Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kvm/vmx.c
10817 views
1
/*
2
* Kernel-based Virtual Machine driver for Linux
3
*
4
* This module enables machines with Intel VT-x extensions to run virtual
5
* machines without emulation or binary translation.
6
*
7
* Copyright (C) 2006 Qumranet, Inc.
8
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
9
*
10
* Authors:
11
* Avi Kivity <[email protected]>
12
* Yaniv Kamay <[email protected]>
13
*
14
* This work is licensed under the terms of the GNU GPL, version 2. See
15
* the COPYING file in the top-level directory.
16
*
17
*/
18
19
#include "irq.h"
20
#include "mmu.h"
21
22
#include <linux/kvm_host.h>
23
#include <linux/module.h>
24
#include <linux/kernel.h>
25
#include <linux/mm.h>
26
#include <linux/highmem.h>
27
#include <linux/sched.h>
28
#include <linux/moduleparam.h>
29
#include <linux/ftrace_event.h>
30
#include <linux/slab.h>
31
#include <linux/tboot.h>
32
#include "kvm_cache_regs.h"
33
#include "x86.h"
34
35
#include <asm/io.h>
36
#include <asm/desc.h>
37
#include <asm/vmx.h>
38
#include <asm/virtext.h>
39
#include <asm/mce.h>
40
#include <asm/i387.h>
41
#include <asm/xcr.h>
42
43
#include "trace.h"
44
45
#define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47
MODULE_AUTHOR("Qumranet");
48
MODULE_LICENSE("GPL");
49
50
static int __read_mostly bypass_guest_pf = 1;
51
module_param(bypass_guest_pf, bool, S_IRUGO);
52
53
static int __read_mostly enable_vpid = 1;
54
module_param_named(vpid, enable_vpid, bool, 0444);
55
56
static int __read_mostly flexpriority_enabled = 1;
57
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59
static int __read_mostly enable_ept = 1;
60
module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62
static int __read_mostly enable_unrestricted_guest = 1;
63
module_param_named(unrestricted_guest,
64
enable_unrestricted_guest, bool, S_IRUGO);
65
66
static int __read_mostly emulate_invalid_guest_state = 0;
67
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69
static int __read_mostly vmm_exclusive = 1;
70
module_param(vmm_exclusive, bool, S_IRUGO);
71
72
static int __read_mostly yield_on_hlt = 1;
73
module_param(yield_on_hlt, bool, S_IRUGO);
74
75
#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
76
(X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77
#define KVM_GUEST_CR0_MASK \
78
(KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
80
(X86_CR0_WP | X86_CR0_NE)
81
#define KVM_VM_CR0_ALWAYS_ON \
82
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83
#define KVM_CR4_GUEST_OWNED_BITS \
84
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
85
| X86_CR4_OSXMMEXCPT)
86
87
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
89
90
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
91
92
/*
93
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
94
* ple_gap: upper bound on the amount of time between two successive
95
* executions of PAUSE in a loop. Also indicate if ple enabled.
96
* According to test, this time is usually smaller than 128 cycles.
97
* ple_window: upper bound on the amount of time a guest is allowed to execute
98
* in a PAUSE loop. Tests indicate that most spinlocks are held for
99
* less than 2^12 cycles
100
* Time is measured based on a counter that runs at the same rate as the TSC,
101
* refer SDM volume 3b section 21.6.13 & 22.1.3.
102
*/
103
#define KVM_VMX_DEFAULT_PLE_GAP 128
104
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106
module_param(ple_gap, int, S_IRUGO);
107
108
static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109
module_param(ple_window, int, S_IRUGO);
110
111
#define NR_AUTOLOAD_MSRS 1
112
113
struct vmcs {
114
u32 revision_id;
115
u32 abort;
116
char data[0];
117
};
118
119
struct shared_msr_entry {
120
unsigned index;
121
u64 data;
122
u64 mask;
123
};
124
125
struct vcpu_vmx {
126
struct kvm_vcpu vcpu;
127
struct list_head local_vcpus_link;
128
unsigned long host_rsp;
129
int launched;
130
u8 fail;
131
u8 cpl;
132
bool nmi_known_unmasked;
133
u32 exit_intr_info;
134
u32 idt_vectoring_info;
135
ulong rflags;
136
struct shared_msr_entry *guest_msrs;
137
int nmsrs;
138
int save_nmsrs;
139
#ifdef CONFIG_X86_64
140
u64 msr_host_kernel_gs_base;
141
u64 msr_guest_kernel_gs_base;
142
#endif
143
struct vmcs *vmcs;
144
struct msr_autoload {
145
unsigned nr;
146
struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
147
struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
148
} msr_autoload;
149
struct {
150
int loaded;
151
u16 fs_sel, gs_sel, ldt_sel;
152
int gs_ldt_reload_needed;
153
int fs_reload_needed;
154
} host_state;
155
struct {
156
int vm86_active;
157
ulong save_rflags;
158
struct kvm_save_segment {
159
u16 selector;
160
unsigned long base;
161
u32 limit;
162
u32 ar;
163
} tr, es, ds, fs, gs;
164
} rmode;
165
struct {
166
u32 bitmask; /* 4 bits per segment (1 bit per field) */
167
struct kvm_save_segment seg[8];
168
} segment_cache;
169
int vpid;
170
bool emulation_required;
171
172
/* Support for vnmi-less CPUs */
173
int soft_vnmi_blocked;
174
ktime_t entry_time;
175
s64 vnmi_blocked_time;
176
u32 exit_reason;
177
178
bool rdtscp_enabled;
179
};
180
181
enum segment_cache_field {
182
SEG_FIELD_SEL = 0,
183
SEG_FIELD_BASE = 1,
184
SEG_FIELD_LIMIT = 2,
185
SEG_FIELD_AR = 3,
186
187
SEG_FIELD_NR = 4
188
};
189
190
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
191
{
192
return container_of(vcpu, struct vcpu_vmx, vcpu);
193
}
194
195
static u64 construct_eptp(unsigned long root_hpa);
196
static void kvm_cpu_vmxon(u64 addr);
197
static void kvm_cpu_vmxoff(void);
198
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
199
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
200
201
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
202
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
203
static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
204
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
205
206
static unsigned long *vmx_io_bitmap_a;
207
static unsigned long *vmx_io_bitmap_b;
208
static unsigned long *vmx_msr_bitmap_legacy;
209
static unsigned long *vmx_msr_bitmap_longmode;
210
211
static bool cpu_has_load_ia32_efer;
212
213
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
214
static DEFINE_SPINLOCK(vmx_vpid_lock);
215
216
static struct vmcs_config {
217
int size;
218
int order;
219
u32 revision_id;
220
u32 pin_based_exec_ctrl;
221
u32 cpu_based_exec_ctrl;
222
u32 cpu_based_2nd_exec_ctrl;
223
u32 vmexit_ctrl;
224
u32 vmentry_ctrl;
225
} vmcs_config;
226
227
static struct vmx_capability {
228
u32 ept;
229
u32 vpid;
230
} vmx_capability;
231
232
#define VMX_SEGMENT_FIELD(seg) \
233
[VCPU_SREG_##seg] = { \
234
.selector = GUEST_##seg##_SELECTOR, \
235
.base = GUEST_##seg##_BASE, \
236
.limit = GUEST_##seg##_LIMIT, \
237
.ar_bytes = GUEST_##seg##_AR_BYTES, \
238
}
239
240
static struct kvm_vmx_segment_field {
241
unsigned selector;
242
unsigned base;
243
unsigned limit;
244
unsigned ar_bytes;
245
} kvm_vmx_segment_fields[] = {
246
VMX_SEGMENT_FIELD(CS),
247
VMX_SEGMENT_FIELD(DS),
248
VMX_SEGMENT_FIELD(ES),
249
VMX_SEGMENT_FIELD(FS),
250
VMX_SEGMENT_FIELD(GS),
251
VMX_SEGMENT_FIELD(SS),
252
VMX_SEGMENT_FIELD(TR),
253
VMX_SEGMENT_FIELD(LDTR),
254
};
255
256
static u64 host_efer;
257
258
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
259
260
/*
261
* Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
262
* away by decrementing the array size.
263
*/
264
static const u32 vmx_msr_index[] = {
265
#ifdef CONFIG_X86_64
266
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
267
#endif
268
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
269
};
270
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
271
272
static inline bool is_page_fault(u32 intr_info)
273
{
274
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
275
INTR_INFO_VALID_MASK)) ==
276
(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
277
}
278
279
static inline bool is_no_device(u32 intr_info)
280
{
281
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
282
INTR_INFO_VALID_MASK)) ==
283
(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
284
}
285
286
static inline bool is_invalid_opcode(u32 intr_info)
287
{
288
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
289
INTR_INFO_VALID_MASK)) ==
290
(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
291
}
292
293
static inline bool is_external_interrupt(u32 intr_info)
294
{
295
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
296
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
297
}
298
299
static inline bool is_machine_check(u32 intr_info)
300
{
301
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
302
INTR_INFO_VALID_MASK)) ==
303
(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
304
}
305
306
static inline bool cpu_has_vmx_msr_bitmap(void)
307
{
308
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
309
}
310
311
static inline bool cpu_has_vmx_tpr_shadow(void)
312
{
313
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
314
}
315
316
static inline bool vm_need_tpr_shadow(struct kvm *kvm)
317
{
318
return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
319
}
320
321
static inline bool cpu_has_secondary_exec_ctrls(void)
322
{
323
return vmcs_config.cpu_based_exec_ctrl &
324
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
325
}
326
327
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
328
{
329
return vmcs_config.cpu_based_2nd_exec_ctrl &
330
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
331
}
332
333
static inline bool cpu_has_vmx_flexpriority(void)
334
{
335
return cpu_has_vmx_tpr_shadow() &&
336
cpu_has_vmx_virtualize_apic_accesses();
337
}
338
339
static inline bool cpu_has_vmx_ept_execute_only(void)
340
{
341
return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
342
}
343
344
static inline bool cpu_has_vmx_eptp_uncacheable(void)
345
{
346
return vmx_capability.ept & VMX_EPTP_UC_BIT;
347
}
348
349
static inline bool cpu_has_vmx_eptp_writeback(void)
350
{
351
return vmx_capability.ept & VMX_EPTP_WB_BIT;
352
}
353
354
static inline bool cpu_has_vmx_ept_2m_page(void)
355
{
356
return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
357
}
358
359
static inline bool cpu_has_vmx_ept_1g_page(void)
360
{
361
return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
362
}
363
364
static inline bool cpu_has_vmx_ept_4levels(void)
365
{
366
return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
367
}
368
369
static inline bool cpu_has_vmx_invept_individual_addr(void)
370
{
371
return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
372
}
373
374
static inline bool cpu_has_vmx_invept_context(void)
375
{
376
return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
377
}
378
379
static inline bool cpu_has_vmx_invept_global(void)
380
{
381
return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
382
}
383
384
static inline bool cpu_has_vmx_invvpid_single(void)
385
{
386
return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
387
}
388
389
static inline bool cpu_has_vmx_invvpid_global(void)
390
{
391
return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
392
}
393
394
static inline bool cpu_has_vmx_ept(void)
395
{
396
return vmcs_config.cpu_based_2nd_exec_ctrl &
397
SECONDARY_EXEC_ENABLE_EPT;
398
}
399
400
static inline bool cpu_has_vmx_unrestricted_guest(void)
401
{
402
return vmcs_config.cpu_based_2nd_exec_ctrl &
403
SECONDARY_EXEC_UNRESTRICTED_GUEST;
404
}
405
406
static inline bool cpu_has_vmx_ple(void)
407
{
408
return vmcs_config.cpu_based_2nd_exec_ctrl &
409
SECONDARY_EXEC_PAUSE_LOOP_EXITING;
410
}
411
412
static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
413
{
414
return flexpriority_enabled && irqchip_in_kernel(kvm);
415
}
416
417
static inline bool cpu_has_vmx_vpid(void)
418
{
419
return vmcs_config.cpu_based_2nd_exec_ctrl &
420
SECONDARY_EXEC_ENABLE_VPID;
421
}
422
423
static inline bool cpu_has_vmx_rdtscp(void)
424
{
425
return vmcs_config.cpu_based_2nd_exec_ctrl &
426
SECONDARY_EXEC_RDTSCP;
427
}
428
429
static inline bool cpu_has_virtual_nmis(void)
430
{
431
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
432
}
433
434
static inline bool cpu_has_vmx_wbinvd_exit(void)
435
{
436
return vmcs_config.cpu_based_2nd_exec_ctrl &
437
SECONDARY_EXEC_WBINVD_EXITING;
438
}
439
440
static inline bool report_flexpriority(void)
441
{
442
return flexpriority_enabled;
443
}
444
445
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
446
{
447
int i;
448
449
for (i = 0; i < vmx->nmsrs; ++i)
450
if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
451
return i;
452
return -1;
453
}
454
455
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
456
{
457
struct {
458
u64 vpid : 16;
459
u64 rsvd : 48;
460
u64 gva;
461
} operand = { vpid, 0, gva };
462
463
asm volatile (__ex(ASM_VMX_INVVPID)
464
/* CF==1 or ZF==1 --> rc = -1 */
465
"; ja 1f ; ud2 ; 1:"
466
: : "a"(&operand), "c"(ext) : "cc", "memory");
467
}
468
469
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
470
{
471
struct {
472
u64 eptp, gpa;
473
} operand = {eptp, gpa};
474
475
asm volatile (__ex(ASM_VMX_INVEPT)
476
/* CF==1 or ZF==1 --> rc = -1 */
477
"; ja 1f ; ud2 ; 1:\n"
478
: : "a" (&operand), "c" (ext) : "cc", "memory");
479
}
480
481
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
482
{
483
int i;
484
485
i = __find_msr_index(vmx, msr);
486
if (i >= 0)
487
return &vmx->guest_msrs[i];
488
return NULL;
489
}
490
491
static void vmcs_clear(struct vmcs *vmcs)
492
{
493
u64 phys_addr = __pa(vmcs);
494
u8 error;
495
496
asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
497
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
498
: "cc", "memory");
499
if (error)
500
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
501
vmcs, phys_addr);
502
}
503
504
static void vmcs_load(struct vmcs *vmcs)
505
{
506
u64 phys_addr = __pa(vmcs);
507
u8 error;
508
509
asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
510
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
511
: "cc", "memory");
512
if (error)
513
printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
514
vmcs, phys_addr);
515
}
516
517
static void __vcpu_clear(void *arg)
518
{
519
struct vcpu_vmx *vmx = arg;
520
int cpu = raw_smp_processor_id();
521
522
if (vmx->vcpu.cpu == cpu)
523
vmcs_clear(vmx->vmcs);
524
if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
525
per_cpu(current_vmcs, cpu) = NULL;
526
list_del(&vmx->local_vcpus_link);
527
vmx->vcpu.cpu = -1;
528
vmx->launched = 0;
529
}
530
531
static void vcpu_clear(struct vcpu_vmx *vmx)
532
{
533
if (vmx->vcpu.cpu == -1)
534
return;
535
smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
536
}
537
538
static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
539
{
540
if (vmx->vpid == 0)
541
return;
542
543
if (cpu_has_vmx_invvpid_single())
544
__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
545
}
546
547
static inline void vpid_sync_vcpu_global(void)
548
{
549
if (cpu_has_vmx_invvpid_global())
550
__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
551
}
552
553
static inline void vpid_sync_context(struct vcpu_vmx *vmx)
554
{
555
if (cpu_has_vmx_invvpid_single())
556
vpid_sync_vcpu_single(vmx);
557
else
558
vpid_sync_vcpu_global();
559
}
560
561
static inline void ept_sync_global(void)
562
{
563
if (cpu_has_vmx_invept_global())
564
__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
565
}
566
567
static inline void ept_sync_context(u64 eptp)
568
{
569
if (enable_ept) {
570
if (cpu_has_vmx_invept_context())
571
__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
572
else
573
ept_sync_global();
574
}
575
}
576
577
static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
578
{
579
if (enable_ept) {
580
if (cpu_has_vmx_invept_individual_addr())
581
__invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
582
eptp, gpa);
583
else
584
ept_sync_context(eptp);
585
}
586
}
587
588
static unsigned long vmcs_readl(unsigned long field)
589
{
590
unsigned long value = 0;
591
592
asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
593
: "+a"(value) : "d"(field) : "cc");
594
return value;
595
}
596
597
static u16 vmcs_read16(unsigned long field)
598
{
599
return vmcs_readl(field);
600
}
601
602
static u32 vmcs_read32(unsigned long field)
603
{
604
return vmcs_readl(field);
605
}
606
607
static u64 vmcs_read64(unsigned long field)
608
{
609
#ifdef CONFIG_X86_64
610
return vmcs_readl(field);
611
#else
612
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
613
#endif
614
}
615
616
static noinline void vmwrite_error(unsigned long field, unsigned long value)
617
{
618
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
619
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
620
dump_stack();
621
}
622
623
static void vmcs_writel(unsigned long field, unsigned long value)
624
{
625
u8 error;
626
627
asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
628
: "=q"(error) : "a"(value), "d"(field) : "cc");
629
if (unlikely(error))
630
vmwrite_error(field, value);
631
}
632
633
static void vmcs_write16(unsigned long field, u16 value)
634
{
635
vmcs_writel(field, value);
636
}
637
638
static void vmcs_write32(unsigned long field, u32 value)
639
{
640
vmcs_writel(field, value);
641
}
642
643
static void vmcs_write64(unsigned long field, u64 value)
644
{
645
vmcs_writel(field, value);
646
#ifndef CONFIG_X86_64
647
asm volatile ("");
648
vmcs_writel(field+1, value >> 32);
649
#endif
650
}
651
652
static void vmcs_clear_bits(unsigned long field, u32 mask)
653
{
654
vmcs_writel(field, vmcs_readl(field) & ~mask);
655
}
656
657
static void vmcs_set_bits(unsigned long field, u32 mask)
658
{
659
vmcs_writel(field, vmcs_readl(field) | mask);
660
}
661
662
static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
663
{
664
vmx->segment_cache.bitmask = 0;
665
}
666
667
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668
unsigned field)
669
{
670
bool ret;
671
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672
673
if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
674
vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
675
vmx->segment_cache.bitmask = 0;
676
}
677
ret = vmx->segment_cache.bitmask & mask;
678
vmx->segment_cache.bitmask |= mask;
679
return ret;
680
}
681
682
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683
{
684
u16 *p = &vmx->segment_cache.seg[seg].selector;
685
686
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688
return *p;
689
}
690
691
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692
{
693
ulong *p = &vmx->segment_cache.seg[seg].base;
694
695
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697
return *p;
698
}
699
700
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701
{
702
u32 *p = &vmx->segment_cache.seg[seg].limit;
703
704
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706
return *p;
707
}
708
709
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710
{
711
u32 *p = &vmx->segment_cache.seg[seg].ar;
712
713
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715
return *p;
716
}
717
718
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
719
{
720
u32 eb;
721
722
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723
(1u << NM_VECTOR) | (1u << DB_VECTOR);
724
if ((vcpu->guest_debug &
725
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
726
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
727
eb |= 1u << BP_VECTOR;
728
if (to_vmx(vcpu)->rmode.vm86_active)
729
eb = ~0;
730
if (enable_ept)
731
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
732
if (vcpu->fpu_active)
733
eb &= ~(1u << NM_VECTOR);
734
vmcs_write32(EXCEPTION_BITMAP, eb);
735
}
736
737
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
738
{
739
unsigned i;
740
struct msr_autoload *m = &vmx->msr_autoload;
741
742
if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
743
vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
744
vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
745
return;
746
}
747
748
for (i = 0; i < m->nr; ++i)
749
if (m->guest[i].index == msr)
750
break;
751
752
if (i == m->nr)
753
return;
754
--m->nr;
755
m->guest[i] = m->guest[m->nr];
756
m->host[i] = m->host[m->nr];
757
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
758
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
759
}
760
761
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
762
u64 guest_val, u64 host_val)
763
{
764
unsigned i;
765
struct msr_autoload *m = &vmx->msr_autoload;
766
767
if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
768
vmcs_write64(GUEST_IA32_EFER, guest_val);
769
vmcs_write64(HOST_IA32_EFER, host_val);
770
vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
771
vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
772
return;
773
}
774
775
for (i = 0; i < m->nr; ++i)
776
if (m->guest[i].index == msr)
777
break;
778
779
if (i == m->nr) {
780
++m->nr;
781
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
782
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
783
}
784
785
m->guest[i].index = msr;
786
m->guest[i].value = guest_val;
787
m->host[i].index = msr;
788
m->host[i].value = host_val;
789
}
790
791
static void reload_tss(void)
792
{
793
/*
794
* VT restores TR but not its size. Useless.
795
*/
796
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
797
struct desc_struct *descs;
798
799
descs = (void *)gdt->address;
800
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
801
load_TR_desc();
802
}
803
804
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
805
{
806
u64 guest_efer;
807
u64 ignore_bits;
808
809
guest_efer = vmx->vcpu.arch.efer;
810
811
/*
812
* NX is emulated; LMA and LME handled by hardware; SCE meaninless
813
* outside long mode
814
*/
815
ignore_bits = EFER_NX | EFER_SCE;
816
#ifdef CONFIG_X86_64
817
ignore_bits |= EFER_LMA | EFER_LME;
818
/* SCE is meaningful only in long mode on Intel */
819
if (guest_efer & EFER_LMA)
820
ignore_bits &= ~(u64)EFER_SCE;
821
#endif
822
guest_efer &= ~ignore_bits;
823
guest_efer |= host_efer & ignore_bits;
824
vmx->guest_msrs[efer_offset].data = guest_efer;
825
vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
826
827
clear_atomic_switch_msr(vmx, MSR_EFER);
828
/* On ept, can't emulate nx, and must switch nx atomically */
829
if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
830
guest_efer = vmx->vcpu.arch.efer;
831
if (!(guest_efer & EFER_LMA))
832
guest_efer &= ~EFER_LME;
833
add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
834
return false;
835
}
836
837
return true;
838
}
839
840
static unsigned long segment_base(u16 selector)
841
{
842
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
843
struct desc_struct *d;
844
unsigned long table_base;
845
unsigned long v;
846
847
if (!(selector & ~3))
848
return 0;
849
850
table_base = gdt->address;
851
852
if (selector & 4) { /* from ldt */
853
u16 ldt_selector = kvm_read_ldt();
854
855
if (!(ldt_selector & ~3))
856
return 0;
857
858
table_base = segment_base(ldt_selector);
859
}
860
d = (struct desc_struct *)(table_base + (selector & ~7));
861
v = get_desc_base(d);
862
#ifdef CONFIG_X86_64
863
if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
864
v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
865
#endif
866
return v;
867
}
868
869
static inline unsigned long kvm_read_tr_base(void)
870
{
871
u16 tr;
872
asm("str %0" : "=g"(tr));
873
return segment_base(tr);
874
}
875
876
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
877
{
878
struct vcpu_vmx *vmx = to_vmx(vcpu);
879
int i;
880
881
if (vmx->host_state.loaded)
882
return;
883
884
vmx->host_state.loaded = 1;
885
/*
886
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
887
* allow segment selectors with cpl > 0 or ti == 1.
888
*/
889
vmx->host_state.ldt_sel = kvm_read_ldt();
890
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
891
savesegment(fs, vmx->host_state.fs_sel);
892
if (!(vmx->host_state.fs_sel & 7)) {
893
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
894
vmx->host_state.fs_reload_needed = 0;
895
} else {
896
vmcs_write16(HOST_FS_SELECTOR, 0);
897
vmx->host_state.fs_reload_needed = 1;
898
}
899
savesegment(gs, vmx->host_state.gs_sel);
900
if (!(vmx->host_state.gs_sel & 7))
901
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
902
else {
903
vmcs_write16(HOST_GS_SELECTOR, 0);
904
vmx->host_state.gs_ldt_reload_needed = 1;
905
}
906
907
#ifdef CONFIG_X86_64
908
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
909
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
910
#else
911
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
912
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
913
#endif
914
915
#ifdef CONFIG_X86_64
916
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
917
if (is_long_mode(&vmx->vcpu))
918
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
919
#endif
920
for (i = 0; i < vmx->save_nmsrs; ++i)
921
kvm_set_shared_msr(vmx->guest_msrs[i].index,
922
vmx->guest_msrs[i].data,
923
vmx->guest_msrs[i].mask);
924
}
925
926
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
927
{
928
if (!vmx->host_state.loaded)
929
return;
930
931
++vmx->vcpu.stat.host_state_reload;
932
vmx->host_state.loaded = 0;
933
#ifdef CONFIG_X86_64
934
if (is_long_mode(&vmx->vcpu))
935
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
936
#endif
937
if (vmx->host_state.gs_ldt_reload_needed) {
938
kvm_load_ldt(vmx->host_state.ldt_sel);
939
#ifdef CONFIG_X86_64
940
load_gs_index(vmx->host_state.gs_sel);
941
#else
942
loadsegment(gs, vmx->host_state.gs_sel);
943
#endif
944
}
945
if (vmx->host_state.fs_reload_needed)
946
loadsegment(fs, vmx->host_state.fs_sel);
947
reload_tss();
948
#ifdef CONFIG_X86_64
949
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
950
#endif
951
if (current_thread_info()->status & TS_USEDFPU)
952
clts();
953
load_gdt(&__get_cpu_var(host_gdt));
954
}
955
956
static void vmx_load_host_state(struct vcpu_vmx *vmx)
957
{
958
preempt_disable();
959
__vmx_load_host_state(vmx);
960
preempt_enable();
961
}
962
963
/*
964
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
965
* vcpu mutex is already taken.
966
*/
967
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
968
{
969
struct vcpu_vmx *vmx = to_vmx(vcpu);
970
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
971
972
if (!vmm_exclusive)
973
kvm_cpu_vmxon(phys_addr);
974
else if (vcpu->cpu != cpu)
975
vcpu_clear(vmx);
976
977
if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
978
per_cpu(current_vmcs, cpu) = vmx->vmcs;
979
vmcs_load(vmx->vmcs);
980
}
981
982
if (vcpu->cpu != cpu) {
983
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
984
unsigned long sysenter_esp;
985
986
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
987
local_irq_disable();
988
list_add(&vmx->local_vcpus_link,
989
&per_cpu(vcpus_on_cpu, cpu));
990
local_irq_enable();
991
992
/*
993
* Linux uses per-cpu TSS and GDT, so set these when switching
994
* processors.
995
*/
996
vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
997
vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
998
999
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1000
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1001
}
1002
}
1003
1004
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1005
{
1006
__vmx_load_host_state(to_vmx(vcpu));
1007
if (!vmm_exclusive) {
1008
__vcpu_clear(to_vmx(vcpu));
1009
kvm_cpu_vmxoff();
1010
}
1011
}
1012
1013
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1014
{
1015
ulong cr0;
1016
1017
if (vcpu->fpu_active)
1018
return;
1019
vcpu->fpu_active = 1;
1020
cr0 = vmcs_readl(GUEST_CR0);
1021
cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1022
cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1023
vmcs_writel(GUEST_CR0, cr0);
1024
update_exception_bitmap(vcpu);
1025
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1026
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1027
}
1028
1029
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1030
1031
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1032
{
1033
vmx_decache_cr0_guest_bits(vcpu);
1034
vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1035
update_exception_bitmap(vcpu);
1036
vcpu->arch.cr0_guest_owned_bits = 0;
1037
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1038
vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1039
}
1040
1041
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1042
{
1043
unsigned long rflags, save_rflags;
1044
1045
if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1046
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1047
rflags = vmcs_readl(GUEST_RFLAGS);
1048
if (to_vmx(vcpu)->rmode.vm86_active) {
1049
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1050
save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1051
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1052
}
1053
to_vmx(vcpu)->rflags = rflags;
1054
}
1055
return to_vmx(vcpu)->rflags;
1056
}
1057
1058
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1059
{
1060
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1061
__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1062
to_vmx(vcpu)->rflags = rflags;
1063
if (to_vmx(vcpu)->rmode.vm86_active) {
1064
to_vmx(vcpu)->rmode.save_rflags = rflags;
1065
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1066
}
1067
vmcs_writel(GUEST_RFLAGS, rflags);
1068
}
1069
1070
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1071
{
1072
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1073
int ret = 0;
1074
1075
if (interruptibility & GUEST_INTR_STATE_STI)
1076
ret |= KVM_X86_SHADOW_INT_STI;
1077
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1078
ret |= KVM_X86_SHADOW_INT_MOV_SS;
1079
1080
return ret & mask;
1081
}
1082
1083
static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1084
{
1085
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1086
u32 interruptibility = interruptibility_old;
1087
1088
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1089
1090
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1091
interruptibility |= GUEST_INTR_STATE_MOV_SS;
1092
else if (mask & KVM_X86_SHADOW_INT_STI)
1093
interruptibility |= GUEST_INTR_STATE_STI;
1094
1095
if ((interruptibility != interruptibility_old))
1096
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1097
}
1098
1099
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1100
{
1101
unsigned long rip;
1102
1103
rip = kvm_rip_read(vcpu);
1104
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1105
kvm_rip_write(vcpu, rip);
1106
1107
/* skipping an emulated instruction also counts */
1108
vmx_set_interrupt_shadow(vcpu, 0);
1109
}
1110
1111
static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1112
{
1113
/* Ensure that we clear the HLT state in the VMCS. We don't need to
1114
* explicitly skip the instruction because if the HLT state is set, then
1115
* the instruction is already executing and RIP has already been
1116
* advanced. */
1117
if (!yield_on_hlt &&
1118
vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1119
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1120
}
1121
1122
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1123
bool has_error_code, u32 error_code,
1124
bool reinject)
1125
{
1126
struct vcpu_vmx *vmx = to_vmx(vcpu);
1127
u32 intr_info = nr | INTR_INFO_VALID_MASK;
1128
1129
if (has_error_code) {
1130
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1131
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1132
}
1133
1134
if (vmx->rmode.vm86_active) {
1135
int inc_eip = 0;
1136
if (kvm_exception_is_soft(nr))
1137
inc_eip = vcpu->arch.event_exit_inst_len;
1138
if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1139
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1140
return;
1141
}
1142
1143
if (kvm_exception_is_soft(nr)) {
1144
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1145
vmx->vcpu.arch.event_exit_inst_len);
1146
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1147
} else
1148
intr_info |= INTR_TYPE_HARD_EXCEPTION;
1149
1150
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1151
vmx_clear_hlt(vcpu);
1152
}
1153
1154
static bool vmx_rdtscp_supported(void)
1155
{
1156
return cpu_has_vmx_rdtscp();
1157
}
1158
1159
/*
1160
* Swap MSR entry in host/guest MSR entry array.
1161
*/
1162
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1163
{
1164
struct shared_msr_entry tmp;
1165
1166
tmp = vmx->guest_msrs[to];
1167
vmx->guest_msrs[to] = vmx->guest_msrs[from];
1168
vmx->guest_msrs[from] = tmp;
1169
}
1170
1171
/*
1172
* Set up the vmcs to automatically save and restore system
1173
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
1174
* mode, as fiddling with msrs is very expensive.
1175
*/
1176
static void setup_msrs(struct vcpu_vmx *vmx)
1177
{
1178
int save_nmsrs, index;
1179
unsigned long *msr_bitmap;
1180
1181
vmx_load_host_state(vmx);
1182
save_nmsrs = 0;
1183
#ifdef CONFIG_X86_64
1184
if (is_long_mode(&vmx->vcpu)) {
1185
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1186
if (index >= 0)
1187
move_msr_up(vmx, index, save_nmsrs++);
1188
index = __find_msr_index(vmx, MSR_LSTAR);
1189
if (index >= 0)
1190
move_msr_up(vmx, index, save_nmsrs++);
1191
index = __find_msr_index(vmx, MSR_CSTAR);
1192
if (index >= 0)
1193
move_msr_up(vmx, index, save_nmsrs++);
1194
index = __find_msr_index(vmx, MSR_TSC_AUX);
1195
if (index >= 0 && vmx->rdtscp_enabled)
1196
move_msr_up(vmx, index, save_nmsrs++);
1197
/*
1198
* MSR_STAR is only needed on long mode guests, and only
1199
* if efer.sce is enabled.
1200
*/
1201
index = __find_msr_index(vmx, MSR_STAR);
1202
if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1203
move_msr_up(vmx, index, save_nmsrs++);
1204
}
1205
#endif
1206
index = __find_msr_index(vmx, MSR_EFER);
1207
if (index >= 0 && update_transition_efer(vmx, index))
1208
move_msr_up(vmx, index, save_nmsrs++);
1209
1210
vmx->save_nmsrs = save_nmsrs;
1211
1212
if (cpu_has_vmx_msr_bitmap()) {
1213
if (is_long_mode(&vmx->vcpu))
1214
msr_bitmap = vmx_msr_bitmap_longmode;
1215
else
1216
msr_bitmap = vmx_msr_bitmap_legacy;
1217
1218
vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1219
}
1220
}
1221
1222
/*
1223
* reads and returns guest's timestamp counter "register"
1224
* guest_tsc = host_tsc + tsc_offset -- 21.3
1225
*/
1226
static u64 guest_read_tsc(void)
1227
{
1228
u64 host_tsc, tsc_offset;
1229
1230
rdtscll(host_tsc);
1231
tsc_offset = vmcs_read64(TSC_OFFSET);
1232
return host_tsc + tsc_offset;
1233
}
1234
1235
/*
1236
* Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1237
* ioctl. In this case the call-back should update internal vmx state to make
1238
* the changes effective.
1239
*/
1240
static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1241
{
1242
/* Nothing to do here */
1243
}
1244
1245
/*
1246
* writes 'offset' into guest's timestamp counter offset register
1247
*/
1248
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1249
{
1250
vmcs_write64(TSC_OFFSET, offset);
1251
}
1252
1253
static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1254
{
1255
u64 offset = vmcs_read64(TSC_OFFSET);
1256
vmcs_write64(TSC_OFFSET, offset + adjustment);
1257
}
1258
1259
static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1260
{
1261
return target_tsc - native_read_tsc();
1262
}
1263
1264
/*
1265
* Reads an msr value (of 'msr_index') into 'pdata'.
1266
* Returns 0 on success, non-0 otherwise.
1267
* Assumes vcpu_load() was already called.
1268
*/
1269
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1270
{
1271
u64 data;
1272
struct shared_msr_entry *msr;
1273
1274
if (!pdata) {
1275
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1276
return -EINVAL;
1277
}
1278
1279
switch (msr_index) {
1280
#ifdef CONFIG_X86_64
1281
case MSR_FS_BASE:
1282
data = vmcs_readl(GUEST_FS_BASE);
1283
break;
1284
case MSR_GS_BASE:
1285
data = vmcs_readl(GUEST_GS_BASE);
1286
break;
1287
case MSR_KERNEL_GS_BASE:
1288
vmx_load_host_state(to_vmx(vcpu));
1289
data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1290
break;
1291
#endif
1292
case MSR_EFER:
1293
return kvm_get_msr_common(vcpu, msr_index, pdata);
1294
case MSR_IA32_TSC:
1295
data = guest_read_tsc();
1296
break;
1297
case MSR_IA32_SYSENTER_CS:
1298
data = vmcs_read32(GUEST_SYSENTER_CS);
1299
break;
1300
case MSR_IA32_SYSENTER_EIP:
1301
data = vmcs_readl(GUEST_SYSENTER_EIP);
1302
break;
1303
case MSR_IA32_SYSENTER_ESP:
1304
data = vmcs_readl(GUEST_SYSENTER_ESP);
1305
break;
1306
case MSR_TSC_AUX:
1307
if (!to_vmx(vcpu)->rdtscp_enabled)
1308
return 1;
1309
/* Otherwise falls through */
1310
default:
1311
vmx_load_host_state(to_vmx(vcpu));
1312
msr = find_msr_entry(to_vmx(vcpu), msr_index);
1313
if (msr) {
1314
vmx_load_host_state(to_vmx(vcpu));
1315
data = msr->data;
1316
break;
1317
}
1318
return kvm_get_msr_common(vcpu, msr_index, pdata);
1319
}
1320
1321
*pdata = data;
1322
return 0;
1323
}
1324
1325
/*
1326
* Writes msr value into into the appropriate "register".
1327
* Returns 0 on success, non-0 otherwise.
1328
* Assumes vcpu_load() was already called.
1329
*/
1330
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1331
{
1332
struct vcpu_vmx *vmx = to_vmx(vcpu);
1333
struct shared_msr_entry *msr;
1334
int ret = 0;
1335
1336
switch (msr_index) {
1337
case MSR_EFER:
1338
vmx_load_host_state(vmx);
1339
ret = kvm_set_msr_common(vcpu, msr_index, data);
1340
break;
1341
#ifdef CONFIG_X86_64
1342
case MSR_FS_BASE:
1343
vmx_segment_cache_clear(vmx);
1344
vmcs_writel(GUEST_FS_BASE, data);
1345
break;
1346
case MSR_GS_BASE:
1347
vmx_segment_cache_clear(vmx);
1348
vmcs_writel(GUEST_GS_BASE, data);
1349
break;
1350
case MSR_KERNEL_GS_BASE:
1351
vmx_load_host_state(vmx);
1352
vmx->msr_guest_kernel_gs_base = data;
1353
break;
1354
#endif
1355
case MSR_IA32_SYSENTER_CS:
1356
vmcs_write32(GUEST_SYSENTER_CS, data);
1357
break;
1358
case MSR_IA32_SYSENTER_EIP:
1359
vmcs_writel(GUEST_SYSENTER_EIP, data);
1360
break;
1361
case MSR_IA32_SYSENTER_ESP:
1362
vmcs_writel(GUEST_SYSENTER_ESP, data);
1363
break;
1364
case MSR_IA32_TSC:
1365
kvm_write_tsc(vcpu, data);
1366
break;
1367
case MSR_IA32_CR_PAT:
1368
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1369
vmcs_write64(GUEST_IA32_PAT, data);
1370
vcpu->arch.pat = data;
1371
break;
1372
}
1373
ret = kvm_set_msr_common(vcpu, msr_index, data);
1374
break;
1375
case MSR_TSC_AUX:
1376
if (!vmx->rdtscp_enabled)
1377
return 1;
1378
/* Check reserved bit, higher 32 bits should be zero */
1379
if ((data >> 32) != 0)
1380
return 1;
1381
/* Otherwise falls through */
1382
default:
1383
msr = find_msr_entry(vmx, msr_index);
1384
if (msr) {
1385
vmx_load_host_state(vmx);
1386
msr->data = data;
1387
break;
1388
}
1389
ret = kvm_set_msr_common(vcpu, msr_index, data);
1390
}
1391
1392
return ret;
1393
}
1394
1395
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1396
{
1397
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1398
switch (reg) {
1399
case VCPU_REGS_RSP:
1400
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1401
break;
1402
case VCPU_REGS_RIP:
1403
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1404
break;
1405
case VCPU_EXREG_PDPTR:
1406
if (enable_ept)
1407
ept_save_pdptrs(vcpu);
1408
break;
1409
default:
1410
break;
1411
}
1412
}
1413
1414
static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1415
{
1416
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1417
vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1418
else
1419
vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1420
1421
update_exception_bitmap(vcpu);
1422
}
1423
1424
static __init int cpu_has_kvm_support(void)
1425
{
1426
return cpu_has_vmx();
1427
}
1428
1429
static __init int vmx_disabled_by_bios(void)
1430
{
1431
u64 msr;
1432
1433
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1434
if (msr & FEATURE_CONTROL_LOCKED) {
1435
/* launched w/ TXT and VMX disabled */
1436
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1437
&& tboot_enabled())
1438
return 1;
1439
/* launched w/o TXT and VMX only enabled w/ TXT */
1440
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1441
&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1442
&& !tboot_enabled()) {
1443
printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1444
"activate TXT before enabling KVM\n");
1445
return 1;
1446
}
1447
/* launched w/o TXT and VMX disabled */
1448
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1449
&& !tboot_enabled())
1450
return 1;
1451
}
1452
1453
return 0;
1454
}
1455
1456
static void kvm_cpu_vmxon(u64 addr)
1457
{
1458
asm volatile (ASM_VMX_VMXON_RAX
1459
: : "a"(&addr), "m"(addr)
1460
: "memory", "cc");
1461
}
1462
1463
static int hardware_enable(void *garbage)
1464
{
1465
int cpu = raw_smp_processor_id();
1466
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1467
u64 old, test_bits;
1468
1469
if (read_cr4() & X86_CR4_VMXE)
1470
return -EBUSY;
1471
1472
INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1473
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1474
1475
test_bits = FEATURE_CONTROL_LOCKED;
1476
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1477
if (tboot_enabled())
1478
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1479
1480
if ((old & test_bits) != test_bits) {
1481
/* enable and lock */
1482
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1483
}
1484
write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1485
1486
if (vmm_exclusive) {
1487
kvm_cpu_vmxon(phys_addr);
1488
ept_sync_global();
1489
}
1490
1491
store_gdt(&__get_cpu_var(host_gdt));
1492
1493
return 0;
1494
}
1495
1496
static void vmclear_local_vcpus(void)
1497
{
1498
int cpu = raw_smp_processor_id();
1499
struct vcpu_vmx *vmx, *n;
1500
1501
list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1502
local_vcpus_link)
1503
__vcpu_clear(vmx);
1504
}
1505
1506
1507
/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1508
* tricks.
1509
*/
1510
static void kvm_cpu_vmxoff(void)
1511
{
1512
asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1513
}
1514
1515
static void hardware_disable(void *garbage)
1516
{
1517
if (vmm_exclusive) {
1518
vmclear_local_vcpus();
1519
kvm_cpu_vmxoff();
1520
}
1521
write_cr4(read_cr4() & ~X86_CR4_VMXE);
1522
}
1523
1524
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1525
u32 msr, u32 *result)
1526
{
1527
u32 vmx_msr_low, vmx_msr_high;
1528
u32 ctl = ctl_min | ctl_opt;
1529
1530
rdmsr(msr, vmx_msr_low, vmx_msr_high);
1531
1532
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1533
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1534
1535
/* Ensure minimum (required) set of control bits are supported. */
1536
if (ctl_min & ~ctl)
1537
return -EIO;
1538
1539
*result = ctl;
1540
return 0;
1541
}
1542
1543
static __init bool allow_1_setting(u32 msr, u32 ctl)
1544
{
1545
u32 vmx_msr_low, vmx_msr_high;
1546
1547
rdmsr(msr, vmx_msr_low, vmx_msr_high);
1548
return vmx_msr_high & ctl;
1549
}
1550
1551
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1552
{
1553
u32 vmx_msr_low, vmx_msr_high;
1554
u32 min, opt, min2, opt2;
1555
u32 _pin_based_exec_control = 0;
1556
u32 _cpu_based_exec_control = 0;
1557
u32 _cpu_based_2nd_exec_control = 0;
1558
u32 _vmexit_control = 0;
1559
u32 _vmentry_control = 0;
1560
1561
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1562
opt = PIN_BASED_VIRTUAL_NMIS;
1563
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1564
&_pin_based_exec_control) < 0)
1565
return -EIO;
1566
1567
min =
1568
#ifdef CONFIG_X86_64
1569
CPU_BASED_CR8_LOAD_EXITING |
1570
CPU_BASED_CR8_STORE_EXITING |
1571
#endif
1572
CPU_BASED_CR3_LOAD_EXITING |
1573
CPU_BASED_CR3_STORE_EXITING |
1574
CPU_BASED_USE_IO_BITMAPS |
1575
CPU_BASED_MOV_DR_EXITING |
1576
CPU_BASED_USE_TSC_OFFSETING |
1577
CPU_BASED_MWAIT_EXITING |
1578
CPU_BASED_MONITOR_EXITING |
1579
CPU_BASED_INVLPG_EXITING;
1580
1581
if (yield_on_hlt)
1582
min |= CPU_BASED_HLT_EXITING;
1583
1584
opt = CPU_BASED_TPR_SHADOW |
1585
CPU_BASED_USE_MSR_BITMAPS |
1586
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1587
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1588
&_cpu_based_exec_control) < 0)
1589
return -EIO;
1590
#ifdef CONFIG_X86_64
1591
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1592
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1593
~CPU_BASED_CR8_STORE_EXITING;
1594
#endif
1595
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1596
min2 = 0;
1597
opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1598
SECONDARY_EXEC_WBINVD_EXITING |
1599
SECONDARY_EXEC_ENABLE_VPID |
1600
SECONDARY_EXEC_ENABLE_EPT |
1601
SECONDARY_EXEC_UNRESTRICTED_GUEST |
1602
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1603
SECONDARY_EXEC_RDTSCP;
1604
if (adjust_vmx_controls(min2, opt2,
1605
MSR_IA32_VMX_PROCBASED_CTLS2,
1606
&_cpu_based_2nd_exec_control) < 0)
1607
return -EIO;
1608
}
1609
#ifndef CONFIG_X86_64
1610
if (!(_cpu_based_2nd_exec_control &
1611
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1612
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1613
#endif
1614
if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1615
/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1616
enabled */
1617
_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1618
CPU_BASED_CR3_STORE_EXITING |
1619
CPU_BASED_INVLPG_EXITING);
1620
rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1621
vmx_capability.ept, vmx_capability.vpid);
1622
}
1623
1624
min = 0;
1625
#ifdef CONFIG_X86_64
1626
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1627
#endif
1628
opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1629
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1630
&_vmexit_control) < 0)
1631
return -EIO;
1632
1633
min = 0;
1634
opt = VM_ENTRY_LOAD_IA32_PAT;
1635
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1636
&_vmentry_control) < 0)
1637
return -EIO;
1638
1639
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1640
1641
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1642
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1643
return -EIO;
1644
1645
#ifdef CONFIG_X86_64
1646
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1647
if (vmx_msr_high & (1u<<16))
1648
return -EIO;
1649
#endif
1650
1651
/* Require Write-Back (WB) memory type for VMCS accesses. */
1652
if (((vmx_msr_high >> 18) & 15) != 6)
1653
return -EIO;
1654
1655
vmcs_conf->size = vmx_msr_high & 0x1fff;
1656
vmcs_conf->order = get_order(vmcs_config.size);
1657
vmcs_conf->revision_id = vmx_msr_low;
1658
1659
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1660
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1661
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1662
vmcs_conf->vmexit_ctrl = _vmexit_control;
1663
vmcs_conf->vmentry_ctrl = _vmentry_control;
1664
1665
cpu_has_load_ia32_efer =
1666
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1667
VM_ENTRY_LOAD_IA32_EFER)
1668
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1669
VM_EXIT_LOAD_IA32_EFER);
1670
1671
return 0;
1672
}
1673
1674
static struct vmcs *alloc_vmcs_cpu(int cpu)
1675
{
1676
int node = cpu_to_node(cpu);
1677
struct page *pages;
1678
struct vmcs *vmcs;
1679
1680
pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1681
if (!pages)
1682
return NULL;
1683
vmcs = page_address(pages);
1684
memset(vmcs, 0, vmcs_config.size);
1685
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1686
return vmcs;
1687
}
1688
1689
static struct vmcs *alloc_vmcs(void)
1690
{
1691
return alloc_vmcs_cpu(raw_smp_processor_id());
1692
}
1693
1694
static void free_vmcs(struct vmcs *vmcs)
1695
{
1696
free_pages((unsigned long)vmcs, vmcs_config.order);
1697
}
1698
1699
static void free_kvm_area(void)
1700
{
1701
int cpu;
1702
1703
for_each_possible_cpu(cpu) {
1704
free_vmcs(per_cpu(vmxarea, cpu));
1705
per_cpu(vmxarea, cpu) = NULL;
1706
}
1707
}
1708
1709
static __init int alloc_kvm_area(void)
1710
{
1711
int cpu;
1712
1713
for_each_possible_cpu(cpu) {
1714
struct vmcs *vmcs;
1715
1716
vmcs = alloc_vmcs_cpu(cpu);
1717
if (!vmcs) {
1718
free_kvm_area();
1719
return -ENOMEM;
1720
}
1721
1722
per_cpu(vmxarea, cpu) = vmcs;
1723
}
1724
return 0;
1725
}
1726
1727
static __init int hardware_setup(void)
1728
{
1729
if (setup_vmcs_config(&vmcs_config) < 0)
1730
return -EIO;
1731
1732
if (boot_cpu_has(X86_FEATURE_NX))
1733
kvm_enable_efer_bits(EFER_NX);
1734
1735
if (!cpu_has_vmx_vpid())
1736
enable_vpid = 0;
1737
1738
if (!cpu_has_vmx_ept() ||
1739
!cpu_has_vmx_ept_4levels()) {
1740
enable_ept = 0;
1741
enable_unrestricted_guest = 0;
1742
}
1743
1744
if (!cpu_has_vmx_unrestricted_guest())
1745
enable_unrestricted_guest = 0;
1746
1747
if (!cpu_has_vmx_flexpriority())
1748
flexpriority_enabled = 0;
1749
1750
if (!cpu_has_vmx_tpr_shadow())
1751
kvm_x86_ops->update_cr8_intercept = NULL;
1752
1753
if (enable_ept && !cpu_has_vmx_ept_2m_page())
1754
kvm_disable_largepages();
1755
1756
if (!cpu_has_vmx_ple())
1757
ple_gap = 0;
1758
1759
return alloc_kvm_area();
1760
}
1761
1762
static __exit void hardware_unsetup(void)
1763
{
1764
free_kvm_area();
1765
}
1766
1767
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1768
{
1769
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1770
1771
if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1772
vmcs_write16(sf->selector, save->selector);
1773
vmcs_writel(sf->base, save->base);
1774
vmcs_write32(sf->limit, save->limit);
1775
vmcs_write32(sf->ar_bytes, save->ar);
1776
} else {
1777
u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1778
<< AR_DPL_SHIFT;
1779
vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1780
}
1781
}
1782
1783
static void enter_pmode(struct kvm_vcpu *vcpu)
1784
{
1785
unsigned long flags;
1786
struct vcpu_vmx *vmx = to_vmx(vcpu);
1787
1788
vmx->emulation_required = 1;
1789
vmx->rmode.vm86_active = 0;
1790
1791
vmx_segment_cache_clear(vmx);
1792
1793
vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1794
vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1795
vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1796
vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1797
1798
flags = vmcs_readl(GUEST_RFLAGS);
1799
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1800
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1801
vmcs_writel(GUEST_RFLAGS, flags);
1802
1803
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1804
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1805
1806
update_exception_bitmap(vcpu);
1807
1808
if (emulate_invalid_guest_state)
1809
return;
1810
1811
fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1812
fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1813
fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1814
fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1815
1816
vmx_segment_cache_clear(vmx);
1817
1818
vmcs_write16(GUEST_SS_SELECTOR, 0);
1819
vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1820
1821
vmcs_write16(GUEST_CS_SELECTOR,
1822
vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1823
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1824
}
1825
1826
static gva_t rmode_tss_base(struct kvm *kvm)
1827
{
1828
if (!kvm->arch.tss_addr) {
1829
struct kvm_memslots *slots;
1830
gfn_t base_gfn;
1831
1832
slots = kvm_memslots(kvm);
1833
base_gfn = slots->memslots[0].base_gfn +
1834
kvm->memslots->memslots[0].npages - 3;
1835
return base_gfn << PAGE_SHIFT;
1836
}
1837
return kvm->arch.tss_addr;
1838
}
1839
1840
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1841
{
1842
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1843
1844
save->selector = vmcs_read16(sf->selector);
1845
save->base = vmcs_readl(sf->base);
1846
save->limit = vmcs_read32(sf->limit);
1847
save->ar = vmcs_read32(sf->ar_bytes);
1848
vmcs_write16(sf->selector, save->base >> 4);
1849
vmcs_write32(sf->base, save->base & 0xffff0);
1850
vmcs_write32(sf->limit, 0xffff);
1851
vmcs_write32(sf->ar_bytes, 0xf3);
1852
if (save->base & 0xf)
1853
printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1854
" aligned when entering protected mode (seg=%d)",
1855
seg);
1856
}
1857
1858
static void enter_rmode(struct kvm_vcpu *vcpu)
1859
{
1860
unsigned long flags;
1861
struct vcpu_vmx *vmx = to_vmx(vcpu);
1862
1863
if (enable_unrestricted_guest)
1864
return;
1865
1866
vmx->emulation_required = 1;
1867
vmx->rmode.vm86_active = 1;
1868
1869
/*
1870
* Very old userspace does not call KVM_SET_TSS_ADDR before entering
1871
* vcpu. Call it here with phys address pointing 16M below 4G.
1872
*/
1873
if (!vcpu->kvm->arch.tss_addr) {
1874
printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
1875
"called before entering vcpu\n");
1876
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1877
vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
1878
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1879
}
1880
1881
vmx_segment_cache_clear(vmx);
1882
1883
vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1884
vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1885
vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1886
1887
vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1888
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1889
1890
vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1891
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1892
1893
flags = vmcs_readl(GUEST_RFLAGS);
1894
vmx->rmode.save_rflags = flags;
1895
1896
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1897
1898
vmcs_writel(GUEST_RFLAGS, flags);
1899
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1900
update_exception_bitmap(vcpu);
1901
1902
if (emulate_invalid_guest_state)
1903
goto continue_rmode;
1904
1905
vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1906
vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1907
vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1908
1909
vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1910
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1911
if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1912
vmcs_writel(GUEST_CS_BASE, 0xf0000);
1913
vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1914
1915
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1916
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1917
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1918
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1919
1920
continue_rmode:
1921
kvm_mmu_reset_context(vcpu);
1922
}
1923
1924
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1925
{
1926
struct vcpu_vmx *vmx = to_vmx(vcpu);
1927
struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1928
1929
if (!msr)
1930
return;
1931
1932
/*
1933
* Force kernel_gs_base reloading before EFER changes, as control
1934
* of this msr depends on is_long_mode().
1935
*/
1936
vmx_load_host_state(to_vmx(vcpu));
1937
vcpu->arch.efer = efer;
1938
if (efer & EFER_LMA) {
1939
vmcs_write32(VM_ENTRY_CONTROLS,
1940
vmcs_read32(VM_ENTRY_CONTROLS) |
1941
VM_ENTRY_IA32E_MODE);
1942
msr->data = efer;
1943
} else {
1944
vmcs_write32(VM_ENTRY_CONTROLS,
1945
vmcs_read32(VM_ENTRY_CONTROLS) &
1946
~VM_ENTRY_IA32E_MODE);
1947
1948
msr->data = efer & ~EFER_LME;
1949
}
1950
setup_msrs(vmx);
1951
}
1952
1953
#ifdef CONFIG_X86_64
1954
1955
static void enter_lmode(struct kvm_vcpu *vcpu)
1956
{
1957
u32 guest_tr_ar;
1958
1959
vmx_segment_cache_clear(to_vmx(vcpu));
1960
1961
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1962
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1963
printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1964
__func__);
1965
vmcs_write32(GUEST_TR_AR_BYTES,
1966
(guest_tr_ar & ~AR_TYPE_MASK)
1967
| AR_TYPE_BUSY_64_TSS);
1968
}
1969
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1970
}
1971
1972
static void exit_lmode(struct kvm_vcpu *vcpu)
1973
{
1974
vmcs_write32(VM_ENTRY_CONTROLS,
1975
vmcs_read32(VM_ENTRY_CONTROLS)
1976
& ~VM_ENTRY_IA32E_MODE);
1977
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1978
}
1979
1980
#endif
1981
1982
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1983
{
1984
vpid_sync_context(to_vmx(vcpu));
1985
if (enable_ept) {
1986
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1987
return;
1988
ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1989
}
1990
}
1991
1992
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1993
{
1994
ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1995
1996
vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1997
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1998
}
1999
2000
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2001
{
2002
if (enable_ept && is_paging(vcpu))
2003
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2004
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2005
}
2006
2007
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2008
{
2009
ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2010
2011
vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2012
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2013
}
2014
2015
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2016
{
2017
if (!test_bit(VCPU_EXREG_PDPTR,
2018
(unsigned long *)&vcpu->arch.regs_dirty))
2019
return;
2020
2021
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2022
vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2023
vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2024
vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2025
vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2026
}
2027
}
2028
2029
static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2030
{
2031
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2032
vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2033
vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2034
vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2035
vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2036
}
2037
2038
__set_bit(VCPU_EXREG_PDPTR,
2039
(unsigned long *)&vcpu->arch.regs_avail);
2040
__set_bit(VCPU_EXREG_PDPTR,
2041
(unsigned long *)&vcpu->arch.regs_dirty);
2042
}
2043
2044
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2045
2046
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2047
unsigned long cr0,
2048
struct kvm_vcpu *vcpu)
2049
{
2050
if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2051
vmx_decache_cr3(vcpu);
2052
if (!(cr0 & X86_CR0_PG)) {
2053
/* From paging/starting to nonpaging */
2054
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2055
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2056
(CPU_BASED_CR3_LOAD_EXITING |
2057
CPU_BASED_CR3_STORE_EXITING));
2058
vcpu->arch.cr0 = cr0;
2059
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2060
} else if (!is_paging(vcpu)) {
2061
/* From nonpaging to paging */
2062
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2063
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2064
~(CPU_BASED_CR3_LOAD_EXITING |
2065
CPU_BASED_CR3_STORE_EXITING));
2066
vcpu->arch.cr0 = cr0;
2067
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2068
}
2069
2070
if (!(cr0 & X86_CR0_WP))
2071
*hw_cr0 &= ~X86_CR0_WP;
2072
}
2073
2074
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2075
{
2076
struct vcpu_vmx *vmx = to_vmx(vcpu);
2077
unsigned long hw_cr0;
2078
2079
if (enable_unrestricted_guest)
2080
hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2081
| KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2082
else
2083
hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2084
2085
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2086
enter_pmode(vcpu);
2087
2088
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2089
enter_rmode(vcpu);
2090
2091
#ifdef CONFIG_X86_64
2092
if (vcpu->arch.efer & EFER_LME) {
2093
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2094
enter_lmode(vcpu);
2095
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2096
exit_lmode(vcpu);
2097
}
2098
#endif
2099
2100
if (enable_ept)
2101
ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2102
2103
if (!vcpu->fpu_active)
2104
hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2105
2106
vmcs_writel(CR0_READ_SHADOW, cr0);
2107
vmcs_writel(GUEST_CR0, hw_cr0);
2108
vcpu->arch.cr0 = cr0;
2109
__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2110
}
2111
2112
static u64 construct_eptp(unsigned long root_hpa)
2113
{
2114
u64 eptp;
2115
2116
/* TODO write the value reading from MSR */
2117
eptp = VMX_EPT_DEFAULT_MT |
2118
VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2119
eptp |= (root_hpa & PAGE_MASK);
2120
2121
return eptp;
2122
}
2123
2124
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2125
{
2126
unsigned long guest_cr3;
2127
u64 eptp;
2128
2129
guest_cr3 = cr3;
2130
if (enable_ept) {
2131
eptp = construct_eptp(cr3);
2132
vmcs_write64(EPT_POINTER, eptp);
2133
guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2134
vcpu->kvm->arch.ept_identity_map_addr;
2135
ept_load_pdptrs(vcpu);
2136
}
2137
2138
vmx_flush_tlb(vcpu);
2139
vmcs_writel(GUEST_CR3, guest_cr3);
2140
}
2141
2142
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2143
{
2144
unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2145
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2146
2147
vcpu->arch.cr4 = cr4;
2148
if (enable_ept) {
2149
if (!is_paging(vcpu)) {
2150
hw_cr4 &= ~X86_CR4_PAE;
2151
hw_cr4 |= X86_CR4_PSE;
2152
} else if (!(cr4 & X86_CR4_PAE)) {
2153
hw_cr4 &= ~X86_CR4_PAE;
2154
}
2155
}
2156
2157
vmcs_writel(CR4_READ_SHADOW, cr4);
2158
vmcs_writel(GUEST_CR4, hw_cr4);
2159
}
2160
2161
static void vmx_get_segment(struct kvm_vcpu *vcpu,
2162
struct kvm_segment *var, int seg)
2163
{
2164
struct vcpu_vmx *vmx = to_vmx(vcpu);
2165
struct kvm_save_segment *save;
2166
u32 ar;
2167
2168
if (vmx->rmode.vm86_active
2169
&& (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2170
|| seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2171
|| seg == VCPU_SREG_GS)
2172
&& !emulate_invalid_guest_state) {
2173
switch (seg) {
2174
case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2175
case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2176
case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2177
case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2178
case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2179
default: BUG();
2180
}
2181
var->selector = save->selector;
2182
var->base = save->base;
2183
var->limit = save->limit;
2184
ar = save->ar;
2185
if (seg == VCPU_SREG_TR
2186
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
2187
goto use_saved_rmode_seg;
2188
}
2189
var->base = vmx_read_guest_seg_base(vmx, seg);
2190
var->limit = vmx_read_guest_seg_limit(vmx, seg);
2191
var->selector = vmx_read_guest_seg_selector(vmx, seg);
2192
ar = vmx_read_guest_seg_ar(vmx, seg);
2193
use_saved_rmode_seg:
2194
if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2195
ar = 0;
2196
var->type = ar & 15;
2197
var->s = (ar >> 4) & 1;
2198
var->dpl = (ar >> 5) & 3;
2199
var->present = (ar >> 7) & 1;
2200
var->avl = (ar >> 12) & 1;
2201
var->l = (ar >> 13) & 1;
2202
var->db = (ar >> 14) & 1;
2203
var->g = (ar >> 15) & 1;
2204
var->unusable = (ar >> 16) & 1;
2205
}
2206
2207
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2208
{
2209
struct kvm_segment s;
2210
2211
if (to_vmx(vcpu)->rmode.vm86_active) {
2212
vmx_get_segment(vcpu, &s, seg);
2213
return s.base;
2214
}
2215
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2216
}
2217
2218
static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2219
{
2220
if (!is_protmode(vcpu))
2221
return 0;
2222
2223
if (!is_long_mode(vcpu)
2224
&& (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2225
return 3;
2226
2227
return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2228
}
2229
2230
static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2231
{
2232
if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2233
__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2234
to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2235
}
2236
return to_vmx(vcpu)->cpl;
2237
}
2238
2239
2240
static u32 vmx_segment_access_rights(struct kvm_segment *var)
2241
{
2242
u32 ar;
2243
2244
if (var->unusable)
2245
ar = 1 << 16;
2246
else {
2247
ar = var->type & 15;
2248
ar |= (var->s & 1) << 4;
2249
ar |= (var->dpl & 3) << 5;
2250
ar |= (var->present & 1) << 7;
2251
ar |= (var->avl & 1) << 12;
2252
ar |= (var->l & 1) << 13;
2253
ar |= (var->db & 1) << 14;
2254
ar |= (var->g & 1) << 15;
2255
}
2256
if (ar == 0) /* a 0 value means unusable */
2257
ar = AR_UNUSABLE_MASK;
2258
2259
return ar;
2260
}
2261
2262
static void vmx_set_segment(struct kvm_vcpu *vcpu,
2263
struct kvm_segment *var, int seg)
2264
{
2265
struct vcpu_vmx *vmx = to_vmx(vcpu);
2266
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2267
u32 ar;
2268
2269
vmx_segment_cache_clear(vmx);
2270
2271
if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2272
vmcs_write16(sf->selector, var->selector);
2273
vmx->rmode.tr.selector = var->selector;
2274
vmx->rmode.tr.base = var->base;
2275
vmx->rmode.tr.limit = var->limit;
2276
vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2277
return;
2278
}
2279
vmcs_writel(sf->base, var->base);
2280
vmcs_write32(sf->limit, var->limit);
2281
vmcs_write16(sf->selector, var->selector);
2282
if (vmx->rmode.vm86_active && var->s) {
2283
/*
2284
* Hack real-mode segments into vm86 compatibility.
2285
*/
2286
if (var->base == 0xffff0000 && var->selector == 0xf000)
2287
vmcs_writel(sf->base, 0xf0000);
2288
ar = 0xf3;
2289
} else
2290
ar = vmx_segment_access_rights(var);
2291
2292
/*
2293
* Fix the "Accessed" bit in AR field of segment registers for older
2294
* qemu binaries.
2295
* IA32 arch specifies that at the time of processor reset the
2296
* "Accessed" bit in the AR field of segment registers is 1. And qemu
2297
* is setting it to 0 in the usedland code. This causes invalid guest
2298
* state vmexit when "unrestricted guest" mode is turned on.
2299
* Fix for this setup issue in cpu_reset is being pushed in the qemu
2300
* tree. Newer qemu binaries with that qemu fix would not need this
2301
* kvm hack.
2302
*/
2303
if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2304
ar |= 0x1; /* Accessed */
2305
2306
vmcs_write32(sf->ar_bytes, ar);
2307
__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2308
}
2309
2310
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2311
{
2312
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
2313
2314
*db = (ar >> 14) & 1;
2315
*l = (ar >> 13) & 1;
2316
}
2317
2318
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2319
{
2320
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2321
dt->address = vmcs_readl(GUEST_IDTR_BASE);
2322
}
2323
2324
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2325
{
2326
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2327
vmcs_writel(GUEST_IDTR_BASE, dt->address);
2328
}
2329
2330
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2331
{
2332
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2333
dt->address = vmcs_readl(GUEST_GDTR_BASE);
2334
}
2335
2336
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2337
{
2338
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2339
vmcs_writel(GUEST_GDTR_BASE, dt->address);
2340
}
2341
2342
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2343
{
2344
struct kvm_segment var;
2345
u32 ar;
2346
2347
vmx_get_segment(vcpu, &var, seg);
2348
ar = vmx_segment_access_rights(&var);
2349
2350
if (var.base != (var.selector << 4))
2351
return false;
2352
if (var.limit != 0xffff)
2353
return false;
2354
if (ar != 0xf3)
2355
return false;
2356
2357
return true;
2358
}
2359
2360
static bool code_segment_valid(struct kvm_vcpu *vcpu)
2361
{
2362
struct kvm_segment cs;
2363
unsigned int cs_rpl;
2364
2365
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2366
cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2367
2368
if (cs.unusable)
2369
return false;
2370
if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2371
return false;
2372
if (!cs.s)
2373
return false;
2374
if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2375
if (cs.dpl > cs_rpl)
2376
return false;
2377
} else {
2378
if (cs.dpl != cs_rpl)
2379
return false;
2380
}
2381
if (!cs.present)
2382
return false;
2383
2384
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2385
return true;
2386
}
2387
2388
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2389
{
2390
struct kvm_segment ss;
2391
unsigned int ss_rpl;
2392
2393
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2394
ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2395
2396
if (ss.unusable)
2397
return true;
2398
if (ss.type != 3 && ss.type != 7)
2399
return false;
2400
if (!ss.s)
2401
return false;
2402
if (ss.dpl != ss_rpl) /* DPL != RPL */
2403
return false;
2404
if (!ss.present)
2405
return false;
2406
2407
return true;
2408
}
2409
2410
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2411
{
2412
struct kvm_segment var;
2413
unsigned int rpl;
2414
2415
vmx_get_segment(vcpu, &var, seg);
2416
rpl = var.selector & SELECTOR_RPL_MASK;
2417
2418
if (var.unusable)
2419
return true;
2420
if (!var.s)
2421
return false;
2422
if (!var.present)
2423
return false;
2424
if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2425
if (var.dpl < rpl) /* DPL < RPL */
2426
return false;
2427
}
2428
2429
/* TODO: Add other members to kvm_segment_field to allow checking for other access
2430
* rights flags
2431
*/
2432
return true;
2433
}
2434
2435
static bool tr_valid(struct kvm_vcpu *vcpu)
2436
{
2437
struct kvm_segment tr;
2438
2439
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2440
2441
if (tr.unusable)
2442
return false;
2443
if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2444
return false;
2445
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2446
return false;
2447
if (!tr.present)
2448
return false;
2449
2450
return true;
2451
}
2452
2453
static bool ldtr_valid(struct kvm_vcpu *vcpu)
2454
{
2455
struct kvm_segment ldtr;
2456
2457
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2458
2459
if (ldtr.unusable)
2460
return true;
2461
if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2462
return false;
2463
if (ldtr.type != 2)
2464
return false;
2465
if (!ldtr.present)
2466
return false;
2467
2468
return true;
2469
}
2470
2471
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2472
{
2473
struct kvm_segment cs, ss;
2474
2475
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2476
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2477
2478
return ((cs.selector & SELECTOR_RPL_MASK) ==
2479
(ss.selector & SELECTOR_RPL_MASK));
2480
}
2481
2482
/*
2483
* Check if guest state is valid. Returns true if valid, false if
2484
* not.
2485
* We assume that registers are always usable
2486
*/
2487
static bool guest_state_valid(struct kvm_vcpu *vcpu)
2488
{
2489
/* real mode guest state checks */
2490
if (!is_protmode(vcpu)) {
2491
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2492
return false;
2493
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2494
return false;
2495
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2496
return false;
2497
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2498
return false;
2499
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2500
return false;
2501
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2502
return false;
2503
} else {
2504
/* protected mode guest state checks */
2505
if (!cs_ss_rpl_check(vcpu))
2506
return false;
2507
if (!code_segment_valid(vcpu))
2508
return false;
2509
if (!stack_segment_valid(vcpu))
2510
return false;
2511
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2512
return false;
2513
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2514
return false;
2515
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2516
return false;
2517
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2518
return false;
2519
if (!tr_valid(vcpu))
2520
return false;
2521
if (!ldtr_valid(vcpu))
2522
return false;
2523
}
2524
/* TODO:
2525
* - Add checks on RIP
2526
* - Add checks on RFLAGS
2527
*/
2528
2529
return true;
2530
}
2531
2532
static int init_rmode_tss(struct kvm *kvm)
2533
{
2534
gfn_t fn;
2535
u16 data = 0;
2536
int r, idx, ret = 0;
2537
2538
idx = srcu_read_lock(&kvm->srcu);
2539
fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2540
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2541
if (r < 0)
2542
goto out;
2543
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2544
r = kvm_write_guest_page(kvm, fn++, &data,
2545
TSS_IOPB_BASE_OFFSET, sizeof(u16));
2546
if (r < 0)
2547
goto out;
2548
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2549
if (r < 0)
2550
goto out;
2551
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2552
if (r < 0)
2553
goto out;
2554
data = ~0;
2555
r = kvm_write_guest_page(kvm, fn, &data,
2556
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2557
sizeof(u8));
2558
if (r < 0)
2559
goto out;
2560
2561
ret = 1;
2562
out:
2563
srcu_read_unlock(&kvm->srcu, idx);
2564
return ret;
2565
}
2566
2567
static int init_rmode_identity_map(struct kvm *kvm)
2568
{
2569
int i, idx, r, ret;
2570
pfn_t identity_map_pfn;
2571
u32 tmp;
2572
2573
if (!enable_ept)
2574
return 1;
2575
if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2576
printk(KERN_ERR "EPT: identity-mapping pagetable "
2577
"haven't been allocated!\n");
2578
return 0;
2579
}
2580
if (likely(kvm->arch.ept_identity_pagetable_done))
2581
return 1;
2582
ret = 0;
2583
identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2584
idx = srcu_read_lock(&kvm->srcu);
2585
r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2586
if (r < 0)
2587
goto out;
2588
/* Set up identity-mapping pagetable for EPT in real mode */
2589
for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2590
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2591
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2592
r = kvm_write_guest_page(kvm, identity_map_pfn,
2593
&tmp, i * sizeof(tmp), sizeof(tmp));
2594
if (r < 0)
2595
goto out;
2596
}
2597
kvm->arch.ept_identity_pagetable_done = true;
2598
ret = 1;
2599
out:
2600
srcu_read_unlock(&kvm->srcu, idx);
2601
return ret;
2602
}
2603
2604
static void seg_setup(int seg)
2605
{
2606
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2607
unsigned int ar;
2608
2609
vmcs_write16(sf->selector, 0);
2610
vmcs_writel(sf->base, 0);
2611
vmcs_write32(sf->limit, 0xffff);
2612
if (enable_unrestricted_guest) {
2613
ar = 0x93;
2614
if (seg == VCPU_SREG_CS)
2615
ar |= 0x08; /* code segment */
2616
} else
2617
ar = 0xf3;
2618
2619
vmcs_write32(sf->ar_bytes, ar);
2620
}
2621
2622
static int alloc_apic_access_page(struct kvm *kvm)
2623
{
2624
struct kvm_userspace_memory_region kvm_userspace_mem;
2625
int r = 0;
2626
2627
mutex_lock(&kvm->slots_lock);
2628
if (kvm->arch.apic_access_page)
2629
goto out;
2630
kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2631
kvm_userspace_mem.flags = 0;
2632
kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2633
kvm_userspace_mem.memory_size = PAGE_SIZE;
2634
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2635
if (r)
2636
goto out;
2637
2638
kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2639
out:
2640
mutex_unlock(&kvm->slots_lock);
2641
return r;
2642
}
2643
2644
static int alloc_identity_pagetable(struct kvm *kvm)
2645
{
2646
struct kvm_userspace_memory_region kvm_userspace_mem;
2647
int r = 0;
2648
2649
mutex_lock(&kvm->slots_lock);
2650
if (kvm->arch.ept_identity_pagetable)
2651
goto out;
2652
kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2653
kvm_userspace_mem.flags = 0;
2654
kvm_userspace_mem.guest_phys_addr =
2655
kvm->arch.ept_identity_map_addr;
2656
kvm_userspace_mem.memory_size = PAGE_SIZE;
2657
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2658
if (r)
2659
goto out;
2660
2661
kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2662
kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2663
out:
2664
mutex_unlock(&kvm->slots_lock);
2665
return r;
2666
}
2667
2668
static void allocate_vpid(struct vcpu_vmx *vmx)
2669
{
2670
int vpid;
2671
2672
vmx->vpid = 0;
2673
if (!enable_vpid)
2674
return;
2675
spin_lock(&vmx_vpid_lock);
2676
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2677
if (vpid < VMX_NR_VPIDS) {
2678
vmx->vpid = vpid;
2679
__set_bit(vpid, vmx_vpid_bitmap);
2680
}
2681
spin_unlock(&vmx_vpid_lock);
2682
}
2683
2684
static void free_vpid(struct vcpu_vmx *vmx)
2685
{
2686
if (!enable_vpid)
2687
return;
2688
spin_lock(&vmx_vpid_lock);
2689
if (vmx->vpid != 0)
2690
__clear_bit(vmx->vpid, vmx_vpid_bitmap);
2691
spin_unlock(&vmx_vpid_lock);
2692
}
2693
2694
static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2695
{
2696
int f = sizeof(unsigned long);
2697
2698
if (!cpu_has_vmx_msr_bitmap())
2699
return;
2700
2701
/*
2702
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2703
* have the write-low and read-high bitmap offsets the wrong way round.
2704
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2705
*/
2706
if (msr <= 0x1fff) {
2707
__clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2708
__clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2709
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2710
msr &= 0x1fff;
2711
__clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2712
__clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2713
}
2714
}
2715
2716
static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2717
{
2718
if (!longmode_only)
2719
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2720
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2721
}
2722
2723
/*
2724
* Sets up the vmcs for emulated real mode.
2725
*/
2726
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2727
{
2728
u32 host_sysenter_cs, msr_low, msr_high;
2729
u32 junk;
2730
u64 host_pat;
2731
unsigned long a;
2732
struct desc_ptr dt;
2733
int i;
2734
unsigned long kvm_vmx_return;
2735
u32 exec_control;
2736
2737
/* I/O */
2738
vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2739
vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2740
2741
if (cpu_has_vmx_msr_bitmap())
2742
vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2743
2744
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2745
2746
/* Control */
2747
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2748
vmcs_config.pin_based_exec_ctrl);
2749
2750
exec_control = vmcs_config.cpu_based_exec_ctrl;
2751
if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2752
exec_control &= ~CPU_BASED_TPR_SHADOW;
2753
#ifdef CONFIG_X86_64
2754
exec_control |= CPU_BASED_CR8_STORE_EXITING |
2755
CPU_BASED_CR8_LOAD_EXITING;
2756
#endif
2757
}
2758
if (!enable_ept)
2759
exec_control |= CPU_BASED_CR3_STORE_EXITING |
2760
CPU_BASED_CR3_LOAD_EXITING |
2761
CPU_BASED_INVLPG_EXITING;
2762
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2763
2764
if (cpu_has_secondary_exec_ctrls()) {
2765
exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2766
if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2767
exec_control &=
2768
~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2769
if (vmx->vpid == 0)
2770
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2771
if (!enable_ept) {
2772
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2773
enable_unrestricted_guest = 0;
2774
}
2775
if (!enable_unrestricted_guest)
2776
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2777
if (!ple_gap)
2778
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2779
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2780
}
2781
2782
if (ple_gap) {
2783
vmcs_write32(PLE_GAP, ple_gap);
2784
vmcs_write32(PLE_WINDOW, ple_window);
2785
}
2786
2787
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2788
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2789
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2790
2791
vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
2792
vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2793
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2794
2795
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2796
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2797
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2798
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
2799
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
2800
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2801
#ifdef CONFIG_X86_64
2802
rdmsrl(MSR_FS_BASE, a);
2803
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2804
rdmsrl(MSR_GS_BASE, a);
2805
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2806
#else
2807
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2808
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2809
#endif
2810
2811
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2812
2813
native_store_idt(&dt);
2814
vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
2815
2816
asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2817
vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2818
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2819
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2820
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2821
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2822
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2823
2824
rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2825
vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2826
rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2827
vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2828
rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2829
vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2830
2831
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2832
rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2833
host_pat = msr_low | ((u64) msr_high << 32);
2834
vmcs_write64(HOST_IA32_PAT, host_pat);
2835
}
2836
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2837
rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2838
host_pat = msr_low | ((u64) msr_high << 32);
2839
/* Write the default value follow host pat */
2840
vmcs_write64(GUEST_IA32_PAT, host_pat);
2841
/* Keep arch.pat sync with GUEST_IA32_PAT */
2842
vmx->vcpu.arch.pat = host_pat;
2843
}
2844
2845
for (i = 0; i < NR_VMX_MSR; ++i) {
2846
u32 index = vmx_msr_index[i];
2847
u32 data_low, data_high;
2848
int j = vmx->nmsrs;
2849
2850
if (rdmsr_safe(index, &data_low, &data_high) < 0)
2851
continue;
2852
if (wrmsr_safe(index, data_low, data_high) < 0)
2853
continue;
2854
vmx->guest_msrs[j].index = i;
2855
vmx->guest_msrs[j].data = 0;
2856
vmx->guest_msrs[j].mask = -1ull;
2857
++vmx->nmsrs;
2858
}
2859
2860
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2861
2862
/* 22.2.1, 20.8.1 */
2863
vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2864
2865
vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2866
vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2867
if (enable_ept)
2868
vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2869
vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2870
2871
kvm_write_tsc(&vmx->vcpu, 0);
2872
2873
return 0;
2874
}
2875
2876
static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2877
{
2878
struct vcpu_vmx *vmx = to_vmx(vcpu);
2879
u64 msr;
2880
int ret;
2881
2882
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2883
2884
vmx->rmode.vm86_active = 0;
2885
2886
vmx->soft_vnmi_blocked = 0;
2887
2888
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2889
kvm_set_cr8(&vmx->vcpu, 0);
2890
msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2891
if (kvm_vcpu_is_bsp(&vmx->vcpu))
2892
msr |= MSR_IA32_APICBASE_BSP;
2893
kvm_set_apic_base(&vmx->vcpu, msr);
2894
2895
ret = fx_init(&vmx->vcpu);
2896
if (ret != 0)
2897
goto out;
2898
2899
vmx_segment_cache_clear(vmx);
2900
2901
seg_setup(VCPU_SREG_CS);
2902
/*
2903
* GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2904
* insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2905
*/
2906
if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2907
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2908
vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2909
} else {
2910
vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2911
vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2912
}
2913
2914
seg_setup(VCPU_SREG_DS);
2915
seg_setup(VCPU_SREG_ES);
2916
seg_setup(VCPU_SREG_FS);
2917
seg_setup(VCPU_SREG_GS);
2918
seg_setup(VCPU_SREG_SS);
2919
2920
vmcs_write16(GUEST_TR_SELECTOR, 0);
2921
vmcs_writel(GUEST_TR_BASE, 0);
2922
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2923
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2924
2925
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2926
vmcs_writel(GUEST_LDTR_BASE, 0);
2927
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2928
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2929
2930
vmcs_write32(GUEST_SYSENTER_CS, 0);
2931
vmcs_writel(GUEST_SYSENTER_ESP, 0);
2932
vmcs_writel(GUEST_SYSENTER_EIP, 0);
2933
2934
vmcs_writel(GUEST_RFLAGS, 0x02);
2935
if (kvm_vcpu_is_bsp(&vmx->vcpu))
2936
kvm_rip_write(vcpu, 0xfff0);
2937
else
2938
kvm_rip_write(vcpu, 0);
2939
kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2940
2941
vmcs_writel(GUEST_DR7, 0x400);
2942
2943
vmcs_writel(GUEST_GDTR_BASE, 0);
2944
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2945
2946
vmcs_writel(GUEST_IDTR_BASE, 0);
2947
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2948
2949
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2950
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2951
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2952
2953
/* Special registers */
2954
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2955
2956
setup_msrs(vmx);
2957
2958
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2959
2960
if (cpu_has_vmx_tpr_shadow()) {
2961
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2962
if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2963
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2964
__pa(vmx->vcpu.arch.apic->regs));
2965
vmcs_write32(TPR_THRESHOLD, 0);
2966
}
2967
2968
if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2969
vmcs_write64(APIC_ACCESS_ADDR,
2970
page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2971
2972
if (vmx->vpid != 0)
2973
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2974
2975
vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2976
vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2977
vmx_set_cr4(&vmx->vcpu, 0);
2978
vmx_set_efer(&vmx->vcpu, 0);
2979
vmx_fpu_activate(&vmx->vcpu);
2980
update_exception_bitmap(&vmx->vcpu);
2981
2982
vpid_sync_context(vmx);
2983
2984
ret = 0;
2985
2986
/* HACK: Don't enable emulation on guest boot/reset */
2987
vmx->emulation_required = 0;
2988
2989
out:
2990
return ret;
2991
}
2992
2993
static void enable_irq_window(struct kvm_vcpu *vcpu)
2994
{
2995
u32 cpu_based_vm_exec_control;
2996
2997
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2998
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2999
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3000
}
3001
3002
static void enable_nmi_window(struct kvm_vcpu *vcpu)
3003
{
3004
u32 cpu_based_vm_exec_control;
3005
3006
if (!cpu_has_virtual_nmis()) {
3007
enable_irq_window(vcpu);
3008
return;
3009
}
3010
3011
if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3012
enable_irq_window(vcpu);
3013
return;
3014
}
3015
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3016
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3017
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3018
}
3019
3020
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3021
{
3022
struct vcpu_vmx *vmx = to_vmx(vcpu);
3023
uint32_t intr;
3024
int irq = vcpu->arch.interrupt.nr;
3025
3026
trace_kvm_inj_virq(irq);
3027
3028
++vcpu->stat.irq_injections;
3029
if (vmx->rmode.vm86_active) {
3030
int inc_eip = 0;
3031
if (vcpu->arch.interrupt.soft)
3032
inc_eip = vcpu->arch.event_exit_inst_len;
3033
if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3034
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3035
return;
3036
}
3037
intr = irq | INTR_INFO_VALID_MASK;
3038
if (vcpu->arch.interrupt.soft) {
3039
intr |= INTR_TYPE_SOFT_INTR;
3040
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3041
vmx->vcpu.arch.event_exit_inst_len);
3042
} else
3043
intr |= INTR_TYPE_EXT_INTR;
3044
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3045
vmx_clear_hlt(vcpu);
3046
}
3047
3048
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3049
{
3050
struct vcpu_vmx *vmx = to_vmx(vcpu);
3051
3052
if (!cpu_has_virtual_nmis()) {
3053
/*
3054
* Tracking the NMI-blocked state in software is built upon
3055
* finding the next open IRQ window. This, in turn, depends on
3056
* well-behaving guests: They have to keep IRQs disabled at
3057
* least as long as the NMI handler runs. Otherwise we may
3058
* cause NMI nesting, maybe breaking the guest. But as this is
3059
* highly unlikely, we can live with the residual risk.
3060
*/
3061
vmx->soft_vnmi_blocked = 1;
3062
vmx->vnmi_blocked_time = 0;
3063
}
3064
3065
++vcpu->stat.nmi_injections;
3066
vmx->nmi_known_unmasked = false;
3067
if (vmx->rmode.vm86_active) {
3068
if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3069
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3070
return;
3071
}
3072
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3073
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3074
vmx_clear_hlt(vcpu);
3075
}
3076
3077
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3078
{
3079
if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3080
return 0;
3081
3082
return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3083
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3084
| GUEST_INTR_STATE_NMI));
3085
}
3086
3087
static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3088
{
3089
if (!cpu_has_virtual_nmis())
3090
return to_vmx(vcpu)->soft_vnmi_blocked;
3091
if (to_vmx(vcpu)->nmi_known_unmasked)
3092
return false;
3093
return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3094
}
3095
3096
static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3097
{
3098
struct vcpu_vmx *vmx = to_vmx(vcpu);
3099
3100
if (!cpu_has_virtual_nmis()) {
3101
if (vmx->soft_vnmi_blocked != masked) {
3102
vmx->soft_vnmi_blocked = masked;
3103
vmx->vnmi_blocked_time = 0;
3104
}
3105
} else {
3106
vmx->nmi_known_unmasked = !masked;
3107
if (masked)
3108
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3109
GUEST_INTR_STATE_NMI);
3110
else
3111
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3112
GUEST_INTR_STATE_NMI);
3113
}
3114
}
3115
3116
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3117
{
3118
return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3119
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3120
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3121
}
3122
3123
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3124
{
3125
int ret;
3126
struct kvm_userspace_memory_region tss_mem = {
3127
.slot = TSS_PRIVATE_MEMSLOT,
3128
.guest_phys_addr = addr,
3129
.memory_size = PAGE_SIZE * 3,
3130
.flags = 0,
3131
};
3132
3133
ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3134
if (ret)
3135
return ret;
3136
kvm->arch.tss_addr = addr;
3137
if (!init_rmode_tss(kvm))
3138
return -ENOMEM;
3139
3140
return 0;
3141
}
3142
3143
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3144
int vec, u32 err_code)
3145
{
3146
/*
3147
* Instruction with address size override prefix opcode 0x67
3148
* Cause the #SS fault with 0 error code in VM86 mode.
3149
*/
3150
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3151
if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3152
return 1;
3153
/*
3154
* Forward all other exceptions that are valid in real mode.
3155
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
3156
* the required debugging infrastructure rework.
3157
*/
3158
switch (vec) {
3159
case DB_VECTOR:
3160
if (vcpu->guest_debug &
3161
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3162
return 0;
3163
kvm_queue_exception(vcpu, vec);
3164
return 1;
3165
case BP_VECTOR:
3166
/*
3167
* Update instruction length as we may reinject the exception
3168
* from user space while in guest debugging mode.
3169
*/
3170
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3171
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3172
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3173
return 0;
3174
/* fall through */
3175
case DE_VECTOR:
3176
case OF_VECTOR:
3177
case BR_VECTOR:
3178
case UD_VECTOR:
3179
case DF_VECTOR:
3180
case SS_VECTOR:
3181
case GP_VECTOR:
3182
case MF_VECTOR:
3183
kvm_queue_exception(vcpu, vec);
3184
return 1;
3185
}
3186
return 0;
3187
}
3188
3189
/*
3190
* Trigger machine check on the host. We assume all the MSRs are already set up
3191
* by the CPU and that we still run on the same CPU as the MCE occurred on.
3192
* We pass a fake environment to the machine check handler because we want
3193
* the guest to be always treated like user space, no matter what context
3194
* it used internally.
3195
*/
3196
static void kvm_machine_check(void)
3197
{
3198
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3199
struct pt_regs regs = {
3200
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
3201
.flags = X86_EFLAGS_IF,
3202
};
3203
3204
do_machine_check(&regs, 0);
3205
#endif
3206
}
3207
3208
static int handle_machine_check(struct kvm_vcpu *vcpu)
3209
{
3210
/* already handled by vcpu_run */
3211
return 1;
3212
}
3213
3214
static int handle_exception(struct kvm_vcpu *vcpu)
3215
{
3216
struct vcpu_vmx *vmx = to_vmx(vcpu);
3217
struct kvm_run *kvm_run = vcpu->run;
3218
u32 intr_info, ex_no, error_code;
3219
unsigned long cr2, rip, dr6;
3220
u32 vect_info;
3221
enum emulation_result er;
3222
3223
vect_info = vmx->idt_vectoring_info;
3224
intr_info = vmx->exit_intr_info;
3225
3226
if (is_machine_check(intr_info))
3227
return handle_machine_check(vcpu);
3228
3229
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3230
!is_page_fault(intr_info)) {
3231
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3232
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3233
vcpu->run->internal.ndata = 2;
3234
vcpu->run->internal.data[0] = vect_info;
3235
vcpu->run->internal.data[1] = intr_info;
3236
return 0;
3237
}
3238
3239
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3240
return 1; /* already handled by vmx_vcpu_run() */
3241
3242
if (is_no_device(intr_info)) {
3243
vmx_fpu_activate(vcpu);
3244
return 1;
3245
}
3246
3247
if (is_invalid_opcode(intr_info)) {
3248
er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3249
if (er != EMULATE_DONE)
3250
kvm_queue_exception(vcpu, UD_VECTOR);
3251
return 1;
3252
}
3253
3254
error_code = 0;
3255
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3256
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3257
if (is_page_fault(intr_info)) {
3258
/* EPT won't cause page fault directly */
3259
if (enable_ept)
3260
BUG();
3261
cr2 = vmcs_readl(EXIT_QUALIFICATION);
3262
trace_kvm_page_fault(cr2, error_code);
3263
3264
if (kvm_event_needs_reinjection(vcpu))
3265
kvm_mmu_unprotect_page_virt(vcpu, cr2);
3266
return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3267
}
3268
3269
if (vmx->rmode.vm86_active &&
3270
handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3271
error_code)) {
3272
if (vcpu->arch.halt_request) {
3273
vcpu->arch.halt_request = 0;
3274
return kvm_emulate_halt(vcpu);
3275
}
3276
return 1;
3277
}
3278
3279
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3280
switch (ex_no) {
3281
case DB_VECTOR:
3282
dr6 = vmcs_readl(EXIT_QUALIFICATION);
3283
if (!(vcpu->guest_debug &
3284
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3285
vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3286
kvm_queue_exception(vcpu, DB_VECTOR);
3287
return 1;
3288
}
3289
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3290
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3291
/* fall through */
3292
case BP_VECTOR:
3293
/*
3294
* Update instruction length as we may reinject #BP from
3295
* user space while in guest debugging mode. Reading it for
3296
* #DB as well causes no harm, it is not used in that case.
3297
*/
3298
vmx->vcpu.arch.event_exit_inst_len =
3299
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3300
kvm_run->exit_reason = KVM_EXIT_DEBUG;
3301
rip = kvm_rip_read(vcpu);
3302
kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3303
kvm_run->debug.arch.exception = ex_no;
3304
break;
3305
default:
3306
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3307
kvm_run->ex.exception = ex_no;
3308
kvm_run->ex.error_code = error_code;
3309
break;
3310
}
3311
return 0;
3312
}
3313
3314
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3315
{
3316
++vcpu->stat.irq_exits;
3317
return 1;
3318
}
3319
3320
static int handle_triple_fault(struct kvm_vcpu *vcpu)
3321
{
3322
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3323
return 0;
3324
}
3325
3326
static int handle_io(struct kvm_vcpu *vcpu)
3327
{
3328
unsigned long exit_qualification;
3329
int size, in, string;
3330
unsigned port;
3331
3332
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3333
string = (exit_qualification & 16) != 0;
3334
in = (exit_qualification & 8) != 0;
3335
3336
++vcpu->stat.io_exits;
3337
3338
if (string || in)
3339
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3340
3341
port = exit_qualification >> 16;
3342
size = (exit_qualification & 7) + 1;
3343
skip_emulated_instruction(vcpu);
3344
3345
return kvm_fast_pio_out(vcpu, size, port);
3346
}
3347
3348
static void
3349
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3350
{
3351
/*
3352
* Patch in the VMCALL instruction:
3353
*/
3354
hypercall[0] = 0x0f;
3355
hypercall[1] = 0x01;
3356
hypercall[2] = 0xc1;
3357
}
3358
3359
static int handle_cr(struct kvm_vcpu *vcpu)
3360
{
3361
unsigned long exit_qualification, val;
3362
int cr;
3363
int reg;
3364
int err;
3365
3366
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3367
cr = exit_qualification & 15;
3368
reg = (exit_qualification >> 8) & 15;
3369
switch ((exit_qualification >> 4) & 3) {
3370
case 0: /* mov to cr */
3371
val = kvm_register_read(vcpu, reg);
3372
trace_kvm_cr_write(cr, val);
3373
switch (cr) {
3374
case 0:
3375
err = kvm_set_cr0(vcpu, val);
3376
kvm_complete_insn_gp(vcpu, err);
3377
return 1;
3378
case 3:
3379
err = kvm_set_cr3(vcpu, val);
3380
kvm_complete_insn_gp(vcpu, err);
3381
return 1;
3382
case 4:
3383
err = kvm_set_cr4(vcpu, val);
3384
kvm_complete_insn_gp(vcpu, err);
3385
return 1;
3386
case 8: {
3387
u8 cr8_prev = kvm_get_cr8(vcpu);
3388
u8 cr8 = kvm_register_read(vcpu, reg);
3389
err = kvm_set_cr8(vcpu, cr8);
3390
kvm_complete_insn_gp(vcpu, err);
3391
if (irqchip_in_kernel(vcpu->kvm))
3392
return 1;
3393
if (cr8_prev <= cr8)
3394
return 1;
3395
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3396
return 0;
3397
}
3398
};
3399
break;
3400
case 2: /* clts */
3401
vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3402
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3403
skip_emulated_instruction(vcpu);
3404
vmx_fpu_activate(vcpu);
3405
return 1;
3406
case 1: /*mov from cr*/
3407
switch (cr) {
3408
case 3:
3409
val = kvm_read_cr3(vcpu);
3410
kvm_register_write(vcpu, reg, val);
3411
trace_kvm_cr_read(cr, val);
3412
skip_emulated_instruction(vcpu);
3413
return 1;
3414
case 8:
3415
val = kvm_get_cr8(vcpu);
3416
kvm_register_write(vcpu, reg, val);
3417
trace_kvm_cr_read(cr, val);
3418
skip_emulated_instruction(vcpu);
3419
return 1;
3420
}
3421
break;
3422
case 3: /* lmsw */
3423
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3424
trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3425
kvm_lmsw(vcpu, val);
3426
3427
skip_emulated_instruction(vcpu);
3428
return 1;
3429
default:
3430
break;
3431
}
3432
vcpu->run->exit_reason = 0;
3433
pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3434
(int)(exit_qualification >> 4) & 3, cr);
3435
return 0;
3436
}
3437
3438
static int handle_dr(struct kvm_vcpu *vcpu)
3439
{
3440
unsigned long exit_qualification;
3441
int dr, reg;
3442
3443
/* Do not handle if the CPL > 0, will trigger GP on re-entry */
3444
if (!kvm_require_cpl(vcpu, 0))
3445
return 1;
3446
dr = vmcs_readl(GUEST_DR7);
3447
if (dr & DR7_GD) {
3448
/*
3449
* As the vm-exit takes precedence over the debug trap, we
3450
* need to emulate the latter, either for the host or the
3451
* guest debugging itself.
3452
*/
3453
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3454
vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3455
vcpu->run->debug.arch.dr7 = dr;
3456
vcpu->run->debug.arch.pc =
3457
vmcs_readl(GUEST_CS_BASE) +
3458
vmcs_readl(GUEST_RIP);
3459
vcpu->run->debug.arch.exception = DB_VECTOR;
3460
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3461
return 0;
3462
} else {
3463
vcpu->arch.dr7 &= ~DR7_GD;
3464
vcpu->arch.dr6 |= DR6_BD;
3465
vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3466
kvm_queue_exception(vcpu, DB_VECTOR);
3467
return 1;
3468
}
3469
}
3470
3471
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3472
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3473
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3474
if (exit_qualification & TYPE_MOV_FROM_DR) {
3475
unsigned long val;
3476
if (!kvm_get_dr(vcpu, dr, &val))
3477
kvm_register_write(vcpu, reg, val);
3478
} else
3479
kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3480
skip_emulated_instruction(vcpu);
3481
return 1;
3482
}
3483
3484
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3485
{
3486
vmcs_writel(GUEST_DR7, val);
3487
}
3488
3489
static int handle_cpuid(struct kvm_vcpu *vcpu)
3490
{
3491
kvm_emulate_cpuid(vcpu);
3492
return 1;
3493
}
3494
3495
static int handle_rdmsr(struct kvm_vcpu *vcpu)
3496
{
3497
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3498
u64 data;
3499
3500
if (vmx_get_msr(vcpu, ecx, &data)) {
3501
trace_kvm_msr_read_ex(ecx);
3502
kvm_inject_gp(vcpu, 0);
3503
return 1;
3504
}
3505
3506
trace_kvm_msr_read(ecx, data);
3507
3508
/* FIXME: handling of bits 32:63 of rax, rdx */
3509
vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3510
vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3511
skip_emulated_instruction(vcpu);
3512
return 1;
3513
}
3514
3515
static int handle_wrmsr(struct kvm_vcpu *vcpu)
3516
{
3517
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3518
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3519
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3520
3521
if (vmx_set_msr(vcpu, ecx, data) != 0) {
3522
trace_kvm_msr_write_ex(ecx, data);
3523
kvm_inject_gp(vcpu, 0);
3524
return 1;
3525
}
3526
3527
trace_kvm_msr_write(ecx, data);
3528
skip_emulated_instruction(vcpu);
3529
return 1;
3530
}
3531
3532
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3533
{
3534
kvm_make_request(KVM_REQ_EVENT, vcpu);
3535
return 1;
3536
}
3537
3538
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3539
{
3540
u32 cpu_based_vm_exec_control;
3541
3542
/* clear pending irq */
3543
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3544
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3545
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3546
3547
kvm_make_request(KVM_REQ_EVENT, vcpu);
3548
3549
++vcpu->stat.irq_window_exits;
3550
3551
/*
3552
* If the user space waits to inject interrupts, exit as soon as
3553
* possible
3554
*/
3555
if (!irqchip_in_kernel(vcpu->kvm) &&
3556
vcpu->run->request_interrupt_window &&
3557
!kvm_cpu_has_interrupt(vcpu)) {
3558
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3559
return 0;
3560
}
3561
return 1;
3562
}
3563
3564
static int handle_halt(struct kvm_vcpu *vcpu)
3565
{
3566
skip_emulated_instruction(vcpu);
3567
return kvm_emulate_halt(vcpu);
3568
}
3569
3570
static int handle_vmcall(struct kvm_vcpu *vcpu)
3571
{
3572
skip_emulated_instruction(vcpu);
3573
kvm_emulate_hypercall(vcpu);
3574
return 1;
3575
}
3576
3577
static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3578
{
3579
kvm_queue_exception(vcpu, UD_VECTOR);
3580
return 1;
3581
}
3582
3583
static int handle_invd(struct kvm_vcpu *vcpu)
3584
{
3585
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3586
}
3587
3588
static int handle_invlpg(struct kvm_vcpu *vcpu)
3589
{
3590
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3591
3592
kvm_mmu_invlpg(vcpu, exit_qualification);
3593
skip_emulated_instruction(vcpu);
3594
return 1;
3595
}
3596
3597
static int handle_wbinvd(struct kvm_vcpu *vcpu)
3598
{
3599
skip_emulated_instruction(vcpu);
3600
kvm_emulate_wbinvd(vcpu);
3601
return 1;
3602
}
3603
3604
static int handle_xsetbv(struct kvm_vcpu *vcpu)
3605
{
3606
u64 new_bv = kvm_read_edx_eax(vcpu);
3607
u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3608
3609
if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3610
skip_emulated_instruction(vcpu);
3611
return 1;
3612
}
3613
3614
static int handle_apic_access(struct kvm_vcpu *vcpu)
3615
{
3616
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3617
}
3618
3619
static int handle_task_switch(struct kvm_vcpu *vcpu)
3620
{
3621
struct vcpu_vmx *vmx = to_vmx(vcpu);
3622
unsigned long exit_qualification;
3623
bool has_error_code = false;
3624
u32 error_code = 0;
3625
u16 tss_selector;
3626
int reason, type, idt_v;
3627
3628
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3629
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3630
3631
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3632
3633
reason = (u32)exit_qualification >> 30;
3634
if (reason == TASK_SWITCH_GATE && idt_v) {
3635
switch (type) {
3636
case INTR_TYPE_NMI_INTR:
3637
vcpu->arch.nmi_injected = false;
3638
vmx_set_nmi_mask(vcpu, true);
3639
break;
3640
case INTR_TYPE_EXT_INTR:
3641
case INTR_TYPE_SOFT_INTR:
3642
kvm_clear_interrupt_queue(vcpu);
3643
break;
3644
case INTR_TYPE_HARD_EXCEPTION:
3645
if (vmx->idt_vectoring_info &
3646
VECTORING_INFO_DELIVER_CODE_MASK) {
3647
has_error_code = true;
3648
error_code =
3649
vmcs_read32(IDT_VECTORING_ERROR_CODE);
3650
}
3651
/* fall through */
3652
case INTR_TYPE_SOFT_EXCEPTION:
3653
kvm_clear_exception_queue(vcpu);
3654
break;
3655
default:
3656
break;
3657
}
3658
}
3659
tss_selector = exit_qualification;
3660
3661
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3662
type != INTR_TYPE_EXT_INTR &&
3663
type != INTR_TYPE_NMI_INTR))
3664
skip_emulated_instruction(vcpu);
3665
3666
if (kvm_task_switch(vcpu, tss_selector, reason,
3667
has_error_code, error_code) == EMULATE_FAIL) {
3668
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3669
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3670
vcpu->run->internal.ndata = 0;
3671
return 0;
3672
}
3673
3674
/* clear all local breakpoint enable flags */
3675
vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3676
3677
/*
3678
* TODO: What about debug traps on tss switch?
3679
* Are we supposed to inject them and update dr6?
3680
*/
3681
3682
return 1;
3683
}
3684
3685
static int handle_ept_violation(struct kvm_vcpu *vcpu)
3686
{
3687
unsigned long exit_qualification;
3688
gpa_t gpa;
3689
int gla_validity;
3690
3691
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3692
3693
if (exit_qualification & (1 << 6)) {
3694
printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3695
return -EINVAL;
3696
}
3697
3698
gla_validity = (exit_qualification >> 7) & 0x3;
3699
if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3700
printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3701
printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3702
(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3703
vmcs_readl(GUEST_LINEAR_ADDRESS));
3704
printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3705
(long unsigned int)exit_qualification);
3706
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3707
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3708
return 0;
3709
}
3710
3711
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3712
trace_kvm_page_fault(gpa, exit_qualification);
3713
return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3714
}
3715
3716
static u64 ept_rsvd_mask(u64 spte, int level)
3717
{
3718
int i;
3719
u64 mask = 0;
3720
3721
for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3722
mask |= (1ULL << i);
3723
3724
if (level > 2)
3725
/* bits 7:3 reserved */
3726
mask |= 0xf8;
3727
else if (level == 2) {
3728
if (spte & (1ULL << 7))
3729
/* 2MB ref, bits 20:12 reserved */
3730
mask |= 0x1ff000;
3731
else
3732
/* bits 6:3 reserved */
3733
mask |= 0x78;
3734
}
3735
3736
return mask;
3737
}
3738
3739
static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3740
int level)
3741
{
3742
printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3743
3744
/* 010b (write-only) */
3745
WARN_ON((spte & 0x7) == 0x2);
3746
3747
/* 110b (write/execute) */
3748
WARN_ON((spte & 0x7) == 0x6);
3749
3750
/* 100b (execute-only) and value not supported by logical processor */
3751
if (!cpu_has_vmx_ept_execute_only())
3752
WARN_ON((spte & 0x7) == 0x4);
3753
3754
/* not 000b */
3755
if ((spte & 0x7)) {
3756
u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3757
3758
if (rsvd_bits != 0) {
3759
printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3760
__func__, rsvd_bits);
3761
WARN_ON(1);
3762
}
3763
3764
if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3765
u64 ept_mem_type = (spte & 0x38) >> 3;
3766
3767
if (ept_mem_type == 2 || ept_mem_type == 3 ||
3768
ept_mem_type == 7) {
3769
printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3770
__func__, ept_mem_type);
3771
WARN_ON(1);
3772
}
3773
}
3774
}
3775
}
3776
3777
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3778
{
3779
u64 sptes[4];
3780
int nr_sptes, i;
3781
gpa_t gpa;
3782
3783
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3784
3785
printk(KERN_ERR "EPT: Misconfiguration.\n");
3786
printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3787
3788
nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3789
3790
for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3791
ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3792
3793
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3794
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3795
3796
return 0;
3797
}
3798
3799
static int handle_nmi_window(struct kvm_vcpu *vcpu)
3800
{
3801
u32 cpu_based_vm_exec_control;
3802
3803
/* clear pending NMI */
3804
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3805
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3806
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3807
++vcpu->stat.nmi_window_exits;
3808
kvm_make_request(KVM_REQ_EVENT, vcpu);
3809
3810
return 1;
3811
}
3812
3813
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3814
{
3815
struct vcpu_vmx *vmx = to_vmx(vcpu);
3816
enum emulation_result err = EMULATE_DONE;
3817
int ret = 1;
3818
u32 cpu_exec_ctrl;
3819
bool intr_window_requested;
3820
3821
cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3822
intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3823
3824
while (!guest_state_valid(vcpu)) {
3825
if (intr_window_requested
3826
&& (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3827
return handle_interrupt_window(&vmx->vcpu);
3828
3829
err = emulate_instruction(vcpu, 0);
3830
3831
if (err == EMULATE_DO_MMIO) {
3832
ret = 0;
3833
goto out;
3834
}
3835
3836
if (err != EMULATE_DONE)
3837
return 0;
3838
3839
if (signal_pending(current))
3840
goto out;
3841
if (need_resched())
3842
schedule();
3843
}
3844
3845
vmx->emulation_required = 0;
3846
out:
3847
return ret;
3848
}
3849
3850
/*
3851
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3852
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3853
*/
3854
static int handle_pause(struct kvm_vcpu *vcpu)
3855
{
3856
skip_emulated_instruction(vcpu);
3857
kvm_vcpu_on_spin(vcpu);
3858
3859
return 1;
3860
}
3861
3862
static int handle_invalid_op(struct kvm_vcpu *vcpu)
3863
{
3864
kvm_queue_exception(vcpu, UD_VECTOR);
3865
return 1;
3866
}
3867
3868
/*
3869
* The exit handlers return 1 if the exit was handled fully and guest execution
3870
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
3871
* to be done to userspace and return 0.
3872
*/
3873
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3874
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3875
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3876
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3877
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3878
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
3879
[EXIT_REASON_CR_ACCESS] = handle_cr,
3880
[EXIT_REASON_DR_ACCESS] = handle_dr,
3881
[EXIT_REASON_CPUID] = handle_cpuid,
3882
[EXIT_REASON_MSR_READ] = handle_rdmsr,
3883
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3884
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3885
[EXIT_REASON_HLT] = handle_halt,
3886
[EXIT_REASON_INVD] = handle_invd,
3887
[EXIT_REASON_INVLPG] = handle_invlpg,
3888
[EXIT_REASON_VMCALL] = handle_vmcall,
3889
[EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3890
[EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3891
[EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3892
[EXIT_REASON_VMPTRST] = handle_vmx_insn,
3893
[EXIT_REASON_VMREAD] = handle_vmx_insn,
3894
[EXIT_REASON_VMRESUME] = handle_vmx_insn,
3895
[EXIT_REASON_VMWRITE] = handle_vmx_insn,
3896
[EXIT_REASON_VMOFF] = handle_vmx_insn,
3897
[EXIT_REASON_VMON] = handle_vmx_insn,
3898
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3899
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3900
[EXIT_REASON_WBINVD] = handle_wbinvd,
3901
[EXIT_REASON_XSETBV] = handle_xsetbv,
3902
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3903
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3904
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3905
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3906
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
3907
[EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
3908
[EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
3909
};
3910
3911
static const int kvm_vmx_max_exit_handlers =
3912
ARRAY_SIZE(kvm_vmx_exit_handlers);
3913
3914
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3915
{
3916
*info1 = vmcs_readl(EXIT_QUALIFICATION);
3917
*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
3918
}
3919
3920
/*
3921
* The guest has exited. See if we can fix it or if we need userspace
3922
* assistance.
3923
*/
3924
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3925
{
3926
struct vcpu_vmx *vmx = to_vmx(vcpu);
3927
u32 exit_reason = vmx->exit_reason;
3928
u32 vectoring_info = vmx->idt_vectoring_info;
3929
3930
trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
3931
3932
/* If guest state is invalid, start emulating */
3933
if (vmx->emulation_required && emulate_invalid_guest_state)
3934
return handle_invalid_guest_state(vcpu);
3935
3936
if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3937
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3938
vcpu->run->fail_entry.hardware_entry_failure_reason
3939
= exit_reason;
3940
return 0;
3941
}
3942
3943
if (unlikely(vmx->fail)) {
3944
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3945
vcpu->run->fail_entry.hardware_entry_failure_reason
3946
= vmcs_read32(VM_INSTRUCTION_ERROR);
3947
return 0;
3948
}
3949
3950
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3951
(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3952
exit_reason != EXIT_REASON_EPT_VIOLATION &&
3953
exit_reason != EXIT_REASON_TASK_SWITCH))
3954
printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3955
"(0x%x) and exit reason is 0x%x\n",
3956
__func__, vectoring_info, exit_reason);
3957
3958
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3959
if (vmx_interrupt_allowed(vcpu)) {
3960
vmx->soft_vnmi_blocked = 0;
3961
} else if (vmx->vnmi_blocked_time > 1000000000LL &&
3962
vcpu->arch.nmi_pending) {
3963
/*
3964
* This CPU don't support us in finding the end of an
3965
* NMI-blocked window if the guest runs with IRQs
3966
* disabled. So we pull the trigger after 1 s of
3967
* futile waiting, but inform the user about this.
3968
*/
3969
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3970
"state on VCPU %d after 1 s timeout\n",
3971
__func__, vcpu->vcpu_id);
3972
vmx->soft_vnmi_blocked = 0;
3973
}
3974
}
3975
3976
if (exit_reason < kvm_vmx_max_exit_handlers
3977
&& kvm_vmx_exit_handlers[exit_reason])
3978
return kvm_vmx_exit_handlers[exit_reason](vcpu);
3979
else {
3980
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3981
vcpu->run->hw.hardware_exit_reason = exit_reason;
3982
}
3983
return 0;
3984
}
3985
3986
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3987
{
3988
if (irr == -1 || tpr < irr) {
3989
vmcs_write32(TPR_THRESHOLD, 0);
3990
return;
3991
}
3992
3993
vmcs_write32(TPR_THRESHOLD, irr);
3994
}
3995
3996
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3997
{
3998
u32 exit_intr_info;
3999
4000
if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
4001
|| vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
4002
return;
4003
4004
vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4005
exit_intr_info = vmx->exit_intr_info;
4006
4007
/* Handle machine checks before interrupts are enabled */
4008
if (is_machine_check(exit_intr_info))
4009
kvm_machine_check();
4010
4011
/* We need to handle NMIs before interrupts are enabled */
4012
if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
4013
(exit_intr_info & INTR_INFO_VALID_MASK)) {
4014
kvm_before_handle_nmi(&vmx->vcpu);
4015
asm("int $2");
4016
kvm_after_handle_nmi(&vmx->vcpu);
4017
}
4018
}
4019
4020
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
4021
{
4022
u32 exit_intr_info;
4023
bool unblock_nmi;
4024
u8 vector;
4025
bool idtv_info_valid;
4026
4027
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4028
4029
if (cpu_has_virtual_nmis()) {
4030
if (vmx->nmi_known_unmasked)
4031
return;
4032
/*
4033
* Can't use vmx->exit_intr_info since we're not sure what
4034
* the exit reason is.
4035
*/
4036
exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4037
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
4038
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
4039
/*
4040
* SDM 3: 27.7.1.2 (September 2008)
4041
* Re-set bit "block by NMI" before VM entry if vmexit caused by
4042
* a guest IRET fault.
4043
* SDM 3: 23.2.2 (September 2008)
4044
* Bit 12 is undefined in any of the following cases:
4045
* If the VM exit sets the valid bit in the IDT-vectoring
4046
* information field.
4047
* If the VM exit is due to a double fault.
4048
*/
4049
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
4050
vector != DF_VECTOR && !idtv_info_valid)
4051
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4052
GUEST_INTR_STATE_NMI);
4053
else
4054
vmx->nmi_known_unmasked =
4055
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
4056
& GUEST_INTR_STATE_NMI);
4057
} else if (unlikely(vmx->soft_vnmi_blocked))
4058
vmx->vnmi_blocked_time +=
4059
ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
4060
}
4061
4062
static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
4063
u32 idt_vectoring_info,
4064
int instr_len_field,
4065
int error_code_field)
4066
{
4067
u8 vector;
4068
int type;
4069
bool idtv_info_valid;
4070
4071
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
4072
4073
vmx->vcpu.arch.nmi_injected = false;
4074
kvm_clear_exception_queue(&vmx->vcpu);
4075
kvm_clear_interrupt_queue(&vmx->vcpu);
4076
4077
if (!idtv_info_valid)
4078
return;
4079
4080
kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
4081
4082
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
4083
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
4084
4085
switch (type) {
4086
case INTR_TYPE_NMI_INTR:
4087
vmx->vcpu.arch.nmi_injected = true;
4088
/*
4089
* SDM 3: 27.7.1.2 (September 2008)
4090
* Clear bit "block by NMI" before VM entry if a NMI
4091
* delivery faulted.
4092
*/
4093
vmx_set_nmi_mask(&vmx->vcpu, false);
4094
break;
4095
case INTR_TYPE_SOFT_EXCEPTION:
4096
vmx->vcpu.arch.event_exit_inst_len =
4097
vmcs_read32(instr_len_field);
4098
/* fall through */
4099
case INTR_TYPE_HARD_EXCEPTION:
4100
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
4101
u32 err = vmcs_read32(error_code_field);
4102
kvm_queue_exception_e(&vmx->vcpu, vector, err);
4103
} else
4104
kvm_queue_exception(&vmx->vcpu, vector);
4105
break;
4106
case INTR_TYPE_SOFT_INTR:
4107
vmx->vcpu.arch.event_exit_inst_len =
4108
vmcs_read32(instr_len_field);
4109
/* fall through */
4110
case INTR_TYPE_EXT_INTR:
4111
kvm_queue_interrupt(&vmx->vcpu, vector,
4112
type == INTR_TYPE_SOFT_INTR);
4113
break;
4114
default:
4115
break;
4116
}
4117
}
4118
4119
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
4120
{
4121
__vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
4122
VM_EXIT_INSTRUCTION_LEN,
4123
IDT_VECTORING_ERROR_CODE);
4124
}
4125
4126
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
4127
{
4128
__vmx_complete_interrupts(to_vmx(vcpu),
4129
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
4130
VM_ENTRY_INSTRUCTION_LEN,
4131
VM_ENTRY_EXCEPTION_ERROR_CODE);
4132
4133
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
4134
}
4135
4136
#ifdef CONFIG_X86_64
4137
#define R "r"
4138
#define Q "q"
4139
#else
4140
#define R "e"
4141
#define Q "l"
4142
#endif
4143
4144
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
4145
{
4146
struct vcpu_vmx *vmx = to_vmx(vcpu);
4147
4148
/* Record the guest's net vcpu time for enforced NMI injections. */
4149
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4150
vmx->entry_time = ktime_get();
4151
4152
/* Don't enter VMX if guest state is invalid, let the exit handler
4153
start emulation until we arrive back to a valid state */
4154
if (vmx->emulation_required && emulate_invalid_guest_state)
4155
return;
4156
4157
if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4158
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4159
if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4160
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4161
4162
/* When single-stepping over STI and MOV SS, we must clear the
4163
* corresponding interruptibility bits in the guest state. Otherwise
4164
* vmentry fails as it then expects bit 14 (BS) in pending debug
4165
* exceptions being set, but that's not correct for the guest debugging
4166
* case. */
4167
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4168
vmx_set_interrupt_shadow(vcpu, 0);
4169
4170
asm(
4171
/* Store host registers */
4172
"push %%"R"dx; push %%"R"bp;"
4173
"push %%"R"cx \n\t" /* placeholder for guest rcx */
4174
"push %%"R"cx \n\t"
4175
"cmp %%"R"sp, %c[host_rsp](%0) \n\t"
4176
"je 1f \n\t"
4177
"mov %%"R"sp, %c[host_rsp](%0) \n\t"
4178
__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
4179
"1: \n\t"
4180
/* Reload cr2 if changed */
4181
"mov %c[cr2](%0), %%"R"ax \n\t"
4182
"mov %%cr2, %%"R"dx \n\t"
4183
"cmp %%"R"ax, %%"R"dx \n\t"
4184
"je 2f \n\t"
4185
"mov %%"R"ax, %%cr2 \n\t"
4186
"2: \n\t"
4187
/* Check if vmlaunch of vmresume is needed */
4188
"cmpl $0, %c[launched](%0) \n\t"
4189
/* Load guest registers. Don't clobber flags. */
4190
"mov %c[rax](%0), %%"R"ax \n\t"
4191
"mov %c[rbx](%0), %%"R"bx \n\t"
4192
"mov %c[rdx](%0), %%"R"dx \n\t"
4193
"mov %c[rsi](%0), %%"R"si \n\t"
4194
"mov %c[rdi](%0), %%"R"di \n\t"
4195
"mov %c[rbp](%0), %%"R"bp \n\t"
4196
#ifdef CONFIG_X86_64
4197
"mov %c[r8](%0), %%r8 \n\t"
4198
"mov %c[r9](%0), %%r9 \n\t"
4199
"mov %c[r10](%0), %%r10 \n\t"
4200
"mov %c[r11](%0), %%r11 \n\t"
4201
"mov %c[r12](%0), %%r12 \n\t"
4202
"mov %c[r13](%0), %%r13 \n\t"
4203
"mov %c[r14](%0), %%r14 \n\t"
4204
"mov %c[r15](%0), %%r15 \n\t"
4205
#endif
4206
"mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4207
4208
/* Enter guest mode */
4209
"jne .Llaunched \n\t"
4210
__ex(ASM_VMX_VMLAUNCH) "\n\t"
4211
"jmp .Lkvm_vmx_return \n\t"
4212
".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4213
".Lkvm_vmx_return: "
4214
/* Save guest registers, load host registers, keep flags */
4215
"mov %0, %c[wordsize](%%"R"sp) \n\t"
4216
"pop %0 \n\t"
4217
"mov %%"R"ax, %c[rax](%0) \n\t"
4218
"mov %%"R"bx, %c[rbx](%0) \n\t"
4219
"pop"Q" %c[rcx](%0) \n\t"
4220
"mov %%"R"dx, %c[rdx](%0) \n\t"
4221
"mov %%"R"si, %c[rsi](%0) \n\t"
4222
"mov %%"R"di, %c[rdi](%0) \n\t"
4223
"mov %%"R"bp, %c[rbp](%0) \n\t"
4224
#ifdef CONFIG_X86_64
4225
"mov %%r8, %c[r8](%0) \n\t"
4226
"mov %%r9, %c[r9](%0) \n\t"
4227
"mov %%r10, %c[r10](%0) \n\t"
4228
"mov %%r11, %c[r11](%0) \n\t"
4229
"mov %%r12, %c[r12](%0) \n\t"
4230
"mov %%r13, %c[r13](%0) \n\t"
4231
"mov %%r14, %c[r14](%0) \n\t"
4232
"mov %%r15, %c[r15](%0) \n\t"
4233
#endif
4234
"mov %%cr2, %%"R"ax \n\t"
4235
"mov %%"R"ax, %c[cr2](%0) \n\t"
4236
4237
"pop %%"R"bp; pop %%"R"dx \n\t"
4238
"setbe %c[fail](%0) \n\t"
4239
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
4240
[launched]"i"(offsetof(struct vcpu_vmx, launched)),
4241
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
4242
[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4243
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4244
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4245
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4246
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4247
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4248
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4249
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4250
#ifdef CONFIG_X86_64
4251
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4252
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4253
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4254
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4255
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4256
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4257
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4258
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4259
#endif
4260
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
4261
[wordsize]"i"(sizeof(ulong))
4262
: "cc", "memory"
4263
, R"ax", R"bx", R"di", R"si"
4264
#ifdef CONFIG_X86_64
4265
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4266
#endif
4267
);
4268
4269
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4270
| (1 << VCPU_EXREG_RFLAGS)
4271
| (1 << VCPU_EXREG_CPL)
4272
| (1 << VCPU_EXREG_PDPTR)
4273
| (1 << VCPU_EXREG_SEGMENTS)
4274
| (1 << VCPU_EXREG_CR3));
4275
vcpu->arch.regs_dirty = 0;
4276
4277
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4278
4279
asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4280
vmx->launched = 1;
4281
4282
vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4283
4284
vmx_complete_atomic_exit(vmx);
4285
vmx_recover_nmi_blocking(vmx);
4286
vmx_complete_interrupts(vmx);
4287
}
4288
4289
#undef R
4290
#undef Q
4291
4292
static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4293
{
4294
struct vcpu_vmx *vmx = to_vmx(vcpu);
4295
4296
if (vmx->vmcs) {
4297
vcpu_clear(vmx);
4298
free_vmcs(vmx->vmcs);
4299
vmx->vmcs = NULL;
4300
}
4301
}
4302
4303
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4304
{
4305
struct vcpu_vmx *vmx = to_vmx(vcpu);
4306
4307
free_vpid(vmx);
4308
vmx_free_vmcs(vcpu);
4309
kfree(vmx->guest_msrs);
4310
kvm_vcpu_uninit(vcpu);
4311
kmem_cache_free(kvm_vcpu_cache, vmx);
4312
}
4313
4314
static inline void vmcs_init(struct vmcs *vmcs)
4315
{
4316
u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4317
4318
if (!vmm_exclusive)
4319
kvm_cpu_vmxon(phys_addr);
4320
4321
vmcs_clear(vmcs);
4322
4323
if (!vmm_exclusive)
4324
kvm_cpu_vmxoff();
4325
}
4326
4327
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4328
{
4329
int err;
4330
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4331
int cpu;
4332
4333
if (!vmx)
4334
return ERR_PTR(-ENOMEM);
4335
4336
allocate_vpid(vmx);
4337
4338
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4339
if (err)
4340
goto free_vcpu;
4341
4342
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4343
err = -ENOMEM;
4344
if (!vmx->guest_msrs) {
4345
goto uninit_vcpu;
4346
}
4347
4348
vmx->vmcs = alloc_vmcs();
4349
if (!vmx->vmcs)
4350
goto free_msrs;
4351
4352
vmcs_init(vmx->vmcs);
4353
4354
cpu = get_cpu();
4355
vmx_vcpu_load(&vmx->vcpu, cpu);
4356
vmx->vcpu.cpu = cpu;
4357
err = vmx_vcpu_setup(vmx);
4358
vmx_vcpu_put(&vmx->vcpu);
4359
put_cpu();
4360
if (err)
4361
goto free_vmcs;
4362
if (vm_need_virtualize_apic_accesses(kvm))
4363
err = alloc_apic_access_page(kvm);
4364
if (err)
4365
goto free_vmcs;
4366
4367
if (enable_ept) {
4368
if (!kvm->arch.ept_identity_map_addr)
4369
kvm->arch.ept_identity_map_addr =
4370
VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4371
err = -ENOMEM;
4372
if (alloc_identity_pagetable(kvm) != 0)
4373
goto free_vmcs;
4374
if (!init_rmode_identity_map(kvm))
4375
goto free_vmcs;
4376
}
4377
4378
return &vmx->vcpu;
4379
4380
free_vmcs:
4381
free_vmcs(vmx->vmcs);
4382
free_msrs:
4383
kfree(vmx->guest_msrs);
4384
uninit_vcpu:
4385
kvm_vcpu_uninit(&vmx->vcpu);
4386
free_vcpu:
4387
free_vpid(vmx);
4388
kmem_cache_free(kvm_vcpu_cache, vmx);
4389
return ERR_PTR(err);
4390
}
4391
4392
static void __init vmx_check_processor_compat(void *rtn)
4393
{
4394
struct vmcs_config vmcs_conf;
4395
4396
*(int *)rtn = 0;
4397
if (setup_vmcs_config(&vmcs_conf) < 0)
4398
*(int *)rtn = -EIO;
4399
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4400
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4401
smp_processor_id());
4402
*(int *)rtn = -EIO;
4403
}
4404
}
4405
4406
static int get_ept_level(void)
4407
{
4408
return VMX_EPT_DEFAULT_GAW + 1;
4409
}
4410
4411
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4412
{
4413
u64 ret;
4414
4415
/* For VT-d and EPT combination
4416
* 1. MMIO: always map as UC
4417
* 2. EPT with VT-d:
4418
* a. VT-d without snooping control feature: can't guarantee the
4419
* result, try to trust guest.
4420
* b. VT-d with snooping control feature: snooping control feature of
4421
* VT-d engine can guarantee the cache correctness. Just set it
4422
* to WB to keep consistent with host. So the same as item 3.
4423
* 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4424
* consistent with host MTRR
4425
*/
4426
if (is_mmio)
4427
ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4428
else if (vcpu->kvm->arch.iommu_domain &&
4429
!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4430
ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4431
VMX_EPT_MT_EPTE_SHIFT;
4432
else
4433
ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4434
| VMX_EPT_IPAT_BIT;
4435
4436
return ret;
4437
}
4438
4439
#define _ER(x) { EXIT_REASON_##x, #x }
4440
4441
static const struct trace_print_flags vmx_exit_reasons_str[] = {
4442
_ER(EXCEPTION_NMI),
4443
_ER(EXTERNAL_INTERRUPT),
4444
_ER(TRIPLE_FAULT),
4445
_ER(PENDING_INTERRUPT),
4446
_ER(NMI_WINDOW),
4447
_ER(TASK_SWITCH),
4448
_ER(CPUID),
4449
_ER(HLT),
4450
_ER(INVLPG),
4451
_ER(RDPMC),
4452
_ER(RDTSC),
4453
_ER(VMCALL),
4454
_ER(VMCLEAR),
4455
_ER(VMLAUNCH),
4456
_ER(VMPTRLD),
4457
_ER(VMPTRST),
4458
_ER(VMREAD),
4459
_ER(VMRESUME),
4460
_ER(VMWRITE),
4461
_ER(VMOFF),
4462
_ER(VMON),
4463
_ER(CR_ACCESS),
4464
_ER(DR_ACCESS),
4465
_ER(IO_INSTRUCTION),
4466
_ER(MSR_READ),
4467
_ER(MSR_WRITE),
4468
_ER(MWAIT_INSTRUCTION),
4469
_ER(MONITOR_INSTRUCTION),
4470
_ER(PAUSE_INSTRUCTION),
4471
_ER(MCE_DURING_VMENTRY),
4472
_ER(TPR_BELOW_THRESHOLD),
4473
_ER(APIC_ACCESS),
4474
_ER(EPT_VIOLATION),
4475
_ER(EPT_MISCONFIG),
4476
_ER(WBINVD),
4477
{ -1, NULL }
4478
};
4479
4480
#undef _ER
4481
4482
static int vmx_get_lpage_level(void)
4483
{
4484
if (enable_ept && !cpu_has_vmx_ept_1g_page())
4485
return PT_DIRECTORY_LEVEL;
4486
else
4487
/* For shadow and EPT supported 1GB page */
4488
return PT_PDPE_LEVEL;
4489
}
4490
4491
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4492
{
4493
struct kvm_cpuid_entry2 *best;
4494
struct vcpu_vmx *vmx = to_vmx(vcpu);
4495
u32 exec_control;
4496
4497
vmx->rdtscp_enabled = false;
4498
if (vmx_rdtscp_supported()) {
4499
exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4500
if (exec_control & SECONDARY_EXEC_RDTSCP) {
4501
best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4502
if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4503
vmx->rdtscp_enabled = true;
4504
else {
4505
exec_control &= ~SECONDARY_EXEC_RDTSCP;
4506
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4507
exec_control);
4508
}
4509
}
4510
}
4511
}
4512
4513
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4514
{
4515
}
4516
4517
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
4518
struct x86_instruction_info *info,
4519
enum x86_intercept_stage stage)
4520
{
4521
return X86EMUL_CONTINUE;
4522
}
4523
4524
static struct kvm_x86_ops vmx_x86_ops = {
4525
.cpu_has_kvm_support = cpu_has_kvm_support,
4526
.disabled_by_bios = vmx_disabled_by_bios,
4527
.hardware_setup = hardware_setup,
4528
.hardware_unsetup = hardware_unsetup,
4529
.check_processor_compatibility = vmx_check_processor_compat,
4530
.hardware_enable = hardware_enable,
4531
.hardware_disable = hardware_disable,
4532
.cpu_has_accelerated_tpr = report_flexpriority,
4533
4534
.vcpu_create = vmx_create_vcpu,
4535
.vcpu_free = vmx_free_vcpu,
4536
.vcpu_reset = vmx_vcpu_reset,
4537
4538
.prepare_guest_switch = vmx_save_host_state,
4539
.vcpu_load = vmx_vcpu_load,
4540
.vcpu_put = vmx_vcpu_put,
4541
4542
.set_guest_debug = set_guest_debug,
4543
.get_msr = vmx_get_msr,
4544
.set_msr = vmx_set_msr,
4545
.get_segment_base = vmx_get_segment_base,
4546
.get_segment = vmx_get_segment,
4547
.set_segment = vmx_set_segment,
4548
.get_cpl = vmx_get_cpl,
4549
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4550
.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4551
.decache_cr3 = vmx_decache_cr3,
4552
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4553
.set_cr0 = vmx_set_cr0,
4554
.set_cr3 = vmx_set_cr3,
4555
.set_cr4 = vmx_set_cr4,
4556
.set_efer = vmx_set_efer,
4557
.get_idt = vmx_get_idt,
4558
.set_idt = vmx_set_idt,
4559
.get_gdt = vmx_get_gdt,
4560
.set_gdt = vmx_set_gdt,
4561
.set_dr7 = vmx_set_dr7,
4562
.cache_reg = vmx_cache_reg,
4563
.get_rflags = vmx_get_rflags,
4564
.set_rflags = vmx_set_rflags,
4565
.fpu_activate = vmx_fpu_activate,
4566
.fpu_deactivate = vmx_fpu_deactivate,
4567
4568
.tlb_flush = vmx_flush_tlb,
4569
4570
.run = vmx_vcpu_run,
4571
.handle_exit = vmx_handle_exit,
4572
.skip_emulated_instruction = skip_emulated_instruction,
4573
.set_interrupt_shadow = vmx_set_interrupt_shadow,
4574
.get_interrupt_shadow = vmx_get_interrupt_shadow,
4575
.patch_hypercall = vmx_patch_hypercall,
4576
.set_irq = vmx_inject_irq,
4577
.set_nmi = vmx_inject_nmi,
4578
.queue_exception = vmx_queue_exception,
4579
.cancel_injection = vmx_cancel_injection,
4580
.interrupt_allowed = vmx_interrupt_allowed,
4581
.nmi_allowed = vmx_nmi_allowed,
4582
.get_nmi_mask = vmx_get_nmi_mask,
4583
.set_nmi_mask = vmx_set_nmi_mask,
4584
.enable_nmi_window = enable_nmi_window,
4585
.enable_irq_window = enable_irq_window,
4586
.update_cr8_intercept = update_cr8_intercept,
4587
4588
.set_tss_addr = vmx_set_tss_addr,
4589
.get_tdp_level = get_ept_level,
4590
.get_mt_mask = vmx_get_mt_mask,
4591
4592
.get_exit_info = vmx_get_exit_info,
4593
.exit_reasons_str = vmx_exit_reasons_str,
4594
4595
.get_lpage_level = vmx_get_lpage_level,
4596
4597
.cpuid_update = vmx_cpuid_update,
4598
4599
.rdtscp_supported = vmx_rdtscp_supported,
4600
4601
.set_supported_cpuid = vmx_set_supported_cpuid,
4602
4603
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4604
4605
.set_tsc_khz = vmx_set_tsc_khz,
4606
.write_tsc_offset = vmx_write_tsc_offset,
4607
.adjust_tsc_offset = vmx_adjust_tsc_offset,
4608
.compute_tsc_offset = vmx_compute_tsc_offset,
4609
4610
.set_tdp_cr3 = vmx_set_cr3,
4611
4612
.check_intercept = vmx_check_intercept,
4613
};
4614
4615
static int __init vmx_init(void)
4616
{
4617
int r, i;
4618
4619
rdmsrl_safe(MSR_EFER, &host_efer);
4620
4621
for (i = 0; i < NR_VMX_MSR; ++i)
4622
kvm_define_shared_msr(i, vmx_msr_index[i]);
4623
4624
vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4625
if (!vmx_io_bitmap_a)
4626
return -ENOMEM;
4627
4628
vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4629
if (!vmx_io_bitmap_b) {
4630
r = -ENOMEM;
4631
goto out;
4632
}
4633
4634
vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4635
if (!vmx_msr_bitmap_legacy) {
4636
r = -ENOMEM;
4637
goto out1;
4638
}
4639
4640
vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4641
if (!vmx_msr_bitmap_longmode) {
4642
r = -ENOMEM;
4643
goto out2;
4644
}
4645
4646
/*
4647
* Allow direct access to the PC debug port (it is often used for I/O
4648
* delays, but the vmexits simply slow things down).
4649
*/
4650
memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4651
clear_bit(0x80, vmx_io_bitmap_a);
4652
4653
memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4654
4655
memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4656
memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4657
4658
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4659
4660
r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4661
__alignof__(struct vcpu_vmx), THIS_MODULE);
4662
if (r)
4663
goto out3;
4664
4665
vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4666
vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4667
vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4668
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4669
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4670
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4671
4672
if (enable_ept) {
4673
bypass_guest_pf = 0;
4674
kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4675
VMX_EPT_EXECUTABLE_MASK);
4676
kvm_enable_tdp();
4677
} else
4678
kvm_disable_tdp();
4679
4680
if (bypass_guest_pf)
4681
kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4682
4683
return 0;
4684
4685
out3:
4686
free_page((unsigned long)vmx_msr_bitmap_longmode);
4687
out2:
4688
free_page((unsigned long)vmx_msr_bitmap_legacy);
4689
out1:
4690
free_page((unsigned long)vmx_io_bitmap_b);
4691
out:
4692
free_page((unsigned long)vmx_io_bitmap_a);
4693
return r;
4694
}
4695
4696
static void __exit vmx_exit(void)
4697
{
4698
free_page((unsigned long)vmx_msr_bitmap_legacy);
4699
free_page((unsigned long)vmx_msr_bitmap_longmode);
4700
free_page((unsigned long)vmx_io_bitmap_b);
4701
free_page((unsigned long)vmx_io_bitmap_a);
4702
4703
kvm_exit();
4704
}
4705
4706
module_init(vmx_init)
4707
module_exit(vmx_exit)
4708
4709