = mmu_alloc_rmap_desc(vcpu);
652
desc = desc->more;
653
}
654
for (i = 0; desc->sptes[i]; ++i)
655
++count;
656
desc->sptes[i] = spte;
657
}
658
return count;
659
}
660
661
static void rmap_desc_remove_entry(unsigned long *rmapp,
662
struct kvm_rmap_desc *desc,
663
int i,
664
struct kvm_rmap_desc *prev_desc)
665
{
666
int j;
667
668
for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
669
;
670
desc->sptes[i] = desc->sptes[j];
671
desc->sptes[j] = NULL;
672
if (j != 0)
673
return;
674
if (!prev_desc && !desc->more)
675
*rmapp = (unsigned long)desc->sptes[0];
676
else
677
if (prev_desc)
678
prev_desc->more = desc->more;
679
else
680
*rmapp = (unsigned long)desc->more | 1;
681
mmu_free_rmap_desc(desc);
682
}
683
684
static void rmap_remove(struct kvm *kvm, u64 *spte)
685
{
686
struct kvm_rmap_desc *desc;
687
struct kvm_rmap_desc *prev_desc;
688
struct kvm_mmu_page *sp;
689
gfn_t gfn;
690
unsigned long *rmapp;
691
int i;
692
693
sp = page_header(__pa(spte));
694
gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
695
rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
696
if (!*rmapp) {
697
printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
698
BUG();
699
} else if (!(*rmapp & 1)) {
700
rmap_printk("rmap_remove: %p 1->0\n", spte);
701
if ((u64 *)*rmapp != spte) {
702
printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
703
BUG();
704
}
705
*rmapp = 0;
706
} else {
707
rmap_printk("rmap_remove: %p many->many\n", spte);
708
desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
709
prev_desc = NULL;
710
while (desc) {
711
for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
712
if (desc->sptes[i] == spte) {
713
rmap_desc_remove_entry(rmapp,
714
desc, i,
715
prev_desc);
716
return;
717
}
718
prev_desc = desc;
719
desc = desc->more;
720
}
721
pr_err("rmap_remove: %p many->many\n", spte);
722
BUG();
723
}
724
}
725
726
static int set_spte_track_bits(u64 *sptep, u64 new_spte)
727
{
728
pfn_t pfn;
729
u64 old_spte = *sptep;
730
731
if (!spte_has_volatile_bits(old_spte))
732
__set_spte(sptep, new_spte);
733
else
734
old_spte = __xchg_spte(sptep, new_spte);
735
736
if (!is_rmap_spte(old_spte))
737
return 0;
738
739
pfn = spte_to_pfn(old_spte);
740
if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
741
kvm_set_pfn_accessed(pfn);
742
if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
743
kvm_set_pfn_dirty(pfn);
744
return 1;
745
}
746
747
static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
748
{
749
if (set_spte_track_bits(sptep, new_spte))
750
rmap_remove(kvm, sptep);
751
}
752
753
static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
754
{
755
struct kvm_rmap_desc *desc;
756
u64 *prev_spte;
757
int i;
758
759
if (!*rmapp)
760
return NULL;
761
else if (!(*rmapp & 1)) {
762
if (!spte)
763
return (u64 *)*rmapp;
764
return NULL;
765
}
766
desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
767
prev_spte = NULL;
768
while (desc) {
769
for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
770
if (prev_spte == spte)
771
return desc->sptes[i];
772
prev_spte = desc->sptes[i];
773
}
774
desc = desc->more;
775
}
776
return NULL;
777
}
778
779
static int rmap_write_protect(struct kvm *kvm, u64 gfn)
780
{
781
unsigned long *rmapp;
782
u64 *spte;
783
int i, write_protected = 0;
784
785
rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
786
787
spte = rmap_next(kvm, rmapp, NULL);
788
while (spte) {
789
BUG_ON(!spte);
790
BUG_ON(!(*spte & PT_PRESENT_MASK));
791
rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
792
if (is_writable_pte(*spte)) {
793
update_spte(spte, *spte & ~PT_WRITABLE_MASK);
794
write_protected = 1;
795
}
796
spte = rmap_next(kvm, rmapp, spte);
797
}
798
799
/* check for huge page mappings */
800
for (i = PT_DIRECTORY_LEVEL;
801
i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
802
rmapp = gfn_to_rmap(kvm, gfn, i);
803
spte = rmap_next(kvm, rmapp, NULL);
804
while (spte) {
805
BUG_ON(!spte);
806
BUG_ON(!(*spte & PT_PRESENT_MASK));
807
BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
808
pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
809
if (is_writable_pte(*spte)) {
810
drop_spte(kvm, spte,
811
shadow_trap_nonpresent_pte);
812
--kvm->stat.lpages;
813
spte = NULL;
814
write_protected = 1;
815
}
816
spte = rmap_next(kvm, rmapp, spte);
817
}
818
}
819
820
return write_protected;
821
}
822
823
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
824
unsigned long data)
825
{
826
u64 *spte;
827
int need_tlb_flush = 0;
828
829
while ((spte = rmap_next(kvm, rmapp, NULL))) {
830
BUG_ON(!(*spte & PT_PRESENT_MASK));
831
rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
832
drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
833
need_tlb_flush = 1;
834
}
835
return need_tlb_flush;
836
}
837
838
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
839
unsigned long data)
840
{
841
int need_flush = 0;
842
u64 *spte, new_spte;
843
pte_t *ptep = (pte_t *)data;
844
pfn_t new_pfn;
845
846
WARN_ON(pte_huge(*ptep));
847
new_pfn = pte_pfn(*ptep);
848
spte = rmap_next(kvm, rmapp, NULL);
849
while (spte) {
850
BUG_ON(!is_shadow_present_pte(*spte));
851
rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
852
need_flush = 1;
853
if (pte_write(*ptep)) {
854
drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
855
spte = rmap_next(kvm, rmapp, NULL);
856
} else {
857
new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
858
new_spte |= (u64)new_pfn << PAGE_SHIFT;
859
860
new_spte &= ~PT_WRITABLE_MASK;
861
new_spte &= ~SPTE_HOST_WRITEABLE;
862
new_spte &= ~shadow_accessed_mask;
863
set_spte_track_bits(spte, new_spte);
864
spte = rmap_next(kvm, rmapp, spte);
865
}
866
}
867
if (need_flush)
868
kvm_flush_remote_tlbs(kvm);
869
870
return 0;
871
}
872
873
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
874
unsigned long data,
875
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
876
unsigned long data))
877
{
878
int i, j;
879
int ret;
880
int retval = 0;
881
struct kvm_memslots *slots;
882
883
slots = kvm_memslots(kvm);
884
885
for (i = 0; i < slots->nmemslots; i++) {
886
struct kvm_memory_slot *memslot = &slots->memslots[i];
887
unsigned long start = memslot->userspace_addr;
888
unsigned long end;
889
890
end = start + (memslot->npages << PAGE_SHIFT);
891
if (hva >= start && hva < end) {
892
gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
893
gfn_t gfn = memslot->base_gfn + gfn_offset;
894
895
ret = handler(kvm, &memslot->rmap[gfn_offset], data);
896
897
for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
898
struct kvm_lpage_info *linfo;
899
900
linfo = lpage_info_slot(gfn, memslot,
901
PT_DIRECTORY_LEVEL + j);
902
ret |= handler(kvm, &linfo->rmap_pde, data);
903
}
904
trace_kvm_age_page(hva, memslot, ret);
905
retval |= ret;
906
}
907
}
908
909
return retval;
910
}
911
912
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
913
{
914
return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
915
}
916
917
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
918
{
919
kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
920
}
921
922
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
923
unsigned long data)
924
{
925
u64 *spte;
926
int young = 0;
927
928
/*
929
* Emulate the accessed bit for EPT, by checking if this page has
930
* an EPT mapping, and clearing it if it does. On the next access,
931
* a new EPT mapping will be established.
932
* This has some overhead, but not as much as the cost of swapping
933
* out actively used pages or breaking up actively used hugepages.
934
*/
935
if (!shadow_accessed_mask)
936
return kvm_unmap_rmapp(kvm, rmapp, data);
937
938
spte = rmap_next(kvm, rmapp, NULL);
939
while (spte) {
940
int _young;
941
u64 _spte = *spte;
942
BUG_ON(!(_spte & PT_PRESENT_MASK));
943
_young = _spte & PT_ACCESSED_MASK;
944
if (_young) {
945
young = 1;
946
clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
947
}
948
spte = rmap_next(kvm, rmapp, spte);
949
}
950
return young;
951
}
952
953
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
954
unsigned long data)
955
{
956
u64 *spte;
957
int young = 0;
958
959
/*
960
* If there's no access bit in the secondary pte set by the
961
* hardware it's up to gup-fast/gup to set the access bit in
962
* the primary pte or in the page structure.
963
*/
964
if (!shadow_accessed_mask)
965
goto out;
966
967
spte = rmap_next(kvm, rmapp, NULL);
968
while (spte) {
969
u64 _spte = *spte;
970
BUG_ON(!(_spte & PT_PRESENT_MASK));
971
young = _spte & PT_ACCESSED_MASK;
972
if (young) {
973
young = 1;
974
break;
975
}
976
spte = rmap_next(kvm, rmapp, spte);
977
}
978
out:
979
return young;
980
}
981
982
#define RMAP_RECYCLE_THRESHOLD 1000
983
984
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
985
{
986
unsigned long *rmapp;
987
struct kvm_mmu_page *sp;
988
989
sp = page_header(__pa(spte));
990
991
rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
992
993
kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
994
kvm_flush_remote_tlbs(vcpu->kvm);
995
}
996
997
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
998
{
999
return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1000
}
1001
1002
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1003
{
1004
return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1005
}
1006
1007
#ifdef MMU_DEBUG
1008
static int is_empty_shadow_page(u64 *spt)
1009
{
1010
u64 *pos;
1011
u64 *end;
1012
1013
for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1014
if (is_shadow_present_pte(*pos)) {
1015
printk(KERN_ERR "%s: %p %llx\n", __func__,
1016
pos, *pos);
1017
return 0;
1018
}
1019
return 1;
1020
}
1021
#endif
1022
1023
/*
1024
* This value is the sum of all of the kvm instances's
1025
* kvm->arch.n_used_mmu_pages values. We need a global,
1026
* aggregate version in order to make the slab shrinker
1027
* faster
1028
*/
1029
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1030
{
1031
kvm->arch.n_used_mmu_pages += nr;
1032
percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1033
}
1034
1035
static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1036
{
1037
ASSERT(is_empty_shadow_page(sp->spt));
1038
hlist_del(&sp->hash_link);
1039
list_del(&sp->link);
1040
free_page((unsigned long)sp->spt);
1041
if (!sp->role.direct)
1042
free_page((unsigned long)sp->gfns);
1043
kmem_cache_free(mmu_page_header_cache, sp);
1044
kvm_mod_used_mmu_pages(kvm, -1);
1045
}
1046
1047
static unsigned kvm_page_table_hashfn(gfn_t gfn)
1048
{
1049
return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1050
}
1051
1052
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1053
u64 *parent_pte, int direct)
1054
{
1055
struct kvm_mmu_page *sp;
1056
1057
sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1058
sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1059
if (!direct)
1060
sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1061
PAGE_SIZE);
1062
set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1063
list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1064
bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1065
sp->multimapped = 0;
1066
sp->parent_pte = parent_pte;
1067
kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1068
return sp;
1069
}
1070
1071
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1072
struct kvm_mmu_page *sp, u64 *parent_pte)
1073
{
1074
struct kvm_pte_chain *pte_chain;
1075
struct hlist_node *node;
1076
int i;
1077
1078
if (!parent_pte)
1079
return;
1080
if (!sp->multimapped) {
1081
u64 *old = sp->parent_pte;
1082
1083
if (!old) {
1084
sp->parent_pte = parent_pte;
1085
return;
1086
}
1087
sp->multimapped = 1;
1088
pte_chain = mmu_alloc_pte_chain(vcpu);
1089
INIT_HLIST_HEAD(&sp->parent_ptes);
1090
hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1091
pte_chain->parent_ptes[0] = old;
1092
}
1093
hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1094
if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1095
continue;
1096
for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1097
if (!pte_chain->parent_ptes[i]) {
1098
pte_chain->parent_ptes[i] = parent_pte;
1099
return;
1100
}
1101
}
1102
pte_chain = mmu_alloc_pte_chain(vcpu);
1103
BUG_ON(!pte_chain);
1104
hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1105
pte_chain->parent_ptes[0] = parent_pte;
1106
}
1107
1108
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1109
u64 *parent_pte)
1110
{
1111
struct kvm_pte_chain *pte_chain;
1112
struct hlist_node *node;
1113
int i;
1114
1115
if (!sp->multimapped) {
1116
BUG_ON(sp->parent_pte != parent_pte);
1117
sp->parent_pte = NULL;
1118
return;
1119
}
1120
hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1121
for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1122
if (!pte_chain->parent_ptes[i])
1123
break;
1124
if (pte_chain->parent_ptes[i] != parent_pte)
1125
continue;
1126
while (i + 1 < NR_PTE_CHAIN_ENTRIES
1127
&& pte_chain->parent_ptes[i + 1]) {
1128
pte_chain->parent_ptes[i]
1129
= pte_chain->parent_ptes[i + 1];
1130
++i;
1131
}
1132
pte_chain->parent_ptes[i] = NULL;
1133
if (i == 0) {
1134
hlist_del(&pte_chain->link);
1135
mmu_free_pte_chain(pte_chain);
1136
if (hlist_empty(&sp->parent_ptes)) {
1137
sp->multimapped = 0;
1138
sp->parent_pte = NULL;
1139
}
1140
}
1141
return;
1142
}
1143
BUG();
1144
}
1145
1146
static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1147
{
1148
struct kvm_pte_chain *pte_chain;
1149
struct hlist_node *node;
1150
struct kvm_mmu_page *parent_sp;
1151
int i;
1152
1153
if (!sp->multimapped && sp->parent_pte) {
1154
parent_sp = page_header(__pa(sp->parent_pte));
1155
fn(parent_sp, sp->parent_pte);
1156
return;
1157
}
1158
1159
hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1160
for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1161
u64 *spte = pte_chain->parent_ptes[i];
1162
1163
if (!spte)
1164
break;
1165
parent_sp = page_header(__pa(spte));
1166
fn(parent_sp, spte);
1167
}
1168
}
1169
1170
static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1171
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1172
{
1173
mmu_parent_walk(sp, mark_unsync);
1174
}
1175
1176
static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1177
{
1178
unsigned int index;
1179
1180
index = spte - sp->spt;
1181
if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1182
return;
1183
if (sp->unsync_children++)
1184
return;
1185
kvm_mmu_mark_parents_unsync(sp);
1186
}
1187
1188
static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1189
struct kvm_mmu_page *sp)
1190
{
1191
int i;
1192
1193
for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1194
sp->spt[i] = shadow_trap_nonpresent_pte;
1195
}
1196
1197
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1198
struct kvm_mmu_page *sp)
1199
{
1200
return 1;
1201
}
1202
1203
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1204
{
1205
}
1206
1207
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1208
struct kvm_mmu_page *sp, u64 *spte,
1209
const void *pte)
1210
{
1211
WARN_ON(1);
1212
}
1213
1214
#define KVM_PAGE_ARRAY_NR 16
1215
1216
struct kvm_mmu_pages {
1217
struct mmu_page_and_offset {
1218
struct kvm_mmu_page *sp;
1219
unsigned int idx;
1220
} page[KVM_PAGE_ARRAY_NR];
1221
unsigned int nr;
1222
};
1223
1224
#define for_each_unsync_children(bitmap, idx) \
1225
for (idx = find_first_bit(bitmap, 512); \
1226
idx < 512; \
1227
idx = find_next_bit(bitmap, 512, idx+1))
1228
1229
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1230
int idx)
1231
{
1232
int i;
1233
1234
if (sp->unsync)
1235
for (i=0; i < pvec->nr; i++)
1236
if (pvec->page[i].sp == sp)
1237
return 0;
1238
1239
pvec->page[pvec->nr].sp = sp;
1240
pvec->page[pvec->nr].idx = idx;
1241
pvec->nr++;
1242
return (pvec->nr == KVM_PAGE_ARRAY_NR);
1243
}
1244
1245
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1246
struct kvm_mmu_pages *pvec)
1247
{
1248
int i, ret, nr_unsync_leaf = 0;
1249
1250
for_each_unsync_children(sp->unsync_child_bitmap, i) {
1251
struct kvm_mmu_page *child;
1252
u64 ent = sp->spt[i];
1253
1254
if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1255
goto clear_child_bitmap;
1256
1257
child = page_header(ent & PT64_BASE_ADDR_MASK);
1258
1259
if (child->unsync_children) {
1260
if (mmu_pages_add(pvec, child, i))
1261
return -ENOSPC;
1262
1263
ret = __mmu_unsync_walk(child, pvec);
1264
if (!ret)
1265
goto clear_child_bitmap;
1266
else if (ret > 0)
1267
nr_unsync_leaf += ret;
1268
else
1269
return ret;
1270
} else if (child->unsync) {
1271
nr_unsync_leaf++;
1272
if (mmu_pages_add(pvec, child, i))
1273
return -ENOSPC;
1274
} else
1275
goto clear_child_bitmap;
1276
1277
continue;
1278
1279
clear_child_bitmap:
1280
__clear_bit(i, sp->unsync_child_bitmap);
1281
sp->unsync_children--;
1282
WARN_ON((int)sp->unsync_children < 0);
1283
}
1284
1285
1286
return nr_unsync_leaf;
1287
}
1288
1289
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1290
struct kvm_mmu_pages *pvec)
1291
{
1292
if (!sp->unsync_children)
1293
return 0;
1294
1295
mmu_pages_add(pvec, sp, 0);
1296
return __mmu_unsync_walk(sp, pvec);
1297
}
1298
1299
static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1300
{
1301
WARN_ON(!sp->unsync);
1302
trace_kvm_mmu_sync_page(sp);
1303
sp->unsync = 0;
1304
--kvm->stat.mmu_unsync;
1305
}
1306
1307
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1308
struct list_head *invalid_list);
1309
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1310
struct list_head *invalid_list);
1311
1312
#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1313
hlist_for_each_entry(sp, pos, \
1314
&(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1315
if ((sp)->gfn != (gfn)) {} else
1316
1317
#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1318
hlist_for_each_entry(sp, pos, \
1319
&(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1320
if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1321
(sp)->role.invalid) {} else
1322
1323
/* @sp->gfn should be write-protected at the call site */
1324
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1325
struct list_head *invalid_list, bool clear_unsync)
1326
{
1327
if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1328
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1329
return 1;
1330
}
1331
1332
if (clear_unsync)
1333
kvm_unlink_unsync_page(vcpu->kvm, sp);
1334
1335
if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1336
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1337
return 1;
1338
}
1339
1340
kvm_mmu_flush_tlb(vcpu);
1341
return 0;
1342
}
1343
1344
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1345
struct kvm_mmu_page *sp)
1346
{
1347
LIST_HEAD(invalid_list);
1348
int ret;
1349
1350
ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1351
if (ret)
1352
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1353
1354
return ret;
1355
}
1356
1357
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1358
struct list_head *invalid_list)
1359
{
1360
return __kvm_sync_page(vcpu, sp, invalid_list, true);
1361
}
1362
1363
/* @gfn should be write-protected at the call site */
1364
static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1365
{
1366
struct kvm_mmu_page *s;
1367
struct hlist_node *node;
1368
LIST_HEAD(invalid_list);
1369
bool flush = false;
1370
1371
for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1372
if (!s->unsync)
1373
continue;
1374
1375
WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1376
kvm_unlink_unsync_page(vcpu->kvm, s);
1377
if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1378
(vcpu->arch.mmu.sync_page(vcpu, s))) {
1379
kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1380
continue;
1381
}
1382
flush = true;
1383
}
1384
1385
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1386
if (flush)
1387
kvm_mmu_flush_tlb(vcpu);
1388
}
1389
1390
struct mmu_page_path {
1391
struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1392
unsigned int idx[PT64_ROOT_LEVEL-1];
1393
};
1394
1395
#define for_each_sp(pvec, sp, parents, i) \
1396
for (i = mmu_pages_next(&pvec, &parents, -1), \
1397
sp = pvec.page[i].sp; \
1398
i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1399
i = mmu_pages_next(&pvec, &parents, i))
1400
1401
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1402
struct mmu_page_path *parents,
1403
int i)
1404
{
1405
int n;
1406
1407
for (n = i+1; n < pvec->nr; n++) {
1408
struct kvm_mmu_page *sp = pvec->page[n].sp;
1409
1410
if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1411
parents->idx[0] = pvec->page[n].idx;
1412
return n;
1413
}
1414
1415
parents->parent[sp->role.level-2] = sp;
1416
parents->idx[sp->role.level-1] = pvec->page[n].idx;
1417
}
1418
1419
return n;
1420
}
1421
1422
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1423
{
1424
struct kvm_mmu_page *sp;
1425
unsigned int level = 0;
1426
1427
do {
1428
unsigned int idx = parents->idx[level];
1429
1430
sp = parents->parent[level];
1431
if (!sp)
1432
return;
1433
1434
--sp->unsync_children;
1435
WARN_ON((int)sp->unsync_children < 0);
1436
__clear_bit(idx, sp->unsync_child_bitmap);
1437
level++;
1438
} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1439
}
1440
1441
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1442
struct mmu_page_path *parents,
1443
struct kvm_mmu_pages *pvec)
1444
{
1445
parents->parent[parent->role.level-1] = NULL;
1446
pvec->nr = 0;
1447
}
1448
1449
static void mmu_sync_children(struct kvm_vcpu *vcpu,
1450
struct kvm_mmu_page *parent)
1451
{
1452
int i;
1453
struct kvm_mmu_page *sp;
1454
struct mmu_page_path parents;
1455
struct kvm_mmu_pages pages;
1456
LIST_HEAD(invalid_list);
1457
1458
kvm_mmu_pages_init(parent, &parents, &pages);
1459
while (mmu_unsync_walk(parent, &pages)) {
1460
int protected = 0;
1461
1462
for_each_sp(pages, sp, parents, i)
1463
protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1464
1465
if (protected)
1466
kvm_flush_remote_tlbs(vcpu->kvm);
1467
1468
for_each_sp(pages, sp, parents, i) {
1469
kvm_sync_page(vcpu, sp, &invalid_list);
1470
mmu_pages_clear_parents(&parents);
1471
}
1472
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1473
cond_resched_lock(&vcpu->kvm->mmu_lock);
1474
kvm_mmu_pages_init(parent, &parents, &pages);
1475
}
1476
}
1477
1478
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1479
gfn_t gfn,
1480
gva_t gaddr,
1481
unsigned level,
1482
int direct,
1483
unsigned access,
1484
u64 *parent_pte)
1485
{
1486
union kvm_mmu_page_role role;
1487
unsigned quadrant;
1488
struct kvm_mmu_page *sp;
1489
struct hlist_node *node;
1490
bool need_sync = false;
1491
1492
role = vcpu->arch.mmu.base_role;
1493
role.level = level;
1494
role.direct = direct;
1495
if (role.direct)
1496
role.cr4_pae = 0;
1497
role.access = access;
1498
if (!vcpu->arch.mmu.direct_map
1499
&& vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1500
quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1501
quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1502
role.quadrant = quadrant;
1503
}
1504
for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1505
if (!need_sync && sp->unsync)
1506
need_sync = true;
1507
1508
if (sp->role.word != role.word)
1509
continue;
1510
1511
if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1512
break;
1513
1514
mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1515
if (sp->unsync_children) {
1516
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1517
kvm_mmu_mark_parents_unsync(sp);
1518
} else if (sp->unsync)
1519
kvm_mmu_mark_parents_unsync(sp);
1520
1521
trace_kvm_mmu_get_page(sp, false);
1522
return sp;
1523
}
1524
++vcpu->kvm->stat.mmu_cache_miss;
1525
sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1526
if (!sp)
1527
return sp;
1528
sp->gfn = gfn;
1529
sp->role = role;
1530
hlist_add_head(&sp->hash_link,
1531
&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1532
if (!direct) {
1533
if (rmap_write_protect(vcpu->kvm, gfn))
1534
kvm_flush_remote_tlbs(vcpu->kvm);
1535
if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1536
kvm_sync_pages(vcpu, gfn);
1537
1538
account_shadowed(vcpu->kvm, gfn);
1539
}
1540
if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1541
vcpu->arch.mmu.prefetch_page(vcpu, sp);
1542
else
1543
nonpaging_prefetch_page(vcpu, sp);
1544
trace_kvm_mmu_get_page(sp, true);
1545
return sp;
1546
}
1547
1548
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1549
struct kvm_vcpu *vcpu, u64 addr)
1550
{
1551
iterator->addr = addr;
1552
iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1553
iterator->level = vcpu->arch.mmu.shadow_root_level;
1554
1555
if (iterator->level == PT64_ROOT_LEVEL &&
1556
vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1557
!vcpu->arch.mmu.direct_map)
1558
--iterator->level;
1559
1560
if (iterator->level == PT32E_ROOT_LEVEL) {
1561
iterator->shadow_addr
1562
= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1563
iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1564
--iterator->level;
1565
if (!iterator->shadow_addr)
1566
iterator->level = 0;
1567
}
1568
}
1569
1570
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1571
{
1572
if (iterator->level < PT_PAGE_TABLE_LEVEL)
1573
return false;
1574
1575
if (iterator->level == PT_PAGE_TABLE_LEVEL)
1576
if (is_large_pte(*iterator->sptep))
1577
return false;
1578
1579
iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1580
iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1581
return true;
1582
}
1583
1584
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1585
{
1586
iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1587
--iterator->level;
1588
}
1589
1590
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1591
{
1592
u64 spte;
1593
1594
spte = __pa(sp->spt)
1595
| PT_PRESENT_MASK | PT_ACCESSED_MASK
1596
| PT_WRITABLE_MASK | PT_USER_MASK;
1597
__set_spte(sptep, spte);
1598
}
1599
1600
static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1601
{
1602
if (is_large_pte(*sptep)) {
1603
drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1604
kvm_flush_remote_tlbs(vcpu->kvm);
1605
}
1606
}
1607
1608
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1609
unsigned direct_access)
1610
{
1611
if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1612
struct kvm_mmu_page *child;
1613
1614
/*
1615
* For the direct sp, if the guest pte's dirty bit
1616
* changed form clean to dirty, it will corrupt the
1617
* sp's access: allow writable in the read-only sp,
1618
* so we should update the spte at this point to get
1619
* a new sp with the correct access.
1620
*/
1621
child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1622
if (child->role.access == direct_access)
1623
return;
1624
1625
mmu_page_remove_parent_pte(child, sptep);
1626
__set_spte(sptep, shadow_trap_nonpresent_pte);
1627
kvm_flush_remote_tlbs(vcpu->kvm);
1628
}
1629
}
1630
1631
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1632
struct kvm_mmu_page *sp)
1633
{
1634
unsigned i;
1635
u64 *pt;
1636
u64 ent;
1637
1638
pt = sp->spt;
1639
1640
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1641
ent = pt[i];
1642
1643
if (is_shadow_present_pte(ent)) {
1644
if (!is_last_spte(ent, sp->role.level)) {
1645
ent &= PT64_BASE_ADDR_MASK;
1646
mmu_page_remove_parent_pte(page_header(ent),
1647
&pt[i]);
1648
} else {
1649
if (is_large_pte(ent))
1650
--kvm->stat.lpages;
1651
drop_spte(kvm, &pt[i],
1652
shadow_trap_nonpresent_pte);
1653
}
1654
}
1655
pt[i] = shadow_trap_nonpresent_pte;
1656
}
1657
}
1658
1659
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1660
{
1661
mmu_page_remove_parent_pte(sp, parent_pte);
1662
}
1663
1664
static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1665
{
1666
int i;
1667
struct kvm_vcpu *vcpu;
1668
1669
kvm_for_each_vcpu(i, vcpu, kvm)
1670
vcpu->arch.last_pte_updated = NULL;
1671
}
1672
1673
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1674
{
1675
u64 *parent_pte;
1676
1677
while (sp->multimapped || sp->parent_pte) {
1678
if (!sp->multimapped)
1679
parent_pte = sp->parent_pte;
1680
else {
1681
struct kvm_pte_chain *chain;
1682
1683
chain = container_of(sp->parent_ptes.first,
1684
struct kvm_pte_chain, link);
1685
parent_pte = chain->parent_ptes[0];
1686
}
1687
BUG_ON(!parent_pte);
1688
kvm_mmu_put_page(sp, parent_pte);
1689
__set_spte(parent_pte, shadow_trap_nonpresent_pte);
1690
}
1691
}
1692
1693
static int mmu_zap_unsync_children(struct kvm *kvm,
1694
struct kvm_mmu_page *parent,
1695
struct list_head *invalid_list)
1696
{
1697
int i, zapped = 0;
1698
struct mmu_page_path parents;
1699
struct kvm_mmu_pages pages;
1700
1701
if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1702
return 0;
1703
1704
kvm_mmu_pages_init(parent, &parents, &pages);
1705
while (mmu_unsync_walk(parent, &pages)) {
1706
struct kvm_mmu_page *sp;
1707
1708
for_each_sp(pages, sp, parents, i) {
1709
kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1710
mmu_pages_clear_parents(&parents);
1711
zapped++;
1712
}
1713
kvm_mmu_pages_init(parent, &parents, &pages);
1714
}
1715
1716
return zapped;
1717
}
1718
1719
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1720
struct list_head *invalid_list)
1721
{
1722
int ret;
1723
1724
trace_kvm_mmu_prepare_zap_page(sp);
1725
++kvm->stat.mmu_shadow_zapped;
1726
ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1727
kvm_mmu_page_unlink_children(kvm, sp);
1728
kvm_mmu_unlink_parents(kvm, sp);
1729
if (!sp->role.invalid && !sp->role.direct)
1730
unaccount_shadowed(kvm, sp->gfn);
1731
if (sp->unsync)
1732
kvm_unlink_unsync_page(kvm, sp);
1733
if (!sp->root_count) {
1734
/* Count self */
1735
ret++;
1736
list_move(&sp->link, invalid_list);
1737
} else {
1738
list_move(&sp->link, &kvm->arch.active_mmu_pages);
1739
kvm_reload_remote_mmus(kvm);
1740
}
1741
1742
sp->role.invalid = 1;
1743
kvm_mmu_reset_last_pte_updated(kvm);
1744
return ret;
1745
}
1746
1747
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1748
struct list_head *invalid_list)
1749
{
1750
struct kvm_mmu_page *sp;
1751
1752
if (list_empty(invalid_list))
1753
return;
1754
1755
kvm_flush_remote_tlbs(kvm);
1756
1757
do {
1758
sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1759
WARN_ON(!sp->role.invalid || sp->root_count);
1760
kvm_mmu_free_page(kvm, sp);
1761
} while (!list_empty(invalid_list));
1762
1763
}
1764
1765
/*
1766
* Changing the number of mmu pages allocated to the vm
1767
* Note: if goal_nr_mmu_pages is too small, you will get dead lock
1768
*/
1769
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1770
{
1771
LIST_HEAD(invalid_list);
1772
/*
1773
* If we set the number of mmu pages to be smaller be than the
1774
* number of actived pages , we must to free some mmu pages before we
1775
* change the value
1776
*/
1777
1778
if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1779
while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1780
!list_empty(&kvm->arch.active_mmu_pages)) {
1781
struct kvm_mmu_page *page;
1782
1783
page = container_of(kvm->arch.active_mmu_pages.prev,
1784
struct kvm_mmu_page, link);
1785
kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1786
kvm_mmu_commit_zap_page(kvm, &invalid_list);
1787
}
1788
goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1789
}
1790
1791
kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1792
}
1793
1794
static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1795
{
1796
struct kvm_mmu_page *sp;
1797
struct hlist_node *node;
1798
LIST_HEAD(invalid_list);
1799
int r;
1800
1801
pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1802
r = 0;
1803
1804
for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1805
pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1806
sp->role.word);
1807
r = 1;
1808
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1809
}
1810
kvm_mmu_commit_zap_page(kvm, &invalid_list);
1811
return r;
1812
}
1813
1814
static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1815
{
1816
struct kvm_mmu_page *sp;
1817
struct hlist_node *node;
1818
LIST_HEAD(invalid_list);
1819
1820
for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1821
pgprintk("%s: zap %llx %x\n",
1822
__func__, gfn, sp->role.word);
1823
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1824
}
1825
kvm_mmu_commit_zap_page(kvm, &invalid_list);
1826
}
1827
1828
static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1829
{
1830
int slot = memslot_id(kvm, gfn);
1831
struct kvm_mmu_page *sp = page_header(__pa(pte));
1832
1833
__set_bit(slot, sp->slot_bitmap);
1834
}
1835
1836
static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1837
{
1838
int i;
1839
u64 *pt = sp->spt;
1840
1841
if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1842
return;
1843
1844
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1845
if (pt[i] == shadow_notrap_nonpresent_pte)
1846
__set_spte(&pt[i], shadow_trap_nonpresent_pte);
1847
}
1848
}
1849
1850
/*
1851
* The function is based on mtrr_type_lookup() in
1852
* arch/x86/kernel/cpu/mtrr/generic.c
1853
*/
1854
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1855
u64 start, u64 end)
1856
{
1857
int i;
1858
u64 base, mask;
1859
u8 prev_match, curr_match;
1860
int num_var_ranges = KVM_NR_VAR_MTRR;
1861
1862
if (!mtrr_state->enabled)
1863
return 0xFF;
1864
1865
/* Make end inclusive end, instead of exclusive */
1866
end--;
1867
1868
/* Look in fixed ranges. Just return the type as per start */
1869
if (mtrr_state->have_fixed && (start < 0x100000)) {
1870
int idx;
1871
1872
if (start < 0x80000) {
1873
idx = 0;
1874
idx += (start >> 16);
1875
return mtrr_state->fixed_ranges[idx];
1876
} else if (start < 0xC0000) {
1877
idx = 1 * 8;
1878
idx += ((start - 0x80000) >> 14);
1879
return mtrr_state->fixed_ranges[idx];
1880
} else if (start < 0x1000000) {
1881
idx = 3 * 8;
1882
idx += ((start - 0xC0000) >> 12);
1883
return mtrr_state->fixed_ranges[idx];
1884
}
1885
}
1886
1887
/*
1888
* Look in variable ranges
1889
* Look of multiple ranges matching this address and pick type
1890
* as per MTRR precedence
1891
*/
1892
if (!(mtrr_state->enabled & 2))
1893
return mtrr_state->def_type;
1894
1895
prev_match = 0xFF;
1896
for (i = 0; i < num_var_ranges; ++i) {
1897
unsigned short start_state, end_state;
1898
1899
if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1900
continue;
1901
1902
base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1903
(mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1904
mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1905
(mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1906
1907
start_state = ((start & mask) == (base & mask));
1908
end_state = ((end & mask) == (base & mask));
1909
if (start_state != end_state)
1910
return 0xFE;
1911
1912
if ((start & mask) != (base & mask))
1913
continue;
1914
1915
curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1916
if (prev_match == 0xFF) {
1917
prev_match = curr_match;
1918
continue;
1919
}
1920
1921
if (prev_match == MTRR_TYPE_UNCACHABLE ||
1922
curr_match == MTRR_TYPE_UNCACHABLE)
1923
return MTRR_TYPE_UNCACHABLE;
1924
1925
if ((prev_match == MTRR_TYPE_WRBACK &&
1926
curr_match == MTRR_TYPE_WRTHROUGH) ||
1927
(prev_match == MTRR_TYPE_WRTHROUGH &&
1928
curr_match == MTRR_TYPE_WRBACK)) {
1929
prev_match = MTRR_TYPE_WRTHROUGH;
1930
curr_match = MTRR_TYPE_WRTHROUGH;
1931
}
1932
1933
if (prev_match != curr_match)
1934
return MTRR_TYPE_UNCACHABLE;
1935
}
1936
1937
if (prev_match != 0xFF)
1938
return prev_match;
1939
1940
return mtrr_state->def_type;
1941
}
1942
1943
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1944
{
1945
u8 mtrr;
1946
1947
mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1948
(gfn << PAGE_SHIFT) + PAGE_SIZE);
1949
if (mtrr == 0xfe || mtrr == 0xff)
1950
mtrr = MTRR_TYPE_WRBACK;
1951
return mtrr;
1952
}
1953
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1954
1955
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1956
{
1957
trace_kvm_mmu_unsync_page(sp);
1958
++vcpu->kvm->stat.mmu_unsync;
1959
sp->unsync = 1;
1960
1961
kvm_mmu_mark_parents_unsync(sp);
1962
mmu_convert_notrap(sp);
1963
}
1964
1965
static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1966
{
1967
struct kvm_mmu_page *s;
1968
struct hlist_node *node;
1969
1970
for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1971
if (s->unsync)
1972
continue;
1973
WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1974
__kvm_unsync_page(vcpu, s);
1975
}
1976
}
1977
1978
static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1979
bool can_unsync)
1980
{
1981
struct kvm_mmu_page *s;
1982
struct hlist_node *node;
1983
bool need_unsync = false;
1984
1985
for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1986
if (!can_unsync)
1987
return 1;
1988
1989
if (s->role.level != PT_PAGE_TABLE_LEVEL)
1990
return 1;
1991
1992
if (!need_unsync && !s->unsync) {
1993
if (!oos_shadow)
1994
return 1;
1995
need_unsync = true;
1996
}
1997
}
1998
if (need_unsync)
1999
kvm_unsync_pages(vcpu, gfn);
2000
return 0;
2001
}
2002
2003
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2004
unsigned pte_access, int user_fault,
2005
int write_fault, int dirty, int level,
2006
gfn_t gfn, pfn_t pfn, bool speculative,
2007
bool can_unsync, bool host_writable)
2008
{
2009
u64 spte, entry = *sptep;
2010
int ret = 0;
2011
2012
/*
2013
* We don't set the accessed bit, since we sometimes want to see
2014
* whether the guest actually used the pte (in order to detect
2015
* demand paging).
2016
*/
2017
spte = PT_PRESENT_MASK;
2018
if (!speculative)
2019
spte |= shadow_accessed_mask;
2020
if (!dirty)
2021
pte_access &= ~ACC_WRITE_MASK;
2022
if (pte_access & ACC_EXEC_MASK)
2023
spte |= shadow_x_mask;
2024
else
2025
spte |= shadow_nx_mask;
2026
if (pte_access & ACC_USER_MASK)
2027
spte |= shadow_user_mask;
2028
if (level > PT_PAGE_TABLE_LEVEL)
2029
spte |= PT_PAGE_SIZE_MASK;
2030
if (tdp_enabled)
2031
spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2032
kvm_is_mmio_pfn(pfn));
2033
2034
if (host_writable)
2035
spte |= SPTE_HOST_WRITEABLE;
2036
else
2037
pte_access &= ~ACC_WRITE_MASK;
2038
2039
spte |= (u64)pfn << PAGE_SHIFT;
2040
2041
if ((pte_access & ACC_WRITE_MASK)
2042
|| (!vcpu->arch.mmu.direct_map && write_fault
2043
&& !is_write_protection(vcpu) && !user_fault)) {
2044
2045
if (level > PT_PAGE_TABLE_LEVEL &&
2046
has_wrprotected_page(vcpu->kvm, gfn, level)) {
2047
ret = 1;
2048
drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2049
goto done;
2050
}
2051
2052
spte |= PT_WRITABLE_MASK;
2053
2054
if (!vcpu->arch.mmu.direct_map
2055
&& !(pte_access & ACC_WRITE_MASK))
2056
spte &= ~PT_USER_MASK;
2057
2058
/*
2059
* Optimization: for pte sync, if spte was writable the hash
2060
* lookup is unnecessary (and expensive). Write protection
2061
* is responsibility of mmu_get_page / kvm_sync_page.
2062
* Same reasoning can be applied to dirty page accounting.
2063
*/
2064
if (!can_unsync && is_writable_pte(*sptep))
2065
goto set_pte;
2066
2067
if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2068
pgprintk("%s: found shadow page for %llx, marking ro\n",
2069
__func__, gfn);
2070
ret = 1;
2071
pte_access &= ~ACC_WRITE_MASK;
2072
if (is_writable_pte(spte))
2073
spte &= ~PT_WRITABLE_MASK;
2074
}
2075
}
2076
2077
if (pte_access & ACC_WRITE_MASK)
2078
mark_page_dirty(vcpu->kvm, gfn);
2079
2080
set_pte:
2081
update_spte(sptep, spte);
2082
/*
2083
* If we overwrite a writable spte with a read-only one we
2084
* should flush remote TLBs. Otherwise rmap_write_protect
2085
* will find a read-only spte, even though the writable spte
2086
* might be cached on a CPU's TLB.
2087
*/
2088
if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2089
kvm_flush_remote_tlbs(vcpu->kvm);
2090
done:
2091
return ret;
2092
}
2093
2094
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2095
unsigned pt_access, unsigned pte_access,
2096
int user_fault, int write_fault, int dirty,
2097
int *ptwrite, int level, gfn_t gfn,
2098
pfn_t pfn, bool speculative,
2099
bool host_writable)
2100
{
2101
int was_rmapped = 0;
2102
int rmap_count;
2103
2104
pgprintk("%s: spte %llx access %x write_fault %d"
2105
" user_fault %d gfn %llx\n",
2106
__func__, *sptep, pt_access,
2107
write_fault, user_fault, gfn);
2108
2109
if (is_rmap_spte(*sptep)) {
2110
/*
2111
* If we overwrite a PTE page pointer with a 2MB PMD, unlink
2112
* the parent of the now unreachable PTE.
2113
*/
2114
if (level > PT_PAGE_TABLE_LEVEL &&
2115
!is_large_pte(*sptep)) {
2116
struct kvm_mmu_page *child;
2117
u64 pte = *sptep;
2118
2119
child = page_header(pte & PT64_BASE_ADDR_MASK);
2120
mmu_page_remove_parent_pte(child, sptep);
2121
__set_spte(sptep, shadow_trap_nonpresent_pte);
2122
kvm_flush_remote_tlbs(vcpu->kvm);
2123
} else if (pfn != spte_to_pfn(*sptep)) {
2124
pgprintk("hfn old %llx new %llx\n",
2125
spte_to_pfn(*sptep), pfn);
2126
drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2127
kvm_flush_remote_tlbs(vcpu->kvm);
2128
} else
2129
was_rmapped = 1;
2130
}
2131
2132
if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2133
dirty, level, gfn, pfn, speculative, true,
2134
host_writable)) {
2135
if (write_fault)
2136
*ptwrite = 1;
2137
kvm_mmu_flush_tlb(vcpu);
2138
}
2139
2140
pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2141
pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2142
is_large_pte(*sptep)? "2MB" : "4kB",
2143
*sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2144
*sptep, sptep);
2145
if (!was_rmapped && is_large_pte(*sptep))
2146
++vcpu->kvm->stat.lpages;
2147
2148
page_header_update_slot(vcpu->kvm, sptep, gfn);
2149
if (!was_rmapped) {
2150
rmap_count = rmap_add(vcpu, sptep, gfn);
2151
if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2152
rmap_recycle(vcpu, sptep, gfn);
2153
}
2154
kvm_release_pfn_clean(pfn);
2155
if (speculative) {
2156
vcpu->arch.last_pte_updated = sptep;
2157
vcpu->arch.last_pte_gfn = gfn;
2158
}
2159
}
2160
2161
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2162
{
2163
}
2164
2165
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2166
bool no_dirty_log)
2167
{
2168
struct kvm_memory_slot *slot;
2169
unsigned long hva;
2170
2171
slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2172
if (!slot) {
2173
get_page(bad_page);
2174
return page_to_pfn(bad_page);
2175
}
2176
2177
hva = gfn_to_hva_memslot(slot, gfn);
2178
2179
return hva_to_pfn_atomic(vcpu->kvm, hva);
2180
}
2181
2182
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2183
struct kvm_mmu_page *sp,
2184
u64 *start, u64 *end)
2185
{
2186
struct page *pages[PTE_PREFETCH_NUM];
2187
unsigned access = sp->role.access;
2188
int i, ret;
2189
gfn_t gfn;
2190
2191
gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2192
if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2193
return -1;
2194
2195
ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2196
if (ret <= 0)
2197
return -1;
2198
2199
for (i = 0; i < ret; i++, gfn++, start++)
2200
mmu_set_spte(vcpu, start, ACC_ALL,
2201
access, 0, 0, 1, NULL,
2202
sp->role.level, gfn,
2203
page_to_pfn(pages[i]), true, true);
2204
2205
return 0;
2206
}
2207
2208
static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2209
struct kvm_mmu_page *sp, u64 *sptep)
2210
{
2211
u64 *spte, *start = NULL;
2212
int i;
2213
2214
WARN_ON(!sp->role.direct);
2215
2216
i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2217
spte = sp->spt + i;
2218
2219
for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2220
if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2221
if (!start)
2222
continue;
2223
if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2224
break;
2225
start = NULL;
2226
} else if (!start)
2227
start = spte;
2228
}
2229
}
2230
2231
static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2232
{
2233
struct kvm_mmu_page *sp;
2234
2235
/*
2236
* Since it's no accessed bit on EPT, it's no way to
2237
* distinguish between actually accessed translations
2238
* and prefetched, so disable pte prefetch if EPT is
2239
* enabled.
2240
*/
2241
if (!shadow_accessed_mask)
2242
return;
2243
2244
sp = page_header(__pa(sptep));
2245
if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2246
return;
2247
2248
__direct_pte_prefetch(vcpu, sp, sptep);
2249
}
2250
2251
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2252
int map_writable, int level, gfn_t gfn, pfn_t pfn,
2253
bool prefault)
2254
{
2255
struct kvm_shadow_walk_iterator iterator;
2256
struct kvm_mmu_page *sp;
2257
int pt_write = 0;
2258
gfn_t pseudo_gfn;
2259
2260
for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2261
if (iterator.level == level) {
2262
unsigned pte_access = ACC_ALL;
2263
2264
mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2265
0, write, 1, &pt_write,
2266
level, gfn, pfn, prefault, map_writable);
2267
direct_pte_prefetch(vcpu, iterator.sptep);
2268
++vcpu->stat.pf_fixed;
2269
break;
2270
}
2271
2272
if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2273
u64 base_addr = iterator.addr;
2274
2275
base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2276
pseudo_gfn = base_addr >> PAGE_SHIFT;
2277
sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2278
iterator.level - 1,
2279
1, ACC_ALL, iterator.sptep);
2280
if (!sp) {
2281
pgprintk("nonpaging_map: ENOMEM\n");
2282
kvm_release_pfn_clean(pfn);
2283
return -ENOMEM;
2284
}
2285
2286
__set_spte(iterator.sptep,
2287
__pa(sp->spt)
2288
| PT_PRESENT_MASK | PT_WRITABLE_MASK
2289
| shadow_user_mask | shadow_x_mask
2290
| shadow_accessed_mask);
2291
}
2292
}
2293
return pt_write;
2294
}
2295
2296
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2297
{
2298
siginfo_t info;
2299
2300
info.si_signo = SIGBUS;
2301
info.si_errno = 0;
2302
info.si_code = BUS_MCEERR_AR;
2303
info.si_addr = (void __user *)address;
2304
info.si_addr_lsb = PAGE_SHIFT;
2305
2306
send_sig_info(SIGBUS, &info, tsk);
2307
}
2308
2309
static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2310
{
2311
kvm_release_pfn_clean(pfn);
2312
if (is_hwpoison_pfn(pfn)) {
2313
kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2314
return 0;
2315
} else if (is_fault_pfn(pfn))
2316
return -EFAULT;
2317
2318
return 1;
2319
}
2320
2321
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2322
gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2323
{
2324
pfn_t pfn = *pfnp;
2325
gfn_t gfn = *gfnp;
2326
int level = *levelp;
2327
2328
/*
2329
* Check if it's a transparent hugepage. If this would be an
2330
* hugetlbfs page, level wouldn't be set to
2331
* PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2332
* here.
2333
*/
2334
if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2335
level == PT_PAGE_TABLE_LEVEL &&
2336
PageTransCompound(pfn_to_page(pfn)) &&
2337
!has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2338
unsigned long mask;
2339
/*
2340
* mmu_notifier_retry was successful and we hold the
2341
* mmu_lock here, so the pmd can't become splitting
2342
* from under us, and in turn
2343
* __split_huge_page_refcount() can't run from under
2344
* us and we can safely transfer the refcount from
2345
* PG_tail to PG_head as we switch the pfn to tail to
2346
* head.
2347
*/
2348
*levelp = level = PT_DIRECTORY_LEVEL;
2349
mask = KVM_PAGES_PER_HPAGE(level) - 1;
2350
VM_BUG_ON((gfn & mask) != (pfn & mask));
2351
if (pfn & mask) {
2352
gfn &= ~mask;
2353
*gfnp = gfn;
2354
kvm_release_pfn_clean(pfn);
2355
pfn &= ~mask;
2356
if (!get_page_unless_zero(pfn_to_page(pfn)))
2357
BUG();
2358
*pfnp = pfn;
2359
}
2360
}
2361
}
2362
2363
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2364
gva_t gva, pfn_t *pfn, bool write, bool *writable);
2365
2366
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2367
bool prefault)
2368
{
2369
int r;
2370
int level;
2371
int force_pt_level;
2372
pfn_t pfn;
2373
unsigned long mmu_seq;
2374
bool map_writable;
2375
2376
force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2377
if (likely(!force_pt_level)) {
2378
level = mapping_level(vcpu, gfn);
2379
/*
2380
* This path builds a PAE pagetable - so we can map
2381
* 2mb pages at maximum. Therefore check if the level
2382
* is larger than that.
2383
*/
2384
if (level > PT_DIRECTORY_LEVEL)
2385
level = PT_DIRECTORY_LEVEL;
2386
2387
gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2388
} else
2389
level = PT_PAGE_TABLE_LEVEL;
2390
2391
mmu_seq = vcpu->kvm->mmu_notifier_seq;
2392
smp_rmb();
2393
2394
if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2395
return 0;
2396
2397
/* mmio */
2398
if (is_error_pfn(pfn))
2399
return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2400
2401
spin_lock(&vcpu->kvm->mmu_lock);
2402
if (mmu_notifier_retry(vcpu, mmu_seq))
2403
goto out_unlock;
2404
kvm_mmu_free_some_pages(vcpu);
2405
if (likely(!force_pt_level))
2406
transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2407
r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2408
prefault);
2409
spin_unlock(&vcpu->kvm->mmu_lock);
2410
2411
2412
return r;
2413
2414
out_unlock:
2415
spin_unlock(&vcpu->kvm->mmu_lock);
2416
kvm_release_pfn_clean(pfn);
2417
return 0;
2418
}
2419
2420
2421
static void mmu_free_roots(struct kvm_vcpu *vcpu)
2422
{
2423
int i;
2424
struct kvm_mmu_page *sp;
2425
LIST_HEAD(invalid_list);
2426
2427
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2428
return;
2429
spin_lock(&vcpu->kvm->mmu_lock);
2430
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2431
(vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2432
vcpu->arch.mmu.direct_map)) {
2433
hpa_t root = vcpu->arch.mmu.root_hpa;
2434
2435
sp = page_header(root);
2436
--sp->root_count;
2437
if (!sp->root_count && sp->role.invalid) {
2438
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2439
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2440
}
2441
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2442
spin_unlock(&vcpu->kvm->mmu_lock);
2443
return;
2444
}
2445
for (i = 0; i < 4; ++i) {
2446
hpa_t root = vcpu->arch.mmu.pae_root[i];
2447
2448
if (root) {
2449
root &= PT64_BASE_ADDR_MASK;
2450
sp = page_header(root);
2451
--sp->root_count;
2452
if (!sp->root_count && sp->role.invalid)
2453
kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2454
&invalid_list);
2455
}
2456
vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2457
}
2458
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2459
spin_unlock(&vcpu->kvm->mmu_lock);
2460
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2461
}
2462
2463
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2464
{
2465
int ret = 0;
2466
2467
if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2468
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2469
ret = 1;
2470
}
2471
2472
return ret;
2473
}
2474
2475
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2476
{
2477
struct kvm_mmu_page *sp;
2478
unsigned i;
2479
2480
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2481
spin_lock(&vcpu->kvm->mmu_lock);
2482
kvm_mmu_free_some_pages(vcpu);
2483
sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2484
1, ACC_ALL, NULL);
2485
++sp->root_count;
2486
spin_unlock(&vcpu->kvm->mmu_lock);
2487
vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2488
} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2489
for (i = 0; i < 4; ++i) {
2490
hpa_t root = vcpu->arch.mmu.pae_root[i];
2491
2492
ASSERT(!VALID_PAGE(root));
2493
spin_lock(&vcpu->kvm->mmu_lock);
2494
kvm_mmu_free_some_pages(vcpu);
2495
sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2496
i << 30,
2497
PT32_ROOT_LEVEL, 1, ACC_ALL,
2498
NULL);
2499
root = __pa(sp->spt);
2500
++sp->root_count;
2501
spin_unlock(&vcpu->kvm->mmu_lock);
2502
vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2503
}
2504
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2505
} else
2506
BUG();
2507
2508
return 0;
2509
}
2510
2511
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2512
{
2513
struct kvm_mmu_page *sp;
2514
u64 pdptr, pm_mask;
2515
gfn_t root_gfn;
2516
int i;
2517
2518
root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2519
2520
if (mmu_check_root(vcpu, root_gfn))
2521
return 1;
2522
2523
/*
2524
* Do we shadow a long mode page table? If so we need to
2525
* write-protect the guests page table root.
2526
*/
2527
if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2528
hpa_t root = vcpu->arch.mmu.root_hpa;
2529
2530
ASSERT(!VALID_PAGE(root));
2531
2532
spin_lock(&vcpu->kvm->mmu_lock);
2533
kvm_mmu_free_some_pages(vcpu);
2534
sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2535
0, ACC_ALL, NULL);
2536
root = __pa(sp->spt);
2537
++sp->root_count;
2538
spin_unlock(&vcpu->kvm->mmu_lock);
2539
vcpu->arch.mmu.root_hpa = root;
2540
return 0;
2541
}
2542
2543
/*
2544
* We shadow a 32 bit page table. This may be a legacy 2-level
2545
* or a PAE 3-level page table. In either case we need to be aware that
2546
* the shadow page table may be a PAE or a long mode page table.
2547
*/
2548
pm_mask = PT_PRESENT_MASK;
2549
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2550
pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2551
2552
for (i = 0; i < 4; ++i) {
2553
hpa_t root = vcpu->arch.mmu.pae_root[i];
2554
2555
ASSERT(!VALID_PAGE(root));
2556
if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2557
pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2558
if (!is_present_gpte(pdptr)) {
2559
vcpu->arch.mmu.pae_root[i] = 0;
2560
continue;
2561
}
2562
root_gfn = pdptr >> PAGE_SHIFT;
2563
if (mmu_check_root(vcpu, root_gfn))
2564
return 1;
2565
}
2566
spin_lock(&vcpu->kvm->mmu_lock);
2567
kvm_mmu_free_some_pages(vcpu);
2568
sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2569
PT32_ROOT_LEVEL, 0,
2570
ACC_ALL, NULL);
2571
root = __pa(sp->spt);
2572
++sp->root_count;
2573
spin_unlock(&vcpu->kvm->mmu_lock);
2574
2575
vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2576
}
2577
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2578
2579
/*
2580
* If we shadow a 32 bit page table with a long mode page
2581
* table we enter this path.
2582
*/
2583
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2584
if (vcpu->arch.mmu.lm_root == NULL) {
2585
/*
2586
* The additional page necessary for this is only
2587
* allocated on demand.
2588
*/
2589
2590
u64 *lm_root;
2591
2592
lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2593
if (lm_root == NULL)
2594
return 1;
2595
2596
lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2597
2598
vcpu->arch.mmu.lm_root = lm_root;
2599
}
2600
2601
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2602
}
2603
2604
return 0;
2605
}
2606
2607
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2608
{
2609
if (vcpu->arch.mmu.direct_map)
2610
return mmu_alloc_direct_roots(vcpu);
2611
else
2612
return mmu_alloc_shadow_roots(vcpu);
2613
}
2614
2615
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2616
{
2617
int i;
2618
struct kvm_mmu_page *sp;
2619
2620
if (vcpu->arch.mmu.direct_map)
2621
return;
2622
2623
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2624
return;
2625
2626
trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2627
if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2628
hpa_t root = vcpu->arch.mmu.root_hpa;
2629
sp = page_header(root);
2630
mmu_sync_children(vcpu, sp);
2631
trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2632
return;
2633
}
2634
for (i = 0; i < 4; ++i) {
2635
hpa_t root = vcpu->arch.mmu.pae_root[i];
2636
2637
if (root && VALID_PAGE(root)) {
2638
root &= PT64_BASE_ADDR_MASK;
2639
sp = page_header(root);
2640
mmu_sync_children(vcpu, sp);
2641
}
2642
}
2643
trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2644
}
2645
2646
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2647
{
2648
spin_lock(&vcpu->kvm->mmu_lock);
2649
mmu_sync_roots(vcpu);
2650
spin_unlock(&vcpu->kvm->mmu_lock);
2651
}
2652
2653
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2654
u32 access, struct x86_exception *exception)
2655
{
2656
if (exception)
2657
exception->error_code = 0;
2658
return vaddr;
2659
}
2660
2661
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2662
u32 access,
2663
struct x86_exception *exception)
2664
{
2665
if (exception)
2666
exception->error_code = 0;
2667
return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2668
}
2669
2670
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2671
u32 error_code, bool prefault)
2672
{
2673
gfn_t gfn;
2674
int r;
2675
2676
pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2677
r = mmu_topup_memory_caches(vcpu);
2678
if (r)
2679
return r;
2680
2681
ASSERT(vcpu);
2682
ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2683
2684
gfn = gva >> PAGE_SHIFT;
2685
2686
return nonpaging_map(vcpu, gva & PAGE_MASK,
2687
error_code & PFERR_WRITE_MASK, gfn, prefault);
2688
}
2689
2690
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2691
{
2692
struct kvm_arch_async_pf arch;
2693
2694
arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2695
arch.gfn = gfn;
2696
arch.direct_map = vcpu->arch.mmu.direct_map;
2697
arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2698
2699
return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2700
}
2701
2702
static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2703
{
2704
if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2705
kvm_event_needs_reinjection(vcpu)))
2706
return false;
2707
2708
return kvm_x86_ops->interrupt_allowed(vcpu);
2709
}
2710
2711
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2712
gva_t gva, pfn_t *pfn, bool write, bool *writable)
2713
{
2714
bool async;
2715
2716
*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2717
2718
if (!async)
2719
return false; /* *pfn has correct page already */
2720
2721
put_page(pfn_to_page(*pfn));
2722
2723
if (!prefault && can_do_async_pf(vcpu)) {
2724
trace_kvm_try_async_get_page(gva, gfn);
2725
if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2726
trace_kvm_async_pf_doublefault(gva, gfn);
2727
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2728
return true;
2729
} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2730
return true;
2731
}
2732
2733
*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2734
2735
return false;
2736
}
2737
2738
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2739
bool prefault)
2740
{
2741
pfn_t pfn;
2742
int r;
2743
int level;
2744
int force_pt_level;
2745
gfn_t gfn = gpa >> PAGE_SHIFT;
2746
unsigned long mmu_seq;
2747
int write = error_code & PFERR_WRITE_MASK;
2748
bool map_writable;
2749
2750
ASSERT(vcpu);
2751
ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2752
2753
r = mmu_topup_memory_caches(vcpu);
2754
if (r)
2755
return r;
2756
2757
force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2758
if (likely(!force_pt_level)) {
2759
level = mapping_level(vcpu, gfn);
2760
gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2761
} else
2762
level = PT_PAGE_TABLE_LEVEL;
2763
2764
mmu_seq = vcpu->kvm->mmu_notifier_seq;
2765
smp_rmb();
2766
2767
if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2768
return 0;
2769
2770
/* mmio */
2771
if (is_error_pfn(pfn))
2772
return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2773
spin_lock(&vcpu->kvm->mmu_lock);
2774
if (mmu_notifier_retry(vcpu, mmu_seq))
2775
goto out_unlock;
2776
kvm_mmu_free_some_pages(vcpu);
2777
if (likely(!force_pt_level))
2778
transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2779
r = __direct_map(vcpu, gpa, write, map_writable,
2780
level, gfn, pfn, prefault);
2781
spin_unlock(&vcpu->kvm->mmu_lock);
2782
2783
return r;
2784
2785
out_unlock:
2786
spin_unlock(&vcpu->kvm->mmu_lock);
2787
kvm_release_pfn_clean(pfn);
2788
return 0;
2789
}
2790
2791
static void nonpaging_free(struct kvm_vcpu *vcpu)
2792
{
2793
mmu_free_roots(vcpu);
2794
}
2795
2796
static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2797
struct kvm_mmu *context)
2798
{
2799
context->new_cr3 = nonpaging_new_cr3;
2800
context->page_fault = nonpaging_page_fault;
2801
context->gva_to_gpa = nonpaging_gva_to_gpa;
2802
context->free = nonpaging_free;
2803
context->prefetch_page = nonpaging_prefetch_page;
2804
context->sync_page = nonpaging_sync_page;
2805
context->invlpg = nonpaging_invlpg;
2806
context->update_pte = nonpaging_update_pte;
2807
context->root_level = 0;
2808
context->shadow_root_level = PT32E_ROOT_LEVEL;
2809
context->root_hpa = INVALID_PAGE;
2810
context->direct_map = true;
2811
context->nx = false;
2812
return 0;
2813
}
2814
2815
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2816
{
2817
++vcpu->stat.tlb_flush;
2818
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2819
}
2820
2821
static void paging_new_cr3(struct kvm_vcpu *vcpu)
2822
{
2823
pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2824
mmu_free_roots(vcpu);
2825
}
2826
2827
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2828
{
2829
return kvm_read_cr3(vcpu);
2830
}
2831
2832
static void inject_page_fault(struct kvm_vcpu *vcpu,
2833
struct x86_exception *fault)
2834
{
2835
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2836
}
2837
2838
static void paging_free(struct kvm_vcpu *vcpu)
2839
{
2840
nonpaging_free(vcpu);
2841
}
2842
2843
static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2844
{
2845
int bit7;
2846
2847
bit7 = (gpte >> 7) & 1;
2848
return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2849
}
2850
2851
#define PTTYPE 64
2852
#include "paging_tmpl.h"
2853
#undef PTTYPE
2854
2855
#define PTTYPE 32
2856
#include "paging_tmpl.h"
2857
#undef PTTYPE
2858
2859
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2860
struct kvm_mmu *context,
2861
int level)
2862
{
2863
int maxphyaddr = cpuid_maxphyaddr(vcpu);
2864
u64 exb_bit_rsvd = 0;
2865
2866
if (!context->nx)
2867
exb_bit_rsvd = rsvd_bits(63, 63);
2868
switch (level) {
2869
case PT32_ROOT_LEVEL:
2870
/* no rsvd bits for 2 level 4K page table entries */
2871
context->rsvd_bits_mask[0][1] = 0;
2872
context->rsvd_bits_mask[0][0] = 0;
2873
context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2874
2875
if (!is_pse(vcpu)) {
2876
context->rsvd_bits_mask[1][1] = 0;
2877
break;
2878
}
2879
2880
if (is_cpuid_PSE36())
2881
/* 36bits PSE 4MB page */
2882
context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2883
else
2884
/* 32 bits PSE 4MB page */
2885
context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2886
break;
2887
case PT32E_ROOT_LEVEL:
2888
context->rsvd_bits_mask[0][2] =
2889
rsvd_bits(maxphyaddr, 63) |
2890
rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2891
context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2892
rsvd_bits(maxphyaddr, 62); /* PDE */
2893
context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2894
rsvd_bits(maxphyaddr, 62); /* PTE */
2895
context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2896
rsvd_bits(maxphyaddr, 62) |
2897
rsvd_bits(13, 20); /* large page */
2898
context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2899
break;
2900
case PT64_ROOT_LEVEL:
2901
context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2902
rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2903
context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2904
rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2905
context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2906
rsvd_bits(maxphyaddr, 51);
2907
context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2908
rsvd_bits(maxphyaddr, 51);
2909
context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2910
context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2911
rsvd_bits(maxphyaddr, 51) |
2912
rsvd_bits(13, 29);
2913
context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2914
rsvd_bits(maxphyaddr, 51) |
2915
rsvd_bits(13, 20); /* large page */
2916
context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2917
break;
2918
}
2919
}
2920
2921
static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2922
struct kvm_mmu *context,
2923
int level)
2924
{
2925
context->nx = is_nx(vcpu);
2926
2927
reset_rsvds_bits_mask(vcpu, context, level);
2928
2929
ASSERT(is_pae(vcpu));
2930
context->new_cr3 = paging_new_cr3;
2931
context->page_fault = paging64_page_fault;
2932
context->gva_to_gpa = paging64_gva_to_gpa;
2933
context->prefetch_page = paging64_prefetch_page;
2934
context->sync_page = paging64_sync_page;
2935
context->invlpg = paging64_invlpg;
2936
context->update_pte = paging64_update_pte;
2937
context->free = paging_free;
2938
context->root_level = level;
2939
context->shadow_root_level = level;
2940
context->root_hpa = INVALID_PAGE;
2941
context->direct_map = false;
2942
return 0;
2943
}
2944
2945
static int paging64_init_context(struct kvm_vcpu *vcpu,
2946
struct kvm_mmu *context)
2947
{
2948
return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2949
}
2950
2951
static int paging32_init_context(struct kvm_vcpu *vcpu,
2952
struct kvm_mmu *context)
2953
{
2954
context->nx = false;
2955
2956
reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2957
2958
context->new_cr3 = paging_new_cr3;
2959
context->page_fault = paging32_page_fault;
2960
context->gva_to_gpa = paging32_gva_to_gpa;
2961
context->free = paging_free;
2962
context->prefetch_page = paging32_prefetch_page;
2963
context->sync_page = paging32_sync_page;
2964
context->invlpg = paging32_invlpg;
2965
context->update_pte = paging32_update_pte;
2966
context->root_level = PT32_ROOT_LEVEL;
2967
context->shadow_root_level = PT32E_ROOT_LEVEL;
2968
context->root_hpa = INVALID_PAGE;
2969
context->direct_map = false;
2970
return 0;
2971
}
2972
2973
static int paging32E_init_context(struct kvm_vcpu *vcpu,
2974
struct kvm_mmu *context)
2975
{
2976
return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2977
}
2978
2979
static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2980
{
2981
struct kvm_mmu *context = vcpu->arch.walk_mmu;
2982
2983
context->base_role.word = 0;
2984
context->new_cr3 = nonpaging_new_cr3;
2985
context->page_fault = tdp_page_fault;
2986
context->free = nonpaging_free;
2987
context->prefetch_page = nonpaging_prefetch_page;
2988
context->sync_page = nonpaging_sync_page;
2989
context->invlpg = nonpaging_invlpg;
2990
context->update_pte = nonpaging_update_pte;
2991
context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2992
context->root_hpa = INVALID_PAGE;
2993
context->direct_map = true;
2994
context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2995
context->get_cr3 = get_cr3;
2996
context->inject_page_fault = kvm_inject_page_fault;
2997
context->nx = is_nx(vcpu);
2998
2999
if (!is_paging(vcpu)) {
3000
context->nx = false;
3001
context->gva_to_gpa = nonpaging_gva_to_gpa;
3002
context->root_level = 0;
3003
} else if (is_long_mode(vcpu)) {
3004
context->nx = is_nx(vcpu);
3005
reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3006
context->gva_to_gpa = paging64_gva_to_gpa;
3007
context->root_level = PT64_ROOT_LEVEL;
3008
} else if (is_pae(vcpu)) {
3009
context->nx = is_nx(vcpu);
3010
reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3011
context->gva_to_gpa = paging64_gva_to_gpa;
3012
context->root_level = PT32E_ROOT_LEVEL;
3013
} else {
3014
context->nx = false;
3015
reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3016
context->gva_to_gpa = paging32_gva_to_gpa;
3017
context->root_level = PT32_ROOT_LEVEL;
3018
}
3019
3020
return 0;
3021
}
3022
3023
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3024
{
3025
int r;
3026
ASSERT(vcpu);
3027
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3028
3029
if (!is_paging(vcpu))
3030
r = nonpaging_init_context(vcpu, context);
3031
else if (is_long_mode(vcpu))
3032
r = paging64_init_context(vcpu, context);
3033
else if (is_pae(vcpu))
3034
r = paging32E_init_context(vcpu, context);
3035
else
3036
r = paging32_init_context(vcpu, context);
3037
3038
vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3039
vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3040
3041
return r;
3042
}
3043
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3044
3045
static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3046
{
3047
int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3048
3049
vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3050
vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3051
vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3052
3053
return r;
3054
}
3055
3056
static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3057
{
3058
struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3059
3060
g_context->get_cr3 = get_cr3;
3061
g_context->inject_page_fault = kvm_inject_page_fault;
3062
3063
/*
3064
* Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3065
* translation of l2_gpa to l1_gpa addresses is done using the
3066
* arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3067
* functions between mmu and nested_mmu are swapped.
3068
*/
3069
if (!is_paging(vcpu)) {
3070
g_context->nx = false;
3071
g_context->root_level = 0;
3072
g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3073
} else if (is_long_mode(vcpu)) {
3074
g_context->nx = is_nx(vcpu);
3075
reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3076
g_context->root_level = PT64_ROOT_LEVEL;
3077
g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3078
} else if (is_pae(vcpu)) {
3079
g_context->nx = is_nx(vcpu);
3080
reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3081
g_context->root_level = PT32E_ROOT_LEVEL;
3082
g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3083
} else {
3084
g_context->nx = false;
3085
reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3086
g_context->root_level = PT32_ROOT_LEVEL;
3087
g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3088
}
3089
3090
return 0;
3091
}
3092
3093
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3094
{
3095
if (mmu_is_nested(vcpu))
3096
return init_kvm_nested_mmu(vcpu);
3097
else if (tdp_enabled)
3098
return init_kvm_tdp_mmu(vcpu);
3099
else
3100
return init_kvm_softmmu(vcpu);
3101
}
3102
3103
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3104
{
3105
ASSERT(vcpu);
3106
if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3107
/* mmu.free() should set root_hpa = INVALID_PAGE */
3108
vcpu->arch.mmu.free(vcpu);
3109
}
3110
3111
int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3112
{
3113
destroy_kvm_mmu(vcpu);
3114
return init_kvm_mmu(vcpu);
3115
}
3116
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3117
3118
int kvm_mmu_load(struct kvm_vcpu *vcpu)
3119
{
3120
int r;
3121
3122
r = mmu_topup_memory_caches(vcpu);
3123
if (r)
3124
goto out;
3125
r = mmu_alloc_roots(vcpu);
3126
spin_lock(&vcpu->kvm->mmu_lock);
3127
mmu_sync_roots(vcpu);
3128
spin_unlock(&vcpu->kvm->mmu_lock);
3129
if (r)
3130
goto out;
3131
/* set_cr3() should ensure TLB has been flushed */
3132
vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3133
out:
3134
return r;
3135
}
3136
EXPORT_SYMBOL_GPL(kvm_mmu_load);
3137
3138
void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3139
{
3140
mmu_free_roots(vcpu);
3141
}
3142
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3143
3144
static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
3145
struct kvm_mmu_page *sp,
3146
u64 *spte)
3147
{
3148
u64 pte;
3149
struct kvm_mmu_page *child;
3150
3151
pte = *spte;
3152
if (is_shadow_present_pte(pte)) {
3153
if (is_last_spte(pte, sp->role.level))
3154
drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
3155
else {
3156
child = page_header(pte & PT64_BASE_ADDR_MASK);
3157
mmu_page_remove_parent_pte(child, spte);
3158
}
3159
}
3160
__set_spte(spte, shadow_trap_nonpresent_pte);
3161
if (is_large_pte(pte))
3162
--vcpu->kvm->stat.lpages;
3163
}
3164
3165
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3166
struct kvm_mmu_page *sp, u64 *spte,
3167
const void *new)
3168
{
3169
if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3170
++vcpu->kvm->stat.mmu_pde_zapped;
3171
return;
3172
}
3173
3174
++vcpu->kvm->stat.mmu_pte_updated;
3175
vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3176
}
3177
3178
static bool need_remote_flush(u64 old, u64 new)
3179
{
3180
if (!is_shadow_present_pte(old))
3181
return false;
3182
if (!is_shadow_present_pte(new))
3183
return true;
3184
if ((old ^ new) & PT64_BASE_ADDR_MASK)
3185
return true;
3186
old ^= PT64_NX_MASK;
3187
new ^= PT64_NX_MASK;
3188
return (old & ~new & PT64_PERM_MASK) != 0;
3189
}
3190
3191
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3192
bool remote_flush, bool local_flush)
3193
{
3194
if (zap_page)
3195
return;
3196
3197
if (remote_flush)
3198
kvm_flush_remote_tlbs(vcpu->kvm);
3199
else if (local_flush)
3200
kvm_mmu_flush_tlb(vcpu);
3201
}
3202
3203
static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3204
{
3205
u64 *spte = vcpu->arch.last_pte_updated;
3206
3207
return !!(spte && (*spte & shadow_accessed_mask));
3208
}
3209
3210
static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3211
{
3212
u64 *spte = vcpu->arch.last_pte_updated;
3213
3214
if (spte
3215
&& vcpu->arch.last_pte_gfn == gfn
3216
&& shadow_accessed_mask
3217
&& !(*spte & shadow_accessed_mask)
3218
&& is_shadow_present_pte(*spte))
3219
set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3220
}
3221
3222
void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3223
const u8 *new, int bytes,
3224
bool guest_initiated)
3225
{
3226
gfn_t gfn = gpa >> PAGE_SHIFT;
3227
union kvm_mmu_page_role mask = { .word = 0 };
3228
struct kvm_mmu_page *sp;
3229
struct hlist_node *node;
3230
LIST_HEAD(invalid_list);
3231
u64 entry, gentry, *spte;
3232
unsigned pte_size, page_offset, misaligned, quadrant, offset;
3233
int level, npte, invlpg_counter, r, flooded = 0;
3234
bool remote_flush, local_flush, zap_page;
3235
3236
zap_page = remote_flush = local_flush = false;
3237
offset = offset_in_page(gpa);
3238
3239
pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3240
3241
invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3242
3243
/*
3244
* Assume that the pte write on a page table of the same type
3245
* as the current vcpu paging mode since we update the sptes only
3246
* when they have the same mode.
3247
*/
3248
if ((is_pae(vcpu) && bytes == 4) || !new) {
3249
/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3250
if (is_pae(vcpu)) {
3251
gpa &= ~(gpa_t)7;
3252
bytes = 8;
3253
}
3254
r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3255
if (r)
3256
gentry = 0;
3257
new = (const u8 *)&gentry;
3258
}
3259
3260
switch (bytes) {
3261
case 4:
3262
gentry = *(const u32 *)new;
3263
break;
3264
case 8:
3265
gentry = *(const u64 *)new;
3266
break;
3267
default:
3268
gentry = 0;
3269
break;
3270
}
3271
3272
spin_lock(&vcpu->kvm->mmu_lock);
3273
if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3274
gentry = 0;
3275
kvm_mmu_free_some_pages(vcpu);
3276
++vcpu->kvm->stat.mmu_pte_write;
3277
trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3278
if (guest_initiated) {
3279
kvm_mmu_access_page(vcpu, gfn);
3280
if (gfn == vcpu->arch.last_pt_write_gfn
3281
&& !last_updated_pte_accessed(vcpu)) {
3282
++vcpu->arch.last_pt_write_count;
3283
if (vcpu->arch.last_pt_write_count >= 3)
3284
flooded = 1;
3285
} else {
3286
vcpu->arch.last_pt_write_gfn = gfn;
3287
vcpu->arch.last_pt_write_count = 1;
3288
vcpu->arch.last_pte_updated = NULL;
3289
}
3290
}
3291
3292
mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3293
for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3294
pte_size = sp->role.cr4_pae ? 8 : 4;
3295
misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3296
misaligned |= bytes < 4;
3297
if (misaligned || flooded) {
3298
/*
3299
* Misaligned accesses are too much trouble to fix
3300
* up; also, they usually indicate a page is not used
3301
* as a page table.
3302
*
3303
* If we're seeing too many writes to a page,
3304
* it may no longer be a page table, or we may be
3305
* forking, in which case it is better to unmap the
3306
* page.
3307
*/
3308
pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3309
gpa, bytes, sp->role.word);
3310
zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3311
&invalid_list);
3312
++vcpu->kvm->stat.mmu_flooded;
3313
continue;
3314
}
3315
page_offset = offset;
3316
level = sp->role.level;
3317
npte = 1;
3318
if (!sp->role.cr4_pae) {
3319
page_offset <<= 1; /* 32->64 */
3320
/*
3321
* A 32-bit pde maps 4MB while the shadow pdes map
3322
* only 2MB. So we need to double the offset again
3323
* and zap two pdes instead of one.
3324
*/
3325
if (level == PT32_ROOT_LEVEL) {
3326
page_offset &= ~7; /* kill rounding error */
3327
page_offset <<= 1;
3328
npte = 2;
3329
}
3330
quadrant = page_offset >> PAGE_SHIFT;
3331
page_offset &= ~PAGE_MASK;
3332
if (quadrant != sp->role.quadrant)
3333
continue;
3334
}
3335
local_flush = true;
3336
spte = &sp->spt[page_offset / sizeof(*spte)];
3337
while (npte--) {
3338
entry = *spte;
3339
mmu_pte_write_zap_pte(vcpu, sp, spte);
3340
if (gentry &&
3341
!((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3342
& mask.word))
3343
mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3344
if (!remote_flush && need_remote_flush(entry, *spte))
3345
remote_flush = true;
3346
++spte;
3347
}
3348
}
3349
mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3350
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3351
trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3352
spin_unlock(&vcpu->kvm->mmu_lock);
3353
}
3354
3355
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3356
{
3357
gpa_t gpa;
3358
int r;
3359
3360
if (vcpu->arch.mmu.direct_map)
3361
return 0;
3362
3363
gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3364
3365
spin_lock(&vcpu->kvm->mmu_lock);
3366
r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3367
spin_unlock(&vcpu->kvm->mmu_lock);
3368
return r;
3369
}
3370
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3371
3372
void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3373
{
3374
LIST_HEAD(invalid_list);
3375
3376
while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3377
!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3378
struct kvm_mmu_page *sp;
3379
3380
sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3381
struct kvm_mmu_page, link);
3382
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3383
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3384
++vcpu->kvm->stat.mmu_recycled;
3385
}
3386
}
3387
3388
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3389
void *insn, int insn_len)
3390
{
3391
int r;
3392
enum emulation_result er;
3393
3394
r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3395
if (r < 0)
3396
goto out;
3397
3398
if (!r) {
3399
r = 1;
3400
goto out;
3401
}
3402
3403
r = mmu_topup_memory_caches(vcpu);
3404
if (r)
3405
goto out;
3406
3407
er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3408
3409
switch (er) {
3410
case EMULATE_DONE:
3411
return 1;
3412
case EMULATE_DO_MMIO:
3413
++vcpu->stat.mmio_exits;
3414
/* fall through */
3415
case EMULATE_FAIL:
3416
return 0;
3417
default:
3418
BUG();
3419
}
3420
out:
3421
return r;
3422
}
3423
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3424
3425
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3426
{
3427
vcpu->arch.mmu.invlpg(vcpu, gva);
3428
kvm_mmu_flush_tlb(vcpu);
3429
++vcpu->stat.invlpg;
3430
}
3431
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3432
3433
void kvm_enable_tdp(void)
3434
{
3435
tdp_enabled = true;
3436
}
3437
EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3438
3439
void kvm_disable_tdp(void)
3440
{
3441
tdp_enabled = false;
3442
}
3443
EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3444
3445
static void free_mmu_pages(struct kvm_vcpu *vcpu)
3446
{
3447
free_page((unsigned long)vcpu->arch.mmu.pae_root);
3448
if (vcpu->arch.mmu.lm_root != NULL)
3449
free_page((unsigned long)vcpu->arch.mmu.lm_root);
3450
}
3451
3452
static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3453
{
3454
struct page *page;
3455
int i;
3456
3457
ASSERT(vcpu);
3458
3459
/*
3460
* When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3461
* Therefore we need to allocate shadow page tables in the first
3462
* 4GB of memory, which happens to fit the DMA32 zone.
3463
*/
3464
page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3465
if (!page)
3466
return -ENOMEM;
3467
3468
vcpu->arch.mmu.pae_root = page_address(page);
3469
for (i = 0; i < 4; ++i)
3470
vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3471
3472
return 0;
3473
}
3474
3475
int kvm_mmu_create(struct kvm_vcpu *vcpu)
3476
{
3477
ASSERT(vcpu);
3478
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3479
3480
return alloc_mmu_pages(vcpu);
3481
}
3482
3483
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3484
{
3485
ASSERT(vcpu);
3486
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3487
3488
return init_kvm_mmu(vcpu);
3489
}
3490
3491
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3492
{
3493
struct kvm_mmu_page *sp;
3494
3495
list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3496
int i;
3497
u64 *pt;
3498
3499
if (!test_bit(slot, sp->slot_bitmap))
3500
continue;
3501
3502
pt = sp->spt;
3503
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3504
if (!is_shadow_present_pte(pt[i]) ||
3505
!is_last_spte(pt[i], sp->role.level))
3506
continue;
3507
3508
if (is_large_pte(pt[i])) {
3509
drop_spte(kvm, &pt[i],
3510
shadow_trap_nonpresent_pte);
3511
--kvm->stat.lpages;
3512
continue;
3513
}
3514
3515
/* avoid RMW */
3516
if (is_writable_pte(pt[i]))
3517
update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3518
}
3519
}
3520
kvm_flush_remote_tlbs(kvm);
3521
}
3522
3523
void kvm_mmu_zap_all(struct kvm *kvm)
3524
{
3525
struct kvm_mmu_page *sp, *node;
3526
LIST_HEAD(invalid_list);
3527
3528
spin_lock(&kvm->mmu_lock);
3529
restart:
3530
list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3531
if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3532
goto restart;
3533
3534
kvm_mmu_commit_zap_page(kvm, &invalid_list);
3535
spin_unlock(&kvm->mmu_lock);
3536
}
3537
3538
static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3539
struct list_head *invalid_list)
3540
{
3541
struct kvm_mmu_page *page;
3542
3543
page = container_of(kvm->arch.active_mmu_pages.prev,
3544
struct kvm_mmu_page, link);
3545
return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3546
}
3547
3548
static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3549
{
3550
struct kvm *kvm;
3551
struct kvm *kvm_freed = NULL;
3552
int nr_to_scan = sc->nr_to_scan;
3553
3554
if (nr_to_scan == 0)
3555
goto out;
3556
3557
raw_spin_lock(&kvm_lock);
3558
3559
list_for_each_entry(kvm, &vm_list, vm_list) {
3560
int idx, freed_pages;
3561
LIST_HEAD(invalid_list);
3562
3563
idx = srcu_read_lock(&kvm->srcu);
3564
spin_lock(&kvm->mmu_lock);
3565
if (!kvm_freed && nr_to_scan > 0 &&
3566
kvm->arch.n_used_mmu_pages > 0) {
3567
freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3568
&invalid_list);
3569
kvm_freed = kvm;
3570
}
3571
nr_to_scan--;
3572
3573
kvm_mmu_commit_zap_page(kvm, &invalid_list);
3574
spin_unlock(&kvm->mmu_lock);
3575
srcu_read_unlock(&kvm->srcu, idx);
3576
}
3577
if (kvm_freed)
3578
list_move_tail(&kvm_freed->vm_list, &vm_list);
3579
3580
raw_spin_unlock(&kvm_lock);
3581
3582
out:
3583
return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3584
}
3585
3586
static struct shrinker mmu_shrinker = {
3587
.shrink = mmu_shrink,
3588
.seeks = DEFAULT_SEEKS * 10,
3589
};
3590
3591
static void mmu_destroy_caches(void)
3592
{
3593
if (pte_chain_cache)
3594
kmem_cache_destroy(pte_chain_cache);
3595
if (rmap_desc_cache)
3596
kmem_cache_destroy(rmap_desc_cache);
3597
if (mmu_page_header_cache)
3598
kmem_cache_destroy(mmu_page_header_cache);
3599
}
3600
3601
int kvm_mmu_module_init(void)
3602
{
3603
pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3604
sizeof(struct kvm_pte_chain),
3605
0, 0, NULL);
3606
if (!pte_chain_cache)
3607
goto nomem;
3608
rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3609
sizeof(struct kvm_rmap_desc),
3610
0, 0, NULL);
3611
if (!rmap_desc_cache)
3612
goto nomem;
3613
3614
mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3615
sizeof(struct kvm_mmu_page),
3616
0, 0, NULL);
3617
if (!mmu_page_header_cache)
3618
goto nomem;
3619
3620
if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3621
goto nomem;
3622
3623
register_shrinker(&mmu_shrinker);
3624
3625
return 0;
3626
3627
nomem:
3628
mmu_destroy_caches();
3629
return -ENOMEM;
3630
}
3631
3632
/*
3633
* Caculate mmu pages needed for kvm.
3634
*/
3635
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3636
{
3637
int i;
3638
unsigned int nr_mmu_pages;
3639
unsigned int nr_pages = 0;
3640
struct kvm_memslots *slots;
3641
3642
slots = kvm_memslots(kvm);
3643
3644
for (i = 0; i < slots->nmemslots; i++)
3645
nr_pages += slots->memslots[i].npages;
3646
3647
nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3648
nr_mmu_pages = max(nr_mmu_pages,
3649
(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3650
3651
return nr_mmu_pages;
3652
}
3653
3654
static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3655
unsigned len)
3656
{
3657
if (len > buffer->len)
3658
return NULL;
3659
return buffer->ptr;
3660
}
3661
3662
static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3663
unsigned len)
3664
{
3665
void *ret;
3666
3667
ret = pv_mmu_peek_buffer(buffer, len);
3668
if (!ret)
3669
return ret;
3670
buffer->ptr += len;
3671
buffer->len -= len;
3672
buffer->processed += len;
3673
return ret;
3674
}
3675
3676
static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3677
gpa_t addr, gpa_t value)
3678
{
3679
int bytes = 8;
3680
int r;
3681
3682
if (!is_long_mode(vcpu) && !is_pae(vcpu))
3683
bytes = 4;
3684
3685
r = mmu_topup_memory_caches(vcpu);
3686
if (r)
3687
return r;
3688
3689
if (!emulator_write_phys(vcpu, addr, &value, bytes))
3690
return -EFAULT;
3691
3692
return 1;
3693
}
3694
3695
static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3696
{
3697
(void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3698
return 1;
3699
}
3700
3701
static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3702
{
3703
spin_lock(&vcpu->kvm->mmu_lock);
3704
mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3705
spin_unlock(&vcpu->kvm->mmu_lock);
3706
return 1;
3707
}
3708
3709
static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3710
struct kvm_pv_mmu_op_buffer *buffer)
3711
{
3712
struct kvm_mmu_op_header *header;
3713
3714
header = pv_mmu_peek_buffer(buffer, sizeof *header);
3715
if (!header)
3716
return 0;
3717
switch (header->op) {
3718
case KVM_MMU_OP_WRITE_PTE: {
3719
struct kvm_mmu_op_write_pte *wpte;
3720
3721
wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3722
if (!wpte)
3723
return 0;
3724
return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3725
wpte->pte_val);
3726
}
3727
case KVM_MMU_OP_FLUSH_TLB: {
3728
struct kvm_mmu_op_flush_tlb *ftlb;
3729
3730
ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3731
if (!ftlb)
3732
return 0;
3733
return kvm_pv_mmu_flush_tlb(vcpu);
3734
}
3735
case KVM_MMU_OP_RELEASE_PT: {
3736
struct kvm_mmu_op_release_pt *rpt;
3737
3738
rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3739
if (!rpt)
3740
return 0;
3741
return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3742
}
3743
default: return 0;
3744
}
3745
}
3746
3747
int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3748
gpa_t addr, unsigned long *ret)
3749
{
3750
int r;
3751
struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3752
3753
buffer->ptr = buffer->buf;
3754
buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3755
buffer->processed = 0;
3756
3757
r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3758
if (r)
3759
goto out;
3760
3761
while (buffer->len) {
3762
r = kvm_pv_mmu_op_one(vcpu, buffer);
3763
if (r < 0)
3764
goto out;
3765
if (r == 0)
3766
break;
3767
}
3768
3769
r = 1;
3770
out:
3771
*ret = buffer->processed;
3772
return r;
3773
}
3774
3775
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3776
{
3777
struct kvm_shadow_walk_iterator iterator;
3778
int nr_sptes = 0;
3779
3780
spin_lock(&vcpu->kvm->mmu_lock);
3781
for_each_shadow_entry(vcpu, addr, iterator) {
3782
sptes[iterator.level-1] = *iterator.sptep;
3783
nr_sptes++;
3784
if (!is_shadow_present_pte(*iterator.sptep))
3785
break;
3786
}
3787
spin_unlock(&vcpu->kvm->mmu_lock);
3788
3789
return nr_sptes;
3790
}
3791
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3792
3793
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3794
{
3795
ASSERT(vcpu);
3796
3797
destroy_kvm_mmu(vcpu);
3798
free_mmu_pages(vcpu);
3799
mmu_free_memory_caches(vcpu);
3800
}
3801
3802
#ifdef CONFIG_KVM_MMU_AUDIT
3803
#include "mmu_audit.c"
3804
#else
3805
static void mmu_audit_disable(void) { }
3806
#endif
3807
3808
void kvm_mmu_module_exit(void)
3809
{
3810
mmu_destroy_caches();
3811
percpu_counter_destroy(&kvm_total_used_mmu_pages);
3812
unregister_shrinker(&mmu_shrinker);
3813
mmu_audit_disable();
3814
}
3815
3816