Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/kvm/x86.c
10817 views
1
/*
2
* Kernel-based Virtual Machine driver for Linux
3
*
4
* derived from drivers/kvm/kvm_main.c
5
*
6
* Copyright (C) 2006 Qumranet, Inc.
7
* Copyright (C) 2008 Qumranet, Inc.
8
* Copyright IBM Corporation, 2008
9
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
10
*
11
* Authors:
12
* Avi Kivity <[email protected]>
13
* Yaniv Kamay <[email protected]>
14
* Amit Shah <[email protected]>
15
* Ben-Ami Yassour <[email protected]>
16
*
17
* This work is licensed under the terms of the GNU GPL, version 2. See
18
* the COPYING file in the top-level directory.
19
*
20
*/
21
22
#include <linux/kvm_host.h>
23
#include "irq.h"
24
#include "mmu.h"
25
#include "i8254.h"
26
#include "tss.h"
27
#include "kvm_cache_regs.h"
28
#include "x86.h"
29
30
#include <linux/clocksource.h>
31
#include <linux/interrupt.h>
32
#include <linux/kvm.h>
33
#include <linux/fs.h>
34
#include <linux/vmalloc.h>
35
#include <linux/module.h>
36
#include <linux/mman.h>
37
#include <linux/highmem.h>
38
#include <linux/iommu.h>
39
#include <linux/intel-iommu.h>
40
#include <linux/cpufreq.h>
41
#include <linux/user-return-notifier.h>
42
#include <linux/srcu.h>
43
#include <linux/slab.h>
44
#include <linux/perf_event.h>
45
#include <linux/uaccess.h>
46
#include <linux/hash.h>
47
#include <trace/events/kvm.h>
48
49
#define CREATE_TRACE_POINTS
50
#include "trace.h"
51
52
#include <asm/debugreg.h>
53
#include <asm/msr.h>
54
#include <asm/desc.h>
55
#include <asm/mtrr.h>
56
#include <asm/mce.h>
57
#include <asm/i387.h>
58
#include <asm/xcr.h>
59
#include <asm/pvclock.h>
60
#include <asm/div64.h>
61
62
#define MAX_IO_MSRS 256
63
#define KVM_MAX_MCE_BANKS 32
64
#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
65
66
#define emul_to_vcpu(ctxt) \
67
container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
68
69
/* EFER defaults:
70
* - enable syscall per default because its emulated by KVM
71
* - enable LME and LMA per default on 64 bit KVM
72
*/
73
#ifdef CONFIG_X86_64
74
static
75
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
76
#else
77
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
78
#endif
79
80
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85
struct kvm_cpuid_entry2 __user *entries);
86
87
struct kvm_x86_ops *kvm_x86_ops;
88
EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90
int ignore_msrs = 0;
91
module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93
bool kvm_has_tsc_control;
94
EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
95
u32 kvm_max_guest_tsc_khz;
96
EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
97
98
#define KVM_NR_SHARED_MSRS 16
99
100
struct kvm_shared_msrs_global {
101
int nr;
102
u32 msrs[KVM_NR_SHARED_MSRS];
103
};
104
105
struct kvm_shared_msrs {
106
struct user_return_notifier urn;
107
bool registered;
108
struct kvm_shared_msr_values {
109
u64 host;
110
u64 curr;
111
} values[KVM_NR_SHARED_MSRS];
112
};
113
114
static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
115
static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
116
117
struct kvm_stats_debugfs_item debugfs_entries[] = {
118
{ "pf_fixed", VCPU_STAT(pf_fixed) },
119
{ "pf_guest", VCPU_STAT(pf_guest) },
120
{ "tlb_flush", VCPU_STAT(tlb_flush) },
121
{ "invlpg", VCPU_STAT(invlpg) },
122
{ "exits", VCPU_STAT(exits) },
123
{ "io_exits", VCPU_STAT(io_exits) },
124
{ "mmio_exits", VCPU_STAT(mmio_exits) },
125
{ "signal_exits", VCPU_STAT(signal_exits) },
126
{ "irq_window", VCPU_STAT(irq_window_exits) },
127
{ "nmi_window", VCPU_STAT(nmi_window_exits) },
128
{ "halt_exits", VCPU_STAT(halt_exits) },
129
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
130
{ "hypercalls", VCPU_STAT(hypercalls) },
131
{ "request_irq", VCPU_STAT(request_irq_exits) },
132
{ "irq_exits", VCPU_STAT(irq_exits) },
133
{ "host_state_reload", VCPU_STAT(host_state_reload) },
134
{ "efer_reload", VCPU_STAT(efer_reload) },
135
{ "fpu_reload", VCPU_STAT(fpu_reload) },
136
{ "insn_emulation", VCPU_STAT(insn_emulation) },
137
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
138
{ "irq_injections", VCPU_STAT(irq_injections) },
139
{ "nmi_injections", VCPU_STAT(nmi_injections) },
140
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
141
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
142
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
143
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
144
{ "mmu_flooded", VM_STAT(mmu_flooded) },
145
{ "mmu_recycled", VM_STAT(mmu_recycled) },
146
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
147
{ "mmu_unsync", VM_STAT(mmu_unsync) },
148
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
149
{ "largepages", VM_STAT(lpages) },
150
{ NULL }
151
};
152
153
u64 __read_mostly host_xcr0;
154
155
int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
156
157
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
158
{
159
int i;
160
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
161
vcpu->arch.apf.gfns[i] = ~0;
162
}
163
164
static void kvm_on_user_return(struct user_return_notifier *urn)
165
{
166
unsigned slot;
167
struct kvm_shared_msrs *locals
168
= container_of(urn, struct kvm_shared_msrs, urn);
169
struct kvm_shared_msr_values *values;
170
171
for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
172
values = &locals->values[slot];
173
if (values->host != values->curr) {
174
wrmsrl(shared_msrs_global.msrs[slot], values->host);
175
values->curr = values->host;
176
}
177
}
178
locals->registered = false;
179
user_return_notifier_unregister(urn);
180
}
181
182
static void shared_msr_update(unsigned slot, u32 msr)
183
{
184
struct kvm_shared_msrs *smsr;
185
u64 value;
186
187
smsr = &__get_cpu_var(shared_msrs);
188
/* only read, and nobody should modify it at this time,
189
* so don't need lock */
190
if (slot >= shared_msrs_global.nr) {
191
printk(KERN_ERR "kvm: invalid MSR slot!");
192
return;
193
}
194
rdmsrl_safe(msr, &value);
195
smsr->values[slot].host = value;
196
smsr->values[slot].curr = value;
197
}
198
199
void kvm_define_shared_msr(unsigned slot, u32 msr)
200
{
201
if (slot >= shared_msrs_global.nr)
202
shared_msrs_global.nr = slot + 1;
203
shared_msrs_global.msrs[slot] = msr;
204
/* we need ensured the shared_msr_global have been updated */
205
smp_wmb();
206
}
207
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
208
209
static void kvm_shared_msr_cpu_online(void)
210
{
211
unsigned i;
212
213
for (i = 0; i < shared_msrs_global.nr; ++i)
214
shared_msr_update(i, shared_msrs_global.msrs[i]);
215
}
216
217
void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
218
{
219
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221
if (((value ^ smsr->values[slot].curr) & mask) == 0)
222
return;
223
smsr->values[slot].curr = value;
224
wrmsrl(shared_msrs_global.msrs[slot], value);
225
if (!smsr->registered) {
226
smsr->urn.on_user_return = kvm_on_user_return;
227
user_return_notifier_register(&smsr->urn);
228
smsr->registered = true;
229
}
230
}
231
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
232
233
static void drop_user_return_notifiers(void *ignore)
234
{
235
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
236
237
if (smsr->registered)
238
kvm_on_user_return(&smsr->urn);
239
}
240
241
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242
{
243
if (irqchip_in_kernel(vcpu->kvm))
244
return vcpu->arch.apic_base;
245
else
246
return vcpu->arch.apic_base;
247
}
248
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249
250
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251
{
252
/* TODO: reserve bits check */
253
if (irqchip_in_kernel(vcpu->kvm))
254
kvm_lapic_set_base(vcpu, data);
255
else
256
vcpu->arch.apic_base = data;
257
}
258
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259
260
#define EXCPT_BENIGN 0
261
#define EXCPT_CONTRIBUTORY 1
262
#define EXCPT_PF 2
263
264
static int exception_class(int vector)
265
{
266
switch (vector) {
267
case PF_VECTOR:
268
return EXCPT_PF;
269
case DE_VECTOR:
270
case TS_VECTOR:
271
case NP_VECTOR:
272
case SS_VECTOR:
273
case GP_VECTOR:
274
return EXCPT_CONTRIBUTORY;
275
default:
276
break;
277
}
278
return EXCPT_BENIGN;
279
}
280
281
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282
unsigned nr, bool has_error, u32 error_code,
283
bool reinject)
284
{
285
u32 prev_nr;
286
int class1, class2;
287
288
kvm_make_request(KVM_REQ_EVENT, vcpu);
289
290
if (!vcpu->arch.exception.pending) {
291
queue:
292
vcpu->arch.exception.pending = true;
293
vcpu->arch.exception.has_error_code = has_error;
294
vcpu->arch.exception.nr = nr;
295
vcpu->arch.exception.error_code = error_code;
296
vcpu->arch.exception.reinject = reinject;
297
return;
298
}
299
300
/* to check exception */
301
prev_nr = vcpu->arch.exception.nr;
302
if (prev_nr == DF_VECTOR) {
303
/* triple fault -> shutdown */
304
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305
return;
306
}
307
class1 = exception_class(prev_nr);
308
class2 = exception_class(nr);
309
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310
|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311
/* generate double fault per SDM Table 5-5 */
312
vcpu->arch.exception.pending = true;
313
vcpu->arch.exception.has_error_code = true;
314
vcpu->arch.exception.nr = DF_VECTOR;
315
vcpu->arch.exception.error_code = 0;
316
} else
317
/* replace previous exception with a new one in a hope
318
that instruction re-execution will regenerate lost
319
exception */
320
goto queue;
321
}
322
323
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324
{
325
kvm_multiple_exception(vcpu, nr, false, 0, false);
326
}
327
EXPORT_SYMBOL_GPL(kvm_queue_exception);
328
329
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330
{
331
kvm_multiple_exception(vcpu, nr, false, 0, true);
332
}
333
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
334
335
void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
336
{
337
if (err)
338
kvm_inject_gp(vcpu, 0);
339
else
340
kvm_x86_ops->skip_emulated_instruction(vcpu);
341
}
342
EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
343
344
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
345
{
346
++vcpu->stat.pf_guest;
347
vcpu->arch.cr2 = fault->address;
348
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
349
}
350
351
void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
352
{
353
if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
354
vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
355
else
356
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
357
}
358
359
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
360
{
361
kvm_make_request(KVM_REQ_EVENT, vcpu);
362
vcpu->arch.nmi_pending = 1;
363
}
364
EXPORT_SYMBOL_GPL(kvm_inject_nmi);
365
366
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
367
{
368
kvm_multiple_exception(vcpu, nr, true, error_code, false);
369
}
370
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
371
372
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
373
{
374
kvm_multiple_exception(vcpu, nr, true, error_code, true);
375
}
376
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
377
378
/*
379
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
380
* a #GP and return false.
381
*/
382
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
383
{
384
if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
385
return true;
386
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
387
return false;
388
}
389
EXPORT_SYMBOL_GPL(kvm_require_cpl);
390
391
/*
392
* This function will be used to read from the physical memory of the currently
393
* running guest. The difference to kvm_read_guest_page is that this function
394
* can read from guest physical or from the guest's guest physical memory.
395
*/
396
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
397
gfn_t ngfn, void *data, int offset, int len,
398
u32 access)
399
{
400
gfn_t real_gfn;
401
gpa_t ngpa;
402
403
ngpa = gfn_to_gpa(ngfn);
404
real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
405
if (real_gfn == UNMAPPED_GVA)
406
return -EFAULT;
407
408
real_gfn = gpa_to_gfn(real_gfn);
409
410
return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
411
}
412
EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
413
414
int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
415
void *data, int offset, int len, u32 access)
416
{
417
return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
418
data, offset, len, access);
419
}
420
421
/*
422
* Load the pae pdptrs. Return true is they are all valid.
423
*/
424
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
425
{
426
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
427
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
428
int i;
429
int ret;
430
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
431
432
ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
433
offset * sizeof(u64), sizeof(pdpte),
434
PFERR_USER_MASK|PFERR_WRITE_MASK);
435
if (ret < 0) {
436
ret = 0;
437
goto out;
438
}
439
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
440
if (is_present_gpte(pdpte[i]) &&
441
(pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
442
ret = 0;
443
goto out;
444
}
445
}
446
ret = 1;
447
448
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
449
__set_bit(VCPU_EXREG_PDPTR,
450
(unsigned long *)&vcpu->arch.regs_avail);
451
__set_bit(VCPU_EXREG_PDPTR,
452
(unsigned long *)&vcpu->arch.regs_dirty);
453
out:
454
455
return ret;
456
}
457
EXPORT_SYMBOL_GPL(load_pdptrs);
458
459
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
460
{
461
u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
462
bool changed = true;
463
int offset;
464
gfn_t gfn;
465
int r;
466
467
if (is_long_mode(vcpu) || !is_pae(vcpu))
468
return false;
469
470
if (!test_bit(VCPU_EXREG_PDPTR,
471
(unsigned long *)&vcpu->arch.regs_avail))
472
return true;
473
474
gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
475
offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
476
r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
477
PFERR_USER_MASK | PFERR_WRITE_MASK);
478
if (r < 0)
479
goto out;
480
changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
481
out:
482
483
return changed;
484
}
485
486
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
487
{
488
unsigned long old_cr0 = kvm_read_cr0(vcpu);
489
unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
490
X86_CR0_CD | X86_CR0_NW;
491
492
cr0 |= X86_CR0_ET;
493
494
#ifdef CONFIG_X86_64
495
if (cr0 & 0xffffffff00000000UL)
496
return 1;
497
#endif
498
499
cr0 &= ~CR0_RESERVED_BITS;
500
501
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
502
return 1;
503
504
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
505
return 1;
506
507
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
508
#ifdef CONFIG_X86_64
509
if ((vcpu->arch.efer & EFER_LME)) {
510
int cs_db, cs_l;
511
512
if (!is_pae(vcpu))
513
return 1;
514
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
515
if (cs_l)
516
return 1;
517
} else
518
#endif
519
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
520
kvm_read_cr3(vcpu)))
521
return 1;
522
}
523
524
kvm_x86_ops->set_cr0(vcpu, cr0);
525
526
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
527
kvm_clear_async_pf_completion_queue(vcpu);
528
kvm_async_pf_hash_reset(vcpu);
529
}
530
531
if ((cr0 ^ old_cr0) & update_bits)
532
kvm_mmu_reset_context(vcpu);
533
return 0;
534
}
535
EXPORT_SYMBOL_GPL(kvm_set_cr0);
536
537
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538
{
539
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
540
}
541
EXPORT_SYMBOL_GPL(kvm_lmsw);
542
543
int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
544
{
545
u64 xcr0;
546
547
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
548
if (index != XCR_XFEATURE_ENABLED_MASK)
549
return 1;
550
xcr0 = xcr;
551
if (kvm_x86_ops->get_cpl(vcpu) != 0)
552
return 1;
553
if (!(xcr0 & XSTATE_FP))
554
return 1;
555
if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
556
return 1;
557
if (xcr0 & ~host_xcr0)
558
return 1;
559
vcpu->arch.xcr0 = xcr0;
560
vcpu->guest_xcr0_loaded = 0;
561
return 0;
562
}
563
564
int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
565
{
566
if (__kvm_set_xcr(vcpu, index, xcr)) {
567
kvm_inject_gp(vcpu, 0);
568
return 1;
569
}
570
return 0;
571
}
572
EXPORT_SYMBOL_GPL(kvm_set_xcr);
573
574
static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
575
{
576
struct kvm_cpuid_entry2 *best;
577
578
best = kvm_find_cpuid_entry(vcpu, 1, 0);
579
return best && (best->ecx & bit(X86_FEATURE_XSAVE));
580
}
581
582
static void update_cpuid(struct kvm_vcpu *vcpu)
583
{
584
struct kvm_cpuid_entry2 *best;
585
586
best = kvm_find_cpuid_entry(vcpu, 1, 0);
587
if (!best)
588
return;
589
590
/* Update OSXSAVE bit */
591
if (cpu_has_xsave && best->function == 0x1) {
592
best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
593
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
594
best->ecx |= bit(X86_FEATURE_OSXSAVE);
595
}
596
}
597
598
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
599
{
600
unsigned long old_cr4 = kvm_read_cr4(vcpu);
601
unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
602
603
if (cr4 & CR4_RESERVED_BITS)
604
return 1;
605
606
if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
607
return 1;
608
609
if (is_long_mode(vcpu)) {
610
if (!(cr4 & X86_CR4_PAE))
611
return 1;
612
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
613
&& ((cr4 ^ old_cr4) & pdptr_bits)
614
&& !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
615
kvm_read_cr3(vcpu)))
616
return 1;
617
618
if (cr4 & X86_CR4_VMXE)
619
return 1;
620
621
kvm_x86_ops->set_cr4(vcpu, cr4);
622
623
if ((cr4 ^ old_cr4) & pdptr_bits)
624
kvm_mmu_reset_context(vcpu);
625
626
if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627
update_cpuid(vcpu);
628
629
return 0;
630
}
631
EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634
{
635
if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636
kvm_mmu_sync_roots(vcpu);
637
kvm_mmu_flush_tlb(vcpu);
638
return 0;
639
}
640
641
if (is_long_mode(vcpu)) {
642
if (cr3 & CR3_L_MODE_RESERVED_BITS)
643
return 1;
644
} else {
645
if (is_pae(vcpu)) {
646
if (cr3 & CR3_PAE_RESERVED_BITS)
647
return 1;
648
if (is_paging(vcpu) &&
649
!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
650
return 1;
651
}
652
/*
653
* We don't check reserved bits in nonpae mode, because
654
* this isn't enforced, and VMware depends on this.
655
*/
656
}
657
658
/*
659
* Does the new cr3 value map to physical memory? (Note, we
660
* catch an invalid cr3 even in real-mode, because it would
661
* cause trouble later on when we turn on paging anyway.)
662
*
663
* A real CPU would silently accept an invalid cr3 and would
664
* attempt to use it - with largely undefined (and often hard
665
* to debug) behavior on the guest side.
666
*/
667
if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
668
return 1;
669
vcpu->arch.cr3 = cr3;
670
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671
vcpu->arch.mmu.new_cr3(vcpu);
672
return 0;
673
}
674
EXPORT_SYMBOL_GPL(kvm_set_cr3);
675
676
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677
{
678
if (cr8 & CR8_RESERVED_BITS)
679
return 1;
680
if (irqchip_in_kernel(vcpu->kvm))
681
kvm_lapic_set_tpr(vcpu, cr8);
682
else
683
vcpu->arch.cr8 = cr8;
684
return 0;
685
}
686
EXPORT_SYMBOL_GPL(kvm_set_cr8);
687
688
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689
{
690
if (irqchip_in_kernel(vcpu->kvm))
691
return kvm_lapic_get_cr8(vcpu);
692
else
693
return vcpu->arch.cr8;
694
}
695
EXPORT_SYMBOL_GPL(kvm_get_cr8);
696
697
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
698
{
699
switch (dr) {
700
case 0 ... 3:
701
vcpu->arch.db[dr] = val;
702
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
703
vcpu->arch.eff_db[dr] = val;
704
break;
705
case 4:
706
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
707
return 1; /* #UD */
708
/* fall through */
709
case 6:
710
if (val & 0xffffffff00000000ULL)
711
return -1; /* #GP */
712
vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
713
break;
714
case 5:
715
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
716
return 1; /* #UD */
717
/* fall through */
718
default: /* 7 */
719
if (val & 0xffffffff00000000ULL)
720
return -1; /* #GP */
721
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
722
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
723
kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
724
vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
725
}
726
break;
727
}
728
729
return 0;
730
}
731
732
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733
{
734
int res;
735
736
res = __kvm_set_dr(vcpu, dr, val);
737
if (res > 0)
738
kvm_queue_exception(vcpu, UD_VECTOR);
739
else if (res < 0)
740
kvm_inject_gp(vcpu, 0);
741
742
return res;
743
}
744
EXPORT_SYMBOL_GPL(kvm_set_dr);
745
746
static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
747
{
748
switch (dr) {
749
case 0 ... 3:
750
*val = vcpu->arch.db[dr];
751
break;
752
case 4:
753
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754
return 1;
755
/* fall through */
756
case 6:
757
*val = vcpu->arch.dr6;
758
break;
759
case 5:
760
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
761
return 1;
762
/* fall through */
763
default: /* 7 */
764
*val = vcpu->arch.dr7;
765
break;
766
}
767
768
return 0;
769
}
770
771
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772
{
773
if (_kvm_get_dr(vcpu, dr, val)) {
774
kvm_queue_exception(vcpu, UD_VECTOR);
775
return 1;
776
}
777
return 0;
778
}
779
EXPORT_SYMBOL_GPL(kvm_get_dr);
780
781
/*
782
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
783
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
784
*
785
* This list is modified at module load time to reflect the
786
* capabilities of the host cpu. This capabilities test skips MSRs that are
787
* kvm-specific. Those are put in the beginning of the list.
788
*/
789
790
#define KVM_SAVE_MSRS_BEGIN 8
791
static u32 msrs_to_save[] = {
792
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
793
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
794
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
795
HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
796
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
797
MSR_STAR,
798
#ifdef CONFIG_X86_64
799
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
800
#endif
801
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
802
};
803
804
static unsigned num_msrs_to_save;
805
806
static u32 emulated_msrs[] = {
807
MSR_IA32_MISC_ENABLE,
808
MSR_IA32_MCG_STATUS,
809
MSR_IA32_MCG_CTL,
810
};
811
812
static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
813
{
814
u64 old_efer = vcpu->arch.efer;
815
816
if (efer & efer_reserved_bits)
817
return 1;
818
819
if (is_paging(vcpu)
820
&& (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
821
return 1;
822
823
if (efer & EFER_FFXSR) {
824
struct kvm_cpuid_entry2 *feat;
825
826
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
827
if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
828
return 1;
829
}
830
831
if (efer & EFER_SVME) {
832
struct kvm_cpuid_entry2 *feat;
833
834
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
835
if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
836
return 1;
837
}
838
839
efer &= ~EFER_LMA;
840
efer |= vcpu->arch.efer & EFER_LMA;
841
842
kvm_x86_ops->set_efer(vcpu, efer);
843
844
vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
845
846
/* Update reserved bits */
847
if ((efer ^ old_efer) & EFER_NX)
848
kvm_mmu_reset_context(vcpu);
849
850
return 0;
851
}
852
853
void kvm_enable_efer_bits(u64 mask)
854
{
855
efer_reserved_bits &= ~mask;
856
}
857
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
858
859
860
/*
861
* Writes msr value into into the appropriate "register".
862
* Returns 0 on success, non-0 otherwise.
863
* Assumes vcpu_load() was already called.
864
*/
865
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
866
{
867
return kvm_x86_ops->set_msr(vcpu, msr_index, data);
868
}
869
870
/*
871
* Adapt set_msr() to msr_io()'s calling convention
872
*/
873
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
874
{
875
return kvm_set_msr(vcpu, index, *data);
876
}
877
878
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
879
{
880
int version;
881
int r;
882
struct pvclock_wall_clock wc;
883
struct timespec boot;
884
885
if (!wall_clock)
886
return;
887
888
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
889
if (r)
890
return;
891
892
if (version & 1)
893
++version; /* first time write, random junk */
894
895
++version;
896
897
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
898
899
/*
900
* The guest calculates current wall clock time by adding
901
* system time (updated by kvm_guest_time_update below) to the
902
* wall clock specified here. guest system time equals host
903
* system time for us, thus we must fill in host boot time here.
904
*/
905
getboottime(&boot);
906
907
wc.sec = boot.tv_sec;
908
wc.nsec = boot.tv_nsec;
909
wc.version = version;
910
911
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
912
913
version++;
914
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
915
}
916
917
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
918
{
919
uint32_t quotient, remainder;
920
921
/* Don't try to replace with do_div(), this one calculates
922
* "(dividend << 32) / divisor" */
923
__asm__ ( "divl %4"
924
: "=a" (quotient), "=d" (remainder)
925
: "0" (0), "1" (dividend), "r" (divisor) );
926
return quotient;
927
}
928
929
static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
930
s8 *pshift, u32 *pmultiplier)
931
{
932
uint64_t scaled64;
933
int32_t shift = 0;
934
uint64_t tps64;
935
uint32_t tps32;
936
937
tps64 = base_khz * 1000LL;
938
scaled64 = scaled_khz * 1000LL;
939
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
940
tps64 >>= 1;
941
shift--;
942
}
943
944
tps32 = (uint32_t)tps64;
945
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
946
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
947
scaled64 >>= 1;
948
else
949
tps32 <<= 1;
950
shift++;
951
}
952
953
*pshift = shift;
954
*pmultiplier = div_frac(scaled64, tps32);
955
956
pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
957
__func__, base_khz, scaled_khz, shift, *pmultiplier);
958
}
959
960
static inline u64 get_kernel_ns(void)
961
{
962
struct timespec ts;
963
964
WARN_ON(preemptible());
965
ktime_get_ts(&ts);
966
monotonic_to_bootbased(&ts);
967
return timespec_to_ns(&ts);
968
}
969
970
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
971
unsigned long max_tsc_khz;
972
973
static inline int kvm_tsc_changes_freq(void)
974
{
975
int cpu = get_cpu();
976
int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
977
cpufreq_quick_get(cpu) != 0;
978
put_cpu();
979
return ret;
980
}
981
982
static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
983
{
984
if (vcpu->arch.virtual_tsc_khz)
985
return vcpu->arch.virtual_tsc_khz;
986
else
987
return __this_cpu_read(cpu_tsc_khz);
988
}
989
990
static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
991
{
992
u64 ret;
993
994
WARN_ON(preemptible());
995
if (kvm_tsc_changes_freq())
996
printk_once(KERN_WARNING
997
"kvm: unreliable cycle conversion on adjustable rate TSC\n");
998
ret = nsec * vcpu_tsc_khz(vcpu);
999
do_div(ret, USEC_PER_SEC);
1000
return ret;
1001
}
1002
1003
static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1004
{
1005
/* Compute a scale to convert nanoseconds in TSC cycles */
1006
kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1007
&vcpu->arch.tsc_catchup_shift,
1008
&vcpu->arch.tsc_catchup_mult);
1009
}
1010
1011
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1012
{
1013
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1014
vcpu->arch.tsc_catchup_mult,
1015
vcpu->arch.tsc_catchup_shift);
1016
tsc += vcpu->arch.last_tsc_write;
1017
return tsc;
1018
}
1019
1020
void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1021
{
1022
struct kvm *kvm = vcpu->kvm;
1023
u64 offset, ns, elapsed;
1024
unsigned long flags;
1025
s64 sdiff;
1026
1027
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1028
offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1029
ns = get_kernel_ns();
1030
elapsed = ns - kvm->arch.last_tsc_nsec;
1031
sdiff = data - kvm->arch.last_tsc_write;
1032
if (sdiff < 0)
1033
sdiff = -sdiff;
1034
1035
/*
1036
* Special case: close write to TSC within 5 seconds of
1037
* another CPU is interpreted as an attempt to synchronize
1038
* The 5 seconds is to accommodate host load / swapping as
1039
* well as any reset of TSC during the boot process.
1040
*
1041
* In that case, for a reliable TSC, we can match TSC offsets,
1042
* or make a best guest using elapsed value.
1043
*/
1044
if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1045
elapsed < 5ULL * NSEC_PER_SEC) {
1046
if (!check_tsc_unstable()) {
1047
offset = kvm->arch.last_tsc_offset;
1048
pr_debug("kvm: matched tsc offset for %llu\n", data);
1049
} else {
1050
u64 delta = nsec_to_cycles(vcpu, elapsed);
1051
offset += delta;
1052
pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1053
}
1054
ns = kvm->arch.last_tsc_nsec;
1055
}
1056
kvm->arch.last_tsc_nsec = ns;
1057
kvm->arch.last_tsc_write = data;
1058
kvm->arch.last_tsc_offset = offset;
1059
kvm_x86_ops->write_tsc_offset(vcpu, offset);
1060
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1061
1062
/* Reset of TSC must disable overshoot protection below */
1063
vcpu->arch.hv_clock.tsc_timestamp = 0;
1064
vcpu->arch.last_tsc_write = data;
1065
vcpu->arch.last_tsc_nsec = ns;
1066
}
1067
EXPORT_SYMBOL_GPL(kvm_write_tsc);
1068
1069
static int kvm_guest_time_update(struct kvm_vcpu *v)
1070
{
1071
unsigned long flags;
1072
struct kvm_vcpu_arch *vcpu = &v->arch;
1073
void *shared_kaddr;
1074
unsigned long this_tsc_khz;
1075
s64 kernel_ns, max_kernel_ns;
1076
u64 tsc_timestamp;
1077
1078
/* Keep irq disabled to prevent changes to the clock */
1079
local_irq_save(flags);
1080
kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1081
kernel_ns = get_kernel_ns();
1082
this_tsc_khz = vcpu_tsc_khz(v);
1083
if (unlikely(this_tsc_khz == 0)) {
1084
local_irq_restore(flags);
1085
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1086
return 1;
1087
}
1088
1089
/*
1090
* We may have to catch up the TSC to match elapsed wall clock
1091
* time for two reasons, even if kvmclock is used.
1092
* 1) CPU could have been running below the maximum TSC rate
1093
* 2) Broken TSC compensation resets the base at each VCPU
1094
* entry to avoid unknown leaps of TSC even when running
1095
* again on the same CPU. This may cause apparent elapsed
1096
* time to disappear, and the guest to stand still or run
1097
* very slowly.
1098
*/
1099
if (vcpu->tsc_catchup) {
1100
u64 tsc = compute_guest_tsc(v, kernel_ns);
1101
if (tsc > tsc_timestamp) {
1102
kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1103
tsc_timestamp = tsc;
1104
}
1105
}
1106
1107
local_irq_restore(flags);
1108
1109
if (!vcpu->time_page)
1110
return 0;
1111
1112
/*
1113
* Time as measured by the TSC may go backwards when resetting the base
1114
* tsc_timestamp. The reason for this is that the TSC resolution is
1115
* higher than the resolution of the other clock scales. Thus, many
1116
* possible measurments of the TSC correspond to one measurement of any
1117
* other clock, and so a spread of values is possible. This is not a
1118
* problem for the computation of the nanosecond clock; with TSC rates
1119
* around 1GHZ, there can only be a few cycles which correspond to one
1120
* nanosecond value, and any path through this code will inevitably
1121
* take longer than that. However, with the kernel_ns value itself,
1122
* the precision may be much lower, down to HZ granularity. If the
1123
* first sampling of TSC against kernel_ns ends in the low part of the
1124
* range, and the second in the high end of the range, we can get:
1125
*
1126
* (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1127
*
1128
* As the sampling errors potentially range in the thousands of cycles,
1129
* it is possible such a time value has already been observed by the
1130
* guest. To protect against this, we must compute the system time as
1131
* observed by the guest and ensure the new system time is greater.
1132
*/
1133
max_kernel_ns = 0;
1134
if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1135
max_kernel_ns = vcpu->last_guest_tsc -
1136
vcpu->hv_clock.tsc_timestamp;
1137
max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1138
vcpu->hv_clock.tsc_to_system_mul,
1139
vcpu->hv_clock.tsc_shift);
1140
max_kernel_ns += vcpu->last_kernel_ns;
1141
}
1142
1143
if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1144
kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1145
&vcpu->hv_clock.tsc_shift,
1146
&vcpu->hv_clock.tsc_to_system_mul);
1147
vcpu->hw_tsc_khz = this_tsc_khz;
1148
}
1149
1150
if (max_kernel_ns > kernel_ns)
1151
kernel_ns = max_kernel_ns;
1152
1153
/* With all the info we got, fill in the values */
1154
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1155
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1156
vcpu->last_kernel_ns = kernel_ns;
1157
vcpu->last_guest_tsc = tsc_timestamp;
1158
vcpu->hv_clock.flags = 0;
1159
1160
/*
1161
* The interface expects us to write an even number signaling that the
1162
* update is finished. Since the guest won't see the intermediate
1163
* state, we just increase by 2 at the end.
1164
*/
1165
vcpu->hv_clock.version += 2;
1166
1167
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1168
1169
memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1170
sizeof(vcpu->hv_clock));
1171
1172
kunmap_atomic(shared_kaddr, KM_USER0);
1173
1174
mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1175
return 0;
1176
}
1177
1178
static bool msr_mtrr_valid(unsigned msr)
1179
{
1180
switch (msr) {
1181
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1182
case MSR_MTRRfix64K_00000:
1183
case MSR_MTRRfix16K_80000:
1184
case MSR_MTRRfix16K_A0000:
1185
case MSR_MTRRfix4K_C0000:
1186
case MSR_MTRRfix4K_C8000:
1187
case MSR_MTRRfix4K_D0000:
1188
case MSR_MTRRfix4K_D8000:
1189
case MSR_MTRRfix4K_E0000:
1190
case MSR_MTRRfix4K_E8000:
1191
case MSR_MTRRfix4K_F0000:
1192
case MSR_MTRRfix4K_F8000:
1193
case MSR_MTRRdefType:
1194
case MSR_IA32_CR_PAT:
1195
return true;
1196
case 0x2f8:
1197
return true;
1198
}
1199
return false;
1200
}
1201
1202
static bool valid_pat_type(unsigned t)
1203
{
1204
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1205
}
1206
1207
static bool valid_mtrr_type(unsigned t)
1208
{
1209
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1210
}
1211
1212
static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1213
{
1214
int i;
1215
1216
if (!msr_mtrr_valid(msr))
1217
return false;
1218
1219
if (msr == MSR_IA32_CR_PAT) {
1220
for (i = 0; i < 8; i++)
1221
if (!valid_pat_type((data >> (i * 8)) & 0xff))
1222
return false;
1223
return true;
1224
} else if (msr == MSR_MTRRdefType) {
1225
if (data & ~0xcff)
1226
return false;
1227
return valid_mtrr_type(data & 0xff);
1228
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1229
for (i = 0; i < 8 ; i++)
1230
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1231
return false;
1232
return true;
1233
}
1234
1235
/* variable MTRRs */
1236
return valid_mtrr_type(data & 0xff);
1237
}
1238
1239
static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1240
{
1241
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1242
1243
if (!mtrr_valid(vcpu, msr, data))
1244
return 1;
1245
1246
if (msr == MSR_MTRRdefType) {
1247
vcpu->arch.mtrr_state.def_type = data;
1248
vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1249
} else if (msr == MSR_MTRRfix64K_00000)
1250
p[0] = data;
1251
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1252
p[1 + msr - MSR_MTRRfix16K_80000] = data;
1253
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1254
p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1255
else if (msr == MSR_IA32_CR_PAT)
1256
vcpu->arch.pat = data;
1257
else { /* Variable MTRRs */
1258
int idx, is_mtrr_mask;
1259
u64 *pt;
1260
1261
idx = (msr - 0x200) / 2;
1262
is_mtrr_mask = msr - 0x200 - 2 * idx;
1263
if (!is_mtrr_mask)
1264
pt =
1265
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1266
else
1267
pt =
1268
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1269
*pt = data;
1270
}
1271
1272
kvm_mmu_reset_context(vcpu);
1273
return 0;
1274
}
1275
1276
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1277
{
1278
u64 mcg_cap = vcpu->arch.mcg_cap;
1279
unsigned bank_num = mcg_cap & 0xff;
1280
1281
switch (msr) {
1282
case MSR_IA32_MCG_STATUS:
1283
vcpu->arch.mcg_status = data;
1284
break;
1285
case MSR_IA32_MCG_CTL:
1286
if (!(mcg_cap & MCG_CTL_P))
1287
return 1;
1288
if (data != 0 && data != ~(u64)0)
1289
return -1;
1290
vcpu->arch.mcg_ctl = data;
1291
break;
1292
default:
1293
if (msr >= MSR_IA32_MC0_CTL &&
1294
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1295
u32 offset = msr - MSR_IA32_MC0_CTL;
1296
/* only 0 or all 1s can be written to IA32_MCi_CTL
1297
* some Linux kernels though clear bit 10 in bank 4 to
1298
* workaround a BIOS/GART TBL issue on AMD K8s, ignore
1299
* this to avoid an uncatched #GP in the guest
1300
*/
1301
if ((offset & 0x3) == 0 &&
1302
data != 0 && (data | (1 << 10)) != ~(u64)0)
1303
return -1;
1304
vcpu->arch.mce_banks[offset] = data;
1305
break;
1306
}
1307
return 1;
1308
}
1309
return 0;
1310
}
1311
1312
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1313
{
1314
struct kvm *kvm = vcpu->kvm;
1315
int lm = is_long_mode(vcpu);
1316
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1317
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1318
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1319
: kvm->arch.xen_hvm_config.blob_size_32;
1320
u32 page_num = data & ~PAGE_MASK;
1321
u64 page_addr = data & PAGE_MASK;
1322
u8 *page;
1323
int r;
1324
1325
r = -E2BIG;
1326
if (page_num >= blob_size)
1327
goto out;
1328
r = -ENOMEM;
1329
page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1330
if (!page)
1331
goto out;
1332
r = -EFAULT;
1333
if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1334
goto out_free;
1335
if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1336
goto out_free;
1337
r = 0;
1338
out_free:
1339
kfree(page);
1340
out:
1341
return r;
1342
}
1343
1344
static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1345
{
1346
return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1347
}
1348
1349
static bool kvm_hv_msr_partition_wide(u32 msr)
1350
{
1351
bool r = false;
1352
switch (msr) {
1353
case HV_X64_MSR_GUEST_OS_ID:
1354
case HV_X64_MSR_HYPERCALL:
1355
r = true;
1356
break;
1357
}
1358
1359
return r;
1360
}
1361
1362
static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1363
{
1364
struct kvm *kvm = vcpu->kvm;
1365
1366
switch (msr) {
1367
case HV_X64_MSR_GUEST_OS_ID:
1368
kvm->arch.hv_guest_os_id = data;
1369
/* setting guest os id to zero disables hypercall page */
1370
if (!kvm->arch.hv_guest_os_id)
1371
kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1372
break;
1373
case HV_X64_MSR_HYPERCALL: {
1374
u64 gfn;
1375
unsigned long addr;
1376
u8 instructions[4];
1377
1378
/* if guest os id is not set hypercall should remain disabled */
1379
if (!kvm->arch.hv_guest_os_id)
1380
break;
1381
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1382
kvm->arch.hv_hypercall = data;
1383
break;
1384
}
1385
gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1386
addr = gfn_to_hva(kvm, gfn);
1387
if (kvm_is_error_hva(addr))
1388
return 1;
1389
kvm_x86_ops->patch_hypercall(vcpu, instructions);
1390
((unsigned char *)instructions)[3] = 0xc3; /* ret */
1391
if (copy_to_user((void __user *)addr, instructions, 4))
1392
return 1;
1393
kvm->arch.hv_hypercall = data;
1394
break;
1395
}
1396
default:
1397
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1398
"data 0x%llx\n", msr, data);
1399
return 1;
1400
}
1401
return 0;
1402
}
1403
1404
static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1405
{
1406
switch (msr) {
1407
case HV_X64_MSR_APIC_ASSIST_PAGE: {
1408
unsigned long addr;
1409
1410
if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1411
vcpu->arch.hv_vapic = data;
1412
break;
1413
}
1414
addr = gfn_to_hva(vcpu->kvm, data >>
1415
HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1416
if (kvm_is_error_hva(addr))
1417
return 1;
1418
if (clear_user((void __user *)addr, PAGE_SIZE))
1419
return 1;
1420
vcpu->arch.hv_vapic = data;
1421
break;
1422
}
1423
case HV_X64_MSR_EOI:
1424
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1425
case HV_X64_MSR_ICR:
1426
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1427
case HV_X64_MSR_TPR:
1428
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1429
default:
1430
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1431
"data 0x%llx\n", msr, data);
1432
return 1;
1433
}
1434
1435
return 0;
1436
}
1437
1438
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1439
{
1440
gpa_t gpa = data & ~0x3f;
1441
1442
/* Bits 2:5 are resrved, Should be zero */
1443
if (data & 0x3c)
1444
return 1;
1445
1446
vcpu->arch.apf.msr_val = data;
1447
1448
if (!(data & KVM_ASYNC_PF_ENABLED)) {
1449
kvm_clear_async_pf_completion_queue(vcpu);
1450
kvm_async_pf_hash_reset(vcpu);
1451
return 0;
1452
}
1453
1454
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1455
return 1;
1456
1457
vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1458
kvm_async_pf_wakeup_all(vcpu);
1459
return 0;
1460
}
1461
1462
static void kvmclock_reset(struct kvm_vcpu *vcpu)
1463
{
1464
if (vcpu->arch.time_page) {
1465
kvm_release_page_dirty(vcpu->arch.time_page);
1466
vcpu->arch.time_page = NULL;
1467
}
1468
}
1469
1470
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1471
{
1472
switch (msr) {
1473
case MSR_EFER:
1474
return set_efer(vcpu, data);
1475
case MSR_K7_HWCR:
1476
data &= ~(u64)0x40; /* ignore flush filter disable */
1477
data &= ~(u64)0x100; /* ignore ignne emulation enable */
1478
if (data != 0) {
1479
pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1480
data);
1481
return 1;
1482
}
1483
break;
1484
case MSR_FAM10H_MMIO_CONF_BASE:
1485
if (data != 0) {
1486
pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1487
"0x%llx\n", data);
1488
return 1;
1489
}
1490
break;
1491
case MSR_AMD64_NB_CFG:
1492
break;
1493
case MSR_IA32_DEBUGCTLMSR:
1494
if (!data) {
1495
/* We support the non-activated case already */
1496
break;
1497
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1498
/* Values other than LBR and BTF are vendor-specific,
1499
thus reserved and should throw a #GP */
1500
return 1;
1501
}
1502
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1503
__func__, data);
1504
break;
1505
case MSR_IA32_UCODE_REV:
1506
case MSR_IA32_UCODE_WRITE:
1507
case MSR_VM_HSAVE_PA:
1508
case MSR_AMD64_PATCH_LOADER:
1509
break;
1510
case 0x200 ... 0x2ff:
1511
return set_msr_mtrr(vcpu, msr, data);
1512
case MSR_IA32_APICBASE:
1513
kvm_set_apic_base(vcpu, data);
1514
break;
1515
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1516
return kvm_x2apic_msr_write(vcpu, msr, data);
1517
case MSR_IA32_MISC_ENABLE:
1518
vcpu->arch.ia32_misc_enable_msr = data;
1519
break;
1520
case MSR_KVM_WALL_CLOCK_NEW:
1521
case MSR_KVM_WALL_CLOCK:
1522
vcpu->kvm->arch.wall_clock = data;
1523
kvm_write_wall_clock(vcpu->kvm, data);
1524
break;
1525
case MSR_KVM_SYSTEM_TIME_NEW:
1526
case MSR_KVM_SYSTEM_TIME: {
1527
kvmclock_reset(vcpu);
1528
1529
vcpu->arch.time = data;
1530
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1531
1532
/* we verify if the enable bit is set... */
1533
if (!(data & 1))
1534
break;
1535
1536
/* ...but clean it before doing the actual write */
1537
vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1538
1539
vcpu->arch.time_page =
1540
gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1541
1542
if (is_error_page(vcpu->arch.time_page)) {
1543
kvm_release_page_clean(vcpu->arch.time_page);
1544
vcpu->arch.time_page = NULL;
1545
}
1546
break;
1547
}
1548
case MSR_KVM_ASYNC_PF_EN:
1549
if (kvm_pv_enable_async_pf(vcpu, data))
1550
return 1;
1551
break;
1552
case MSR_IA32_MCG_CTL:
1553
case MSR_IA32_MCG_STATUS:
1554
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1555
return set_msr_mce(vcpu, msr, data);
1556
1557
/* Performance counters are not protected by a CPUID bit,
1558
* so we should check all of them in the generic path for the sake of
1559
* cross vendor migration.
1560
* Writing a zero into the event select MSRs disables them,
1561
* which we perfectly emulate ;-). Any other value should be at least
1562
* reported, some guests depend on them.
1563
*/
1564
case MSR_P6_EVNTSEL0:
1565
case MSR_P6_EVNTSEL1:
1566
case MSR_K7_EVNTSEL0:
1567
case MSR_K7_EVNTSEL1:
1568
case MSR_K7_EVNTSEL2:
1569
case MSR_K7_EVNTSEL3:
1570
if (data != 0)
1571
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1572
"0x%x data 0x%llx\n", msr, data);
1573
break;
1574
/* at least RHEL 4 unconditionally writes to the perfctr registers,
1575
* so we ignore writes to make it happy.
1576
*/
1577
case MSR_P6_PERFCTR0:
1578
case MSR_P6_PERFCTR1:
1579
case MSR_K7_PERFCTR0:
1580
case MSR_K7_PERFCTR1:
1581
case MSR_K7_PERFCTR2:
1582
case MSR_K7_PERFCTR3:
1583
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1584
"0x%x data 0x%llx\n", msr, data);
1585
break;
1586
case MSR_K7_CLK_CTL:
1587
/*
1588
* Ignore all writes to this no longer documented MSR.
1589
* Writes are only relevant for old K7 processors,
1590
* all pre-dating SVM, but a recommended workaround from
1591
* AMD for these chips. It is possible to speicify the
1592
* affected processor models on the command line, hence
1593
* the need to ignore the workaround.
1594
*/
1595
break;
1596
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1597
if (kvm_hv_msr_partition_wide(msr)) {
1598
int r;
1599
mutex_lock(&vcpu->kvm->lock);
1600
r = set_msr_hyperv_pw(vcpu, msr, data);
1601
mutex_unlock(&vcpu->kvm->lock);
1602
return r;
1603
} else
1604
return set_msr_hyperv(vcpu, msr, data);
1605
break;
1606
case MSR_IA32_BBL_CR_CTL3:
1607
/* Drop writes to this legacy MSR -- see rdmsr
1608
* counterpart for further detail.
1609
*/
1610
pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1611
break;
1612
default:
1613
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1614
return xen_hvm_config(vcpu, data);
1615
if (!ignore_msrs) {
1616
pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1617
msr, data);
1618
return 1;
1619
} else {
1620
pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1621
msr, data);
1622
break;
1623
}
1624
}
1625
return 0;
1626
}
1627
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1628
1629
1630
/*
1631
* Reads an msr value (of 'msr_index') into 'pdata'.
1632
* Returns 0 on success, non-0 otherwise.
1633
* Assumes vcpu_load() was already called.
1634
*/
1635
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1636
{
1637
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1638
}
1639
1640
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1641
{
1642
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1643
1644
if (!msr_mtrr_valid(msr))
1645
return 1;
1646
1647
if (msr == MSR_MTRRdefType)
1648
*pdata = vcpu->arch.mtrr_state.def_type +
1649
(vcpu->arch.mtrr_state.enabled << 10);
1650
else if (msr == MSR_MTRRfix64K_00000)
1651
*pdata = p[0];
1652
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1653
*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1654
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1655
*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1656
else if (msr == MSR_IA32_CR_PAT)
1657
*pdata = vcpu->arch.pat;
1658
else { /* Variable MTRRs */
1659
int idx, is_mtrr_mask;
1660
u64 *pt;
1661
1662
idx = (msr - 0x200) / 2;
1663
is_mtrr_mask = msr - 0x200 - 2 * idx;
1664
if (!is_mtrr_mask)
1665
pt =
1666
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1667
else
1668
pt =
1669
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1670
*pdata = *pt;
1671
}
1672
1673
return 0;
1674
}
1675
1676
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1677
{
1678
u64 data;
1679
u64 mcg_cap = vcpu->arch.mcg_cap;
1680
unsigned bank_num = mcg_cap & 0xff;
1681
1682
switch (msr) {
1683
case MSR_IA32_P5_MC_ADDR:
1684
case MSR_IA32_P5_MC_TYPE:
1685
data = 0;
1686
break;
1687
case MSR_IA32_MCG_CAP:
1688
data = vcpu->arch.mcg_cap;
1689
break;
1690
case MSR_IA32_MCG_CTL:
1691
if (!(mcg_cap & MCG_CTL_P))
1692
return 1;
1693
data = vcpu->arch.mcg_ctl;
1694
break;
1695
case MSR_IA32_MCG_STATUS:
1696
data = vcpu->arch.mcg_status;
1697
break;
1698
default:
1699
if (msr >= MSR_IA32_MC0_CTL &&
1700
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1701
u32 offset = msr - MSR_IA32_MC0_CTL;
1702
data = vcpu->arch.mce_banks[offset];
1703
break;
1704
}
1705
return 1;
1706
}
1707
*pdata = data;
1708
return 0;
1709
}
1710
1711
static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1712
{
1713
u64 data = 0;
1714
struct kvm *kvm = vcpu->kvm;
1715
1716
switch (msr) {
1717
case HV_X64_MSR_GUEST_OS_ID:
1718
data = kvm->arch.hv_guest_os_id;
1719
break;
1720
case HV_X64_MSR_HYPERCALL:
1721
data = kvm->arch.hv_hypercall;
1722
break;
1723
default:
1724
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1725
return 1;
1726
}
1727
1728
*pdata = data;
1729
return 0;
1730
}
1731
1732
static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1733
{
1734
u64 data = 0;
1735
1736
switch (msr) {
1737
case HV_X64_MSR_VP_INDEX: {
1738
int r;
1739
struct kvm_vcpu *v;
1740
kvm_for_each_vcpu(r, v, vcpu->kvm)
1741
if (v == vcpu)
1742
data = r;
1743
break;
1744
}
1745
case HV_X64_MSR_EOI:
1746
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1747
case HV_X64_MSR_ICR:
1748
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1749
case HV_X64_MSR_TPR:
1750
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1751
default:
1752
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1753
return 1;
1754
}
1755
*pdata = data;
1756
return 0;
1757
}
1758
1759
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1760
{
1761
u64 data;
1762
1763
switch (msr) {
1764
case MSR_IA32_PLATFORM_ID:
1765
case MSR_IA32_UCODE_REV:
1766
case MSR_IA32_EBL_CR_POWERON:
1767
case MSR_IA32_DEBUGCTLMSR:
1768
case MSR_IA32_LASTBRANCHFROMIP:
1769
case MSR_IA32_LASTBRANCHTOIP:
1770
case MSR_IA32_LASTINTFROMIP:
1771
case MSR_IA32_LASTINTTOIP:
1772
case MSR_K8_SYSCFG:
1773
case MSR_K7_HWCR:
1774
case MSR_VM_HSAVE_PA:
1775
case MSR_P6_PERFCTR0:
1776
case MSR_P6_PERFCTR1:
1777
case MSR_P6_EVNTSEL0:
1778
case MSR_P6_EVNTSEL1:
1779
case MSR_K7_EVNTSEL0:
1780
case MSR_K7_PERFCTR0:
1781
case MSR_K8_INT_PENDING_MSG:
1782
case MSR_AMD64_NB_CFG:
1783
case MSR_FAM10H_MMIO_CONF_BASE:
1784
data = 0;
1785
break;
1786
case MSR_MTRRcap:
1787
data = 0x500 | KVM_NR_VAR_MTRR;
1788
break;
1789
case 0x200 ... 0x2ff:
1790
return get_msr_mtrr(vcpu, msr, pdata);
1791
case 0xcd: /* fsb frequency */
1792
data = 3;
1793
break;
1794
/*
1795
* MSR_EBC_FREQUENCY_ID
1796
* Conservative value valid for even the basic CPU models.
1797
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
1798
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1799
* and 266MHz for model 3, or 4. Set Core Clock
1800
* Frequency to System Bus Frequency Ratio to 1 (bits
1801
* 31:24) even though these are only valid for CPU
1802
* models > 2, however guests may end up dividing or
1803
* multiplying by zero otherwise.
1804
*/
1805
case MSR_EBC_FREQUENCY_ID:
1806
data = 1 << 24;
1807
break;
1808
case MSR_IA32_APICBASE:
1809
data = kvm_get_apic_base(vcpu);
1810
break;
1811
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1812
return kvm_x2apic_msr_read(vcpu, msr, pdata);
1813
break;
1814
case MSR_IA32_MISC_ENABLE:
1815
data = vcpu->arch.ia32_misc_enable_msr;
1816
break;
1817
case MSR_IA32_PERF_STATUS:
1818
/* TSC increment by tick */
1819
data = 1000ULL;
1820
/* CPU multiplier */
1821
data |= (((uint64_t)4ULL) << 40);
1822
break;
1823
case MSR_EFER:
1824
data = vcpu->arch.efer;
1825
break;
1826
case MSR_KVM_WALL_CLOCK:
1827
case MSR_KVM_WALL_CLOCK_NEW:
1828
data = vcpu->kvm->arch.wall_clock;
1829
break;
1830
case MSR_KVM_SYSTEM_TIME:
1831
case MSR_KVM_SYSTEM_TIME_NEW:
1832
data = vcpu->arch.time;
1833
break;
1834
case MSR_KVM_ASYNC_PF_EN:
1835
data = vcpu->arch.apf.msr_val;
1836
break;
1837
case MSR_IA32_P5_MC_ADDR:
1838
case MSR_IA32_P5_MC_TYPE:
1839
case MSR_IA32_MCG_CAP:
1840
case MSR_IA32_MCG_CTL:
1841
case MSR_IA32_MCG_STATUS:
1842
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1843
return get_msr_mce(vcpu, msr, pdata);
1844
case MSR_K7_CLK_CTL:
1845
/*
1846
* Provide expected ramp-up count for K7. All other
1847
* are set to zero, indicating minimum divisors for
1848
* every field.
1849
*
1850
* This prevents guest kernels on AMD host with CPU
1851
* type 6, model 8 and higher from exploding due to
1852
* the rdmsr failing.
1853
*/
1854
data = 0x20000000;
1855
break;
1856
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1857
if (kvm_hv_msr_partition_wide(msr)) {
1858
int r;
1859
mutex_lock(&vcpu->kvm->lock);
1860
r = get_msr_hyperv_pw(vcpu, msr, pdata);
1861
mutex_unlock(&vcpu->kvm->lock);
1862
return r;
1863
} else
1864
return get_msr_hyperv(vcpu, msr, pdata);
1865
break;
1866
case MSR_IA32_BBL_CR_CTL3:
1867
/* This legacy MSR exists but isn't fully documented in current
1868
* silicon. It is however accessed by winxp in very narrow
1869
* scenarios where it sets bit #19, itself documented as
1870
* a "reserved" bit. Best effort attempt to source coherent
1871
* read data here should the balance of the register be
1872
* interpreted by the guest:
1873
*
1874
* L2 cache control register 3: 64GB range, 256KB size,
1875
* enabled, latency 0x1, configured
1876
*/
1877
data = 0xbe702111;
1878
break;
1879
default:
1880
if (!ignore_msrs) {
1881
pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1882
return 1;
1883
} else {
1884
pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1885
data = 0;
1886
}
1887
break;
1888
}
1889
*pdata = data;
1890
return 0;
1891
}
1892
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1893
1894
/*
1895
* Read or write a bunch of msrs. All parameters are kernel addresses.
1896
*
1897
* @return number of msrs set successfully.
1898
*/
1899
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1900
struct kvm_msr_entry *entries,
1901
int (*do_msr)(struct kvm_vcpu *vcpu,
1902
unsigned index, u64 *data))
1903
{
1904
int i, idx;
1905
1906
idx = srcu_read_lock(&vcpu->kvm->srcu);
1907
for (i = 0; i < msrs->nmsrs; ++i)
1908
if (do_msr(vcpu, entries[i].index, &entries[i].data))
1909
break;
1910
srcu_read_unlock(&vcpu->kvm->srcu, idx);
1911
1912
return i;
1913
}
1914
1915
/*
1916
* Read or write a bunch of msrs. Parameters are user addresses.
1917
*
1918
* @return number of msrs set successfully.
1919
*/
1920
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1921
int (*do_msr)(struct kvm_vcpu *vcpu,
1922
unsigned index, u64 *data),
1923
int writeback)
1924
{
1925
struct kvm_msrs msrs;
1926
struct kvm_msr_entry *entries;
1927
int r, n;
1928
unsigned size;
1929
1930
r = -EFAULT;
1931
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1932
goto out;
1933
1934
r = -E2BIG;
1935
if (msrs.nmsrs >= MAX_IO_MSRS)
1936
goto out;
1937
1938
r = -ENOMEM;
1939
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1940
entries = kmalloc(size, GFP_KERNEL);
1941
if (!entries)
1942
goto out;
1943
1944
r = -EFAULT;
1945
if (copy_from_user(entries, user_msrs->entries, size))
1946
goto out_free;
1947
1948
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1949
if (r < 0)
1950
goto out_free;
1951
1952
r = -EFAULT;
1953
if (writeback && copy_to_user(user_msrs->entries, entries, size))
1954
goto out_free;
1955
1956
r = n;
1957
1958
out_free:
1959
kfree(entries);
1960
out:
1961
return r;
1962
}
1963
1964
int kvm_dev_ioctl_check_extension(long ext)
1965
{
1966
int r;
1967
1968
switch (ext) {
1969
case KVM_CAP_IRQCHIP:
1970
case KVM_CAP_HLT:
1971
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1972
case KVM_CAP_SET_TSS_ADDR:
1973
case KVM_CAP_EXT_CPUID:
1974
case KVM_CAP_CLOCKSOURCE:
1975
case KVM_CAP_PIT:
1976
case KVM_CAP_NOP_IO_DELAY:
1977
case KVM_CAP_MP_STATE:
1978
case KVM_CAP_SYNC_MMU:
1979
case KVM_CAP_USER_NMI:
1980
case KVM_CAP_REINJECT_CONTROL:
1981
case KVM_CAP_IRQ_INJECT_STATUS:
1982
case KVM_CAP_ASSIGN_DEV_IRQ:
1983
case KVM_CAP_IRQFD:
1984
case KVM_CAP_IOEVENTFD:
1985
case KVM_CAP_PIT2:
1986
case KVM_CAP_PIT_STATE2:
1987
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1988
case KVM_CAP_XEN_HVM:
1989
case KVM_CAP_ADJUST_CLOCK:
1990
case KVM_CAP_VCPU_EVENTS:
1991
case KVM_CAP_HYPERV:
1992
case KVM_CAP_HYPERV_VAPIC:
1993
case KVM_CAP_HYPERV_SPIN:
1994
case KVM_CAP_PCI_SEGMENT:
1995
case KVM_CAP_DEBUGREGS:
1996
case KVM_CAP_X86_ROBUST_SINGLESTEP:
1997
case KVM_CAP_XSAVE:
1998
case KVM_CAP_ASYNC_PF:
1999
case KVM_CAP_GET_TSC_KHZ:
2000
r = 1;
2001
break;
2002
case KVM_CAP_COALESCED_MMIO:
2003
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2004
break;
2005
case KVM_CAP_VAPIC:
2006
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2007
break;
2008
case KVM_CAP_NR_VCPUS:
2009
r = KVM_MAX_VCPUS;
2010
break;
2011
case KVM_CAP_NR_MEMSLOTS:
2012
r = KVM_MEMORY_SLOTS;
2013
break;
2014
case KVM_CAP_PV_MMU: /* obsolete */
2015
r = 0;
2016
break;
2017
case KVM_CAP_IOMMU:
2018
r = iommu_found();
2019
break;
2020
case KVM_CAP_MCE:
2021
r = KVM_MAX_MCE_BANKS;
2022
break;
2023
case KVM_CAP_XCRS:
2024
r = cpu_has_xsave;
2025
break;
2026
case KVM_CAP_TSC_CONTROL:
2027
r = kvm_has_tsc_control;
2028
break;
2029
default:
2030
r = 0;
2031
break;
2032
}
2033
return r;
2034
2035
}
2036
2037
long kvm_arch_dev_ioctl(struct file *filp,
2038
unsigned int ioctl, unsigned long arg)
2039
{
2040
void __user *argp = (void __user *)arg;
2041
long r;
2042
2043
switch (ioctl) {
2044
case KVM_GET_MSR_INDEX_LIST: {
2045
struct kvm_msr_list __user *user_msr_list = argp;
2046
struct kvm_msr_list msr_list;
2047
unsigned n;
2048
2049
r = -EFAULT;
2050
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2051
goto out;
2052
n = msr_list.nmsrs;
2053
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2054
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2055
goto out;
2056
r = -E2BIG;
2057
if (n < msr_list.nmsrs)
2058
goto out;
2059
r = -EFAULT;
2060
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2061
num_msrs_to_save * sizeof(u32)))
2062
goto out;
2063
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2064
&emulated_msrs,
2065
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2066
goto out;
2067
r = 0;
2068
break;
2069
}
2070
case KVM_GET_SUPPORTED_CPUID: {
2071
struct kvm_cpuid2 __user *cpuid_arg = argp;
2072
struct kvm_cpuid2 cpuid;
2073
2074
r = -EFAULT;
2075
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2076
goto out;
2077
r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2078
cpuid_arg->entries);
2079
if (r)
2080
goto out;
2081
2082
r = -EFAULT;
2083
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2084
goto out;
2085
r = 0;
2086
break;
2087
}
2088
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2089
u64 mce_cap;
2090
2091
mce_cap = KVM_MCE_CAP_SUPPORTED;
2092
r = -EFAULT;
2093
if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2094
goto out;
2095
r = 0;
2096
break;
2097
}
2098
default:
2099
r = -EINVAL;
2100
}
2101
out:
2102
return r;
2103
}
2104
2105
static void wbinvd_ipi(void *garbage)
2106
{
2107
wbinvd();
2108
}
2109
2110
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2111
{
2112
return vcpu->kvm->arch.iommu_domain &&
2113
!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2114
}
2115
2116
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2117
{
2118
/* Address WBINVD may be executed by guest */
2119
if (need_emulate_wbinvd(vcpu)) {
2120
if (kvm_x86_ops->has_wbinvd_exit())
2121
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2122
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2123
smp_call_function_single(vcpu->cpu,
2124
wbinvd_ipi, NULL, 1);
2125
}
2126
2127
kvm_x86_ops->vcpu_load(vcpu, cpu);
2128
if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2129
/* Make sure TSC doesn't go backwards */
2130
s64 tsc_delta;
2131
u64 tsc;
2132
2133
kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2134
tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2135
tsc - vcpu->arch.last_guest_tsc;
2136
2137
if (tsc_delta < 0)
2138
mark_tsc_unstable("KVM discovered backwards TSC");
2139
if (check_tsc_unstable()) {
2140
kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2141
vcpu->arch.tsc_catchup = 1;
2142
}
2143
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2144
if (vcpu->cpu != cpu)
2145
kvm_migrate_timers(vcpu);
2146
vcpu->cpu = cpu;
2147
}
2148
}
2149
2150
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2151
{
2152
kvm_x86_ops->vcpu_put(vcpu);
2153
kvm_put_guest_fpu(vcpu);
2154
kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2155
}
2156
2157
static int is_efer_nx(void)
2158
{
2159
unsigned long long efer = 0;
2160
2161
rdmsrl_safe(MSR_EFER, &efer);
2162
return efer & EFER_NX;
2163
}
2164
2165
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2166
{
2167
int i;
2168
struct kvm_cpuid_entry2 *e, *entry;
2169
2170
entry = NULL;
2171
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2172
e = &vcpu->arch.cpuid_entries[i];
2173
if (e->function == 0x80000001) {
2174
entry = e;
2175
break;
2176
}
2177
}
2178
if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2179
entry->edx &= ~(1 << 20);
2180
printk(KERN_INFO "kvm: guest NX capability removed\n");
2181
}
2182
}
2183
2184
/* when an old userspace process fills a new kernel module */
2185
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2186
struct kvm_cpuid *cpuid,
2187
struct kvm_cpuid_entry __user *entries)
2188
{
2189
int r, i;
2190
struct kvm_cpuid_entry *cpuid_entries;
2191
2192
r = -E2BIG;
2193
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2194
goto out;
2195
r = -ENOMEM;
2196
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2197
if (!cpuid_entries)
2198
goto out;
2199
r = -EFAULT;
2200
if (copy_from_user(cpuid_entries, entries,
2201
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2202
goto out_free;
2203
for (i = 0; i < cpuid->nent; i++) {
2204
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2205
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2206
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2207
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2208
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2209
vcpu->arch.cpuid_entries[i].index = 0;
2210
vcpu->arch.cpuid_entries[i].flags = 0;
2211
vcpu->arch.cpuid_entries[i].padding[0] = 0;
2212
vcpu->arch.cpuid_entries[i].padding[1] = 0;
2213
vcpu->arch.cpuid_entries[i].padding[2] = 0;
2214
}
2215
vcpu->arch.cpuid_nent = cpuid->nent;
2216
cpuid_fix_nx_cap(vcpu);
2217
r = 0;
2218
kvm_apic_set_version(vcpu);
2219
kvm_x86_ops->cpuid_update(vcpu);
2220
update_cpuid(vcpu);
2221
2222
out_free:
2223
vfree(cpuid_entries);
2224
out:
2225
return r;
2226
}
2227
2228
static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2229
struct kvm_cpuid2 *cpuid,
2230
struct kvm_cpuid_entry2 __user *entries)
2231
{
2232
int r;
2233
2234
r = -E2BIG;
2235
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2236
goto out;
2237
r = -EFAULT;
2238
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2239
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2240
goto out;
2241
vcpu->arch.cpuid_nent = cpuid->nent;
2242
kvm_apic_set_version(vcpu);
2243
kvm_x86_ops->cpuid_update(vcpu);
2244
update_cpuid(vcpu);
2245
return 0;
2246
2247
out:
2248
return r;
2249
}
2250
2251
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2252
struct kvm_cpuid2 *cpuid,
2253
struct kvm_cpuid_entry2 __user *entries)
2254
{
2255
int r;
2256
2257
r = -E2BIG;
2258
if (cpuid->nent < vcpu->arch.cpuid_nent)
2259
goto out;
2260
r = -EFAULT;
2261
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2262
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2263
goto out;
2264
return 0;
2265
2266
out:
2267
cpuid->nent = vcpu->arch.cpuid_nent;
2268
return r;
2269
}
2270
2271
static void cpuid_mask(u32 *word, int wordnum)
2272
{
2273
*word &= boot_cpu_data.x86_capability[wordnum];
2274
}
2275
2276
static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2277
u32 index)
2278
{
2279
entry->function = function;
2280
entry->index = index;
2281
cpuid_count(entry->function, entry->index,
2282
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2283
entry->flags = 0;
2284
}
2285
2286
#define F(x) bit(X86_FEATURE_##x)
2287
2288
static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2289
u32 index, int *nent, int maxnent)
2290
{
2291
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2292
#ifdef CONFIG_X86_64
2293
unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2294
? F(GBPAGES) : 0;
2295
unsigned f_lm = F(LM);
2296
#else
2297
unsigned f_gbpages = 0;
2298
unsigned f_lm = 0;
2299
#endif
2300
unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2301
2302
/* cpuid 1.edx */
2303
const u32 kvm_supported_word0_x86_features =
2304
F(FPU) | F(VME) | F(DE) | F(PSE) |
2305
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2306
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2307
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2308
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2309
0 /* Reserved, DS, ACPI */ | F(MMX) |
2310
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2311
0 /* HTT, TM, Reserved, PBE */;
2312
/* cpuid 0x80000001.edx */
2313
const u32 kvm_supported_word1_x86_features =
2314
F(FPU) | F(VME) | F(DE) | F(PSE) |
2315
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2316
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2317
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2318
F(PAT) | F(PSE36) | 0 /* Reserved */ |
2319
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2320
F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2321
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2322
/* cpuid 1.ecx */
2323
const u32 kvm_supported_word4_x86_features =
2324
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2325
0 /* DS-CPL, VMX, SMX, EST */ |
2326
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2327
0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2328
0 /* Reserved, DCA */ | F(XMM4_1) |
2329
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2330
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2331
F(F16C);
2332
/* cpuid 0x80000001.ecx */
2333
const u32 kvm_supported_word6_x86_features =
2334
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2335
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2336
F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2337
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2338
2339
/* cpuid 0xC0000001.edx */
2340
const u32 kvm_supported_word5_x86_features =
2341
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2342
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2343
F(PMM) | F(PMM_EN);
2344
2345
/* all calls to cpuid_count() should be made on the same cpu */
2346
get_cpu();
2347
do_cpuid_1_ent(entry, function, index);
2348
++*nent;
2349
2350
switch (function) {
2351
case 0:
2352
entry->eax = min(entry->eax, (u32)0xd);
2353
break;
2354
case 1:
2355
entry->edx &= kvm_supported_word0_x86_features;
2356
cpuid_mask(&entry->edx, 0);
2357
entry->ecx &= kvm_supported_word4_x86_features;
2358
cpuid_mask(&entry->ecx, 4);
2359
/* we support x2apic emulation even if host does not support
2360
* it since we emulate x2apic in software */
2361
entry->ecx |= F(X2APIC);
2362
break;
2363
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
2364
* may return different values. This forces us to get_cpu() before
2365
* issuing the first command, and also to emulate this annoying behavior
2366
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2367
case 2: {
2368
int t, times = entry->eax & 0xff;
2369
2370
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2371
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2372
for (t = 1; t < times && *nent < maxnent; ++t) {
2373
do_cpuid_1_ent(&entry[t], function, 0);
2374
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2375
++*nent;
2376
}
2377
break;
2378
}
2379
/* function 4 and 0xb have additional index. */
2380
case 4: {
2381
int i, cache_type;
2382
2383
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2384
/* read more entries until cache_type is zero */
2385
for (i = 1; *nent < maxnent; ++i) {
2386
cache_type = entry[i - 1].eax & 0x1f;
2387
if (!cache_type)
2388
break;
2389
do_cpuid_1_ent(&entry[i], function, i);
2390
entry[i].flags |=
2391
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2392
++*nent;
2393
}
2394
break;
2395
}
2396
case 0xb: {
2397
int i, level_type;
2398
2399
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2400
/* read more entries until level_type is zero */
2401
for (i = 1; *nent < maxnent; ++i) {
2402
level_type = entry[i - 1].ecx & 0xff00;
2403
if (!level_type)
2404
break;
2405
do_cpuid_1_ent(&entry[i], function, i);
2406
entry[i].flags |=
2407
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2408
++*nent;
2409
}
2410
break;
2411
}
2412
case 0xd: {
2413
int i;
2414
2415
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2416
for (i = 1; *nent < maxnent && i < 64; ++i) {
2417
if (entry[i].eax == 0)
2418
continue;
2419
do_cpuid_1_ent(&entry[i], function, i);
2420
entry[i].flags |=
2421
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2422
++*nent;
2423
}
2424
break;
2425
}
2426
case KVM_CPUID_SIGNATURE: {
2427
char signature[12] = "KVMKVMKVM\0\0";
2428
u32 *sigptr = (u32 *)signature;
2429
entry->eax = 0;
2430
entry->ebx = sigptr[0];
2431
entry->ecx = sigptr[1];
2432
entry->edx = sigptr[2];
2433
break;
2434
}
2435
case KVM_CPUID_FEATURES:
2436
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2437
(1 << KVM_FEATURE_NOP_IO_DELAY) |
2438
(1 << KVM_FEATURE_CLOCKSOURCE2) |
2439
(1 << KVM_FEATURE_ASYNC_PF) |
2440
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2441
entry->ebx = 0;
2442
entry->ecx = 0;
2443
entry->edx = 0;
2444
break;
2445
case 0x80000000:
2446
entry->eax = min(entry->eax, 0x8000001a);
2447
break;
2448
case 0x80000001:
2449
entry->edx &= kvm_supported_word1_x86_features;
2450
cpuid_mask(&entry->edx, 1);
2451
entry->ecx &= kvm_supported_word6_x86_features;
2452
cpuid_mask(&entry->ecx, 6);
2453
break;
2454
/*Add support for Centaur's CPUID instruction*/
2455
case 0xC0000000:
2456
/*Just support up to 0xC0000004 now*/
2457
entry->eax = min(entry->eax, 0xC0000004);
2458
break;
2459
case 0xC0000001:
2460
entry->edx &= kvm_supported_word5_x86_features;
2461
cpuid_mask(&entry->edx, 5);
2462
break;
2463
case 0xC0000002:
2464
case 0xC0000003:
2465
case 0xC0000004:
2466
/*Now nothing to do, reserved for the future*/
2467
break;
2468
}
2469
2470
kvm_x86_ops->set_supported_cpuid(function, entry);
2471
2472
put_cpu();
2473
}
2474
2475
#undef F
2476
2477
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2478
struct kvm_cpuid_entry2 __user *entries)
2479
{
2480
struct kvm_cpuid_entry2 *cpuid_entries;
2481
int limit, nent = 0, r = -E2BIG;
2482
u32 func;
2483
2484
if (cpuid->nent < 1)
2485
goto out;
2486
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2487
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2488
r = -ENOMEM;
2489
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2490
if (!cpuid_entries)
2491
goto out;
2492
2493
do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2494
limit = cpuid_entries[0].eax;
2495
for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2496
do_cpuid_ent(&cpuid_entries[nent], func, 0,
2497
&nent, cpuid->nent);
2498
r = -E2BIG;
2499
if (nent >= cpuid->nent)
2500
goto out_free;
2501
2502
do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2503
limit = cpuid_entries[nent - 1].eax;
2504
for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2505
do_cpuid_ent(&cpuid_entries[nent], func, 0,
2506
&nent, cpuid->nent);
2507
2508
2509
2510
r = -E2BIG;
2511
if (nent >= cpuid->nent)
2512
goto out_free;
2513
2514
/* Add support for Centaur's CPUID instruction. */
2515
if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2516
do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2517
&nent, cpuid->nent);
2518
2519
r = -E2BIG;
2520
if (nent >= cpuid->nent)
2521
goto out_free;
2522
2523
limit = cpuid_entries[nent - 1].eax;
2524
for (func = 0xC0000001;
2525
func <= limit && nent < cpuid->nent; ++func)
2526
do_cpuid_ent(&cpuid_entries[nent], func, 0,
2527
&nent, cpuid->nent);
2528
2529
r = -E2BIG;
2530
if (nent >= cpuid->nent)
2531
goto out_free;
2532
}
2533
2534
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2535
cpuid->nent);
2536
2537
r = -E2BIG;
2538
if (nent >= cpuid->nent)
2539
goto out_free;
2540
2541
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2542
cpuid->nent);
2543
2544
r = -E2BIG;
2545
if (nent >= cpuid->nent)
2546
goto out_free;
2547
2548
r = -EFAULT;
2549
if (copy_to_user(entries, cpuid_entries,
2550
nent * sizeof(struct kvm_cpuid_entry2)))
2551
goto out_free;
2552
cpuid->nent = nent;
2553
r = 0;
2554
2555
out_free:
2556
vfree(cpuid_entries);
2557
out:
2558
return r;
2559
}
2560
2561
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2562
struct kvm_lapic_state *s)
2563
{
2564
memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2565
2566
return 0;
2567
}
2568
2569
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2570
struct kvm_lapic_state *s)
2571
{
2572
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2573
kvm_apic_post_state_restore(vcpu);
2574
update_cr8_intercept(vcpu);
2575
2576
return 0;
2577
}
2578
2579
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2580
struct kvm_interrupt *irq)
2581
{
2582
if (irq->irq < 0 || irq->irq >= 256)
2583
return -EINVAL;
2584
if (irqchip_in_kernel(vcpu->kvm))
2585
return -ENXIO;
2586
2587
kvm_queue_interrupt(vcpu, irq->irq, false);
2588
kvm_make_request(KVM_REQ_EVENT, vcpu);
2589
2590
return 0;
2591
}
2592
2593
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2594
{
2595
kvm_inject_nmi(vcpu);
2596
2597
return 0;
2598
}
2599
2600
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2601
struct kvm_tpr_access_ctl *tac)
2602
{
2603
if (tac->flags)
2604
return -EINVAL;
2605
vcpu->arch.tpr_access_reporting = !!tac->enabled;
2606
return 0;
2607
}
2608
2609
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2610
u64 mcg_cap)
2611
{
2612
int r;
2613
unsigned bank_num = mcg_cap & 0xff, bank;
2614
2615
r = -EINVAL;
2616
if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2617
goto out;
2618
if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2619
goto out;
2620
r = 0;
2621
vcpu->arch.mcg_cap = mcg_cap;
2622
/* Init IA32_MCG_CTL to all 1s */
2623
if (mcg_cap & MCG_CTL_P)
2624
vcpu->arch.mcg_ctl = ~(u64)0;
2625
/* Init IA32_MCi_CTL to all 1s */
2626
for (bank = 0; bank < bank_num; bank++)
2627
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2628
out:
2629
return r;
2630
}
2631
2632
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2633
struct kvm_x86_mce *mce)
2634
{
2635
u64 mcg_cap = vcpu->arch.mcg_cap;
2636
unsigned bank_num = mcg_cap & 0xff;
2637
u64 *banks = vcpu->arch.mce_banks;
2638
2639
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2640
return -EINVAL;
2641
/*
2642
* if IA32_MCG_CTL is not all 1s, the uncorrected error
2643
* reporting is disabled
2644
*/
2645
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2646
vcpu->arch.mcg_ctl != ~(u64)0)
2647
return 0;
2648
banks += 4 * mce->bank;
2649
/*
2650
* if IA32_MCi_CTL is not all 1s, the uncorrected error
2651
* reporting is disabled for the bank
2652
*/
2653
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2654
return 0;
2655
if (mce->status & MCI_STATUS_UC) {
2656
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2657
!kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2658
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2659
return 0;
2660
}
2661
if (banks[1] & MCI_STATUS_VAL)
2662
mce->status |= MCI_STATUS_OVER;
2663
banks[2] = mce->addr;
2664
banks[3] = mce->misc;
2665
vcpu->arch.mcg_status = mce->mcg_status;
2666
banks[1] = mce->status;
2667
kvm_queue_exception(vcpu, MC_VECTOR);
2668
} else if (!(banks[1] & MCI_STATUS_VAL)
2669
|| !(banks[1] & MCI_STATUS_UC)) {
2670
if (banks[1] & MCI_STATUS_VAL)
2671
mce->status |= MCI_STATUS_OVER;
2672
banks[2] = mce->addr;
2673
banks[3] = mce->misc;
2674
banks[1] = mce->status;
2675
} else
2676
banks[1] |= MCI_STATUS_OVER;
2677
return 0;
2678
}
2679
2680
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2681
struct kvm_vcpu_events *events)
2682
{
2683
events->exception.injected =
2684
vcpu->arch.exception.pending &&
2685
!kvm_exception_is_soft(vcpu->arch.exception.nr);
2686
events->exception.nr = vcpu->arch.exception.nr;
2687
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2688
events->exception.pad = 0;
2689
events->exception.error_code = vcpu->arch.exception.error_code;
2690
2691
events->interrupt.injected =
2692
vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2693
events->interrupt.nr = vcpu->arch.interrupt.nr;
2694
events->interrupt.soft = 0;
2695
events->interrupt.shadow =
2696
kvm_x86_ops->get_interrupt_shadow(vcpu,
2697
KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2698
2699
events->nmi.injected = vcpu->arch.nmi_injected;
2700
events->nmi.pending = vcpu->arch.nmi_pending;
2701
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2702
events->nmi.pad = 0;
2703
2704
events->sipi_vector = vcpu->arch.sipi_vector;
2705
2706
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2707
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
2708
| KVM_VCPUEVENT_VALID_SHADOW);
2709
memset(&events->reserved, 0, sizeof(events->reserved));
2710
}
2711
2712
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2713
struct kvm_vcpu_events *events)
2714
{
2715
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2716
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
2717
| KVM_VCPUEVENT_VALID_SHADOW))
2718
return -EINVAL;
2719
2720
vcpu->arch.exception.pending = events->exception.injected;
2721
vcpu->arch.exception.nr = events->exception.nr;
2722
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2723
vcpu->arch.exception.error_code = events->exception.error_code;
2724
2725
vcpu->arch.interrupt.pending = events->interrupt.injected;
2726
vcpu->arch.interrupt.nr = events->interrupt.nr;
2727
vcpu->arch.interrupt.soft = events->interrupt.soft;
2728
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2729
kvm_x86_ops->set_interrupt_shadow(vcpu,
2730
events->interrupt.shadow);
2731
2732
vcpu->arch.nmi_injected = events->nmi.injected;
2733
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2734
vcpu->arch.nmi_pending = events->nmi.pending;
2735
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2736
2737
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2738
vcpu->arch.sipi_vector = events->sipi_vector;
2739
2740
kvm_make_request(KVM_REQ_EVENT, vcpu);
2741
2742
return 0;
2743
}
2744
2745
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2746
struct kvm_debugregs *dbgregs)
2747
{
2748
memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2749
dbgregs->dr6 = vcpu->arch.dr6;
2750
dbgregs->dr7 = vcpu->arch.dr7;
2751
dbgregs->flags = 0;
2752
memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2753
}
2754
2755
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2756
struct kvm_debugregs *dbgregs)
2757
{
2758
if (dbgregs->flags)
2759
return -EINVAL;
2760
2761
memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2762
vcpu->arch.dr6 = dbgregs->dr6;
2763
vcpu->arch.dr7 = dbgregs->dr7;
2764
2765
return 0;
2766
}
2767
2768
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2769
struct kvm_xsave *guest_xsave)
2770
{
2771
if (cpu_has_xsave)
2772
memcpy(guest_xsave->region,
2773
&vcpu->arch.guest_fpu.state->xsave,
2774
xstate_size);
2775
else {
2776
memcpy(guest_xsave->region,
2777
&vcpu->arch.guest_fpu.state->fxsave,
2778
sizeof(struct i387_fxsave_struct));
2779
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2780
XSTATE_FPSSE;
2781
}
2782
}
2783
2784
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2785
struct kvm_xsave *guest_xsave)
2786
{
2787
u64 xstate_bv =
2788
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2789
2790
if (cpu_has_xsave)
2791
memcpy(&vcpu->arch.guest_fpu.state->xsave,
2792
guest_xsave->region, xstate_size);
2793
else {
2794
if (xstate_bv & ~XSTATE_FPSSE)
2795
return -EINVAL;
2796
memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2797
guest_xsave->region, sizeof(struct i387_fxsave_struct));
2798
}
2799
return 0;
2800
}
2801
2802
static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2803
struct kvm_xcrs *guest_xcrs)
2804
{
2805
if (!cpu_has_xsave) {
2806
guest_xcrs->nr_xcrs = 0;
2807
return;
2808
}
2809
2810
guest_xcrs->nr_xcrs = 1;
2811
guest_xcrs->flags = 0;
2812
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2813
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2814
}
2815
2816
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2817
struct kvm_xcrs *guest_xcrs)
2818
{
2819
int i, r = 0;
2820
2821
if (!cpu_has_xsave)
2822
return -EINVAL;
2823
2824
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2825
return -EINVAL;
2826
2827
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2828
/* Only support XCR0 currently */
2829
if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2830
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2831
guest_xcrs->xcrs[0].value);
2832
break;
2833
}
2834
if (r)
2835
r = -EINVAL;
2836
return r;
2837
}
2838
2839
long kvm_arch_vcpu_ioctl(struct file *filp,
2840
unsigned int ioctl, unsigned long arg)
2841
{
2842
struct kvm_vcpu *vcpu = filp->private_data;
2843
void __user *argp = (void __user *)arg;
2844
int r;
2845
union {
2846
struct kvm_lapic_state *lapic;
2847
struct kvm_xsave *xsave;
2848
struct kvm_xcrs *xcrs;
2849
void *buffer;
2850
} u;
2851
2852
u.buffer = NULL;
2853
switch (ioctl) {
2854
case KVM_GET_LAPIC: {
2855
r = -EINVAL;
2856
if (!vcpu->arch.apic)
2857
goto out;
2858
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2859
2860
r = -ENOMEM;
2861
if (!u.lapic)
2862
goto out;
2863
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2864
if (r)
2865
goto out;
2866
r = -EFAULT;
2867
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2868
goto out;
2869
r = 0;
2870
break;
2871
}
2872
case KVM_SET_LAPIC: {
2873
r = -EINVAL;
2874
if (!vcpu->arch.apic)
2875
goto out;
2876
u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2877
r = -ENOMEM;
2878
if (!u.lapic)
2879
goto out;
2880
r = -EFAULT;
2881
if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2882
goto out;
2883
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2884
if (r)
2885
goto out;
2886
r = 0;
2887
break;
2888
}
2889
case KVM_INTERRUPT: {
2890
struct kvm_interrupt irq;
2891
2892
r = -EFAULT;
2893
if (copy_from_user(&irq, argp, sizeof irq))
2894
goto out;
2895
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2896
if (r)
2897
goto out;
2898
r = 0;
2899
break;
2900
}
2901
case KVM_NMI: {
2902
r = kvm_vcpu_ioctl_nmi(vcpu);
2903
if (r)
2904
goto out;
2905
r = 0;
2906
break;
2907
}
2908
case KVM_SET_CPUID: {
2909
struct kvm_cpuid __user *cpuid_arg = argp;
2910
struct kvm_cpuid cpuid;
2911
2912
r = -EFAULT;
2913
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2914
goto out;
2915
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2916
if (r)
2917
goto out;
2918
break;
2919
}
2920
case KVM_SET_CPUID2: {
2921
struct kvm_cpuid2 __user *cpuid_arg = argp;
2922
struct kvm_cpuid2 cpuid;
2923
2924
r = -EFAULT;
2925
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2926
goto out;
2927
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2928
cpuid_arg->entries);
2929
if (r)
2930
goto out;
2931
break;
2932
}
2933
case KVM_GET_CPUID2: {
2934
struct kvm_cpuid2 __user *cpuid_arg = argp;
2935
struct kvm_cpuid2 cpuid;
2936
2937
r = -EFAULT;
2938
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2939
goto out;
2940
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2941
cpuid_arg->entries);
2942
if (r)
2943
goto out;
2944
r = -EFAULT;
2945
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2946
goto out;
2947
r = 0;
2948
break;
2949
}
2950
case KVM_GET_MSRS:
2951
r = msr_io(vcpu, argp, kvm_get_msr, 1);
2952
break;
2953
case KVM_SET_MSRS:
2954
r = msr_io(vcpu, argp, do_set_msr, 0);
2955
break;
2956
case KVM_TPR_ACCESS_REPORTING: {
2957
struct kvm_tpr_access_ctl tac;
2958
2959
r = -EFAULT;
2960
if (copy_from_user(&tac, argp, sizeof tac))
2961
goto out;
2962
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2963
if (r)
2964
goto out;
2965
r = -EFAULT;
2966
if (copy_to_user(argp, &tac, sizeof tac))
2967
goto out;
2968
r = 0;
2969
break;
2970
};
2971
case KVM_SET_VAPIC_ADDR: {
2972
struct kvm_vapic_addr va;
2973
2974
r = -EINVAL;
2975
if (!irqchip_in_kernel(vcpu->kvm))
2976
goto out;
2977
r = -EFAULT;
2978
if (copy_from_user(&va, argp, sizeof va))
2979
goto out;
2980
r = 0;
2981
kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2982
break;
2983
}
2984
case KVM_X86_SETUP_MCE: {
2985
u64 mcg_cap;
2986
2987
r = -EFAULT;
2988
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2989
goto out;
2990
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2991
break;
2992
}
2993
case KVM_X86_SET_MCE: {
2994
struct kvm_x86_mce mce;
2995
2996
r = -EFAULT;
2997
if (copy_from_user(&mce, argp, sizeof mce))
2998
goto out;
2999
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3000
break;
3001
}
3002
case KVM_GET_VCPU_EVENTS: {
3003
struct kvm_vcpu_events events;
3004
3005
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3006
3007
r = -EFAULT;
3008
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3009
break;
3010
r = 0;
3011
break;
3012
}
3013
case KVM_SET_VCPU_EVENTS: {
3014
struct kvm_vcpu_events events;
3015
3016
r = -EFAULT;
3017
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3018
break;
3019
3020
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3021
break;
3022
}
3023
case KVM_GET_DEBUGREGS: {
3024
struct kvm_debugregs dbgregs;
3025
3026
kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3027
3028
r = -EFAULT;
3029
if (copy_to_user(argp, &dbgregs,
3030
sizeof(struct kvm_debugregs)))
3031
break;
3032
r = 0;
3033
break;
3034
}
3035
case KVM_SET_DEBUGREGS: {
3036
struct kvm_debugregs dbgregs;
3037
3038
r = -EFAULT;
3039
if (copy_from_user(&dbgregs, argp,
3040
sizeof(struct kvm_debugregs)))
3041
break;
3042
3043
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3044
break;
3045
}
3046
case KVM_GET_XSAVE: {
3047
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3048
r = -ENOMEM;
3049
if (!u.xsave)
3050
break;
3051
3052
kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3053
3054
r = -EFAULT;
3055
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3056
break;
3057
r = 0;
3058
break;
3059
}
3060
case KVM_SET_XSAVE: {
3061
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3062
r = -ENOMEM;
3063
if (!u.xsave)
3064
break;
3065
3066
r = -EFAULT;
3067
if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3068
break;
3069
3070
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3071
break;
3072
}
3073
case KVM_GET_XCRS: {
3074
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3075
r = -ENOMEM;
3076
if (!u.xcrs)
3077
break;
3078
3079
kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3080
3081
r = -EFAULT;
3082
if (copy_to_user(argp, u.xcrs,
3083
sizeof(struct kvm_xcrs)))
3084
break;
3085
r = 0;
3086
break;
3087
}
3088
case KVM_SET_XCRS: {
3089
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3090
r = -ENOMEM;
3091
if (!u.xcrs)
3092
break;
3093
3094
r = -EFAULT;
3095
if (copy_from_user(u.xcrs, argp,
3096
sizeof(struct kvm_xcrs)))
3097
break;
3098
3099
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3100
break;
3101
}
3102
case KVM_SET_TSC_KHZ: {
3103
u32 user_tsc_khz;
3104
3105
r = -EINVAL;
3106
if (!kvm_has_tsc_control)
3107
break;
3108
3109
user_tsc_khz = (u32)arg;
3110
3111
if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3112
goto out;
3113
3114
kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3115
3116
r = 0;
3117
goto out;
3118
}
3119
case KVM_GET_TSC_KHZ: {
3120
r = -EIO;
3121
if (check_tsc_unstable())
3122
goto out;
3123
3124
r = vcpu_tsc_khz(vcpu);
3125
3126
goto out;
3127
}
3128
default:
3129
r = -EINVAL;
3130
}
3131
out:
3132
kfree(u.buffer);
3133
return r;
3134
}
3135
3136
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3137
{
3138
int ret;
3139
3140
if (addr > (unsigned int)(-3 * PAGE_SIZE))
3141
return -1;
3142
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3143
return ret;
3144
}
3145
3146
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3147
u64 ident_addr)
3148
{
3149
kvm->arch.ept_identity_map_addr = ident_addr;
3150
return 0;
3151
}
3152
3153
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3154
u32 kvm_nr_mmu_pages)
3155
{
3156
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3157
return -EINVAL;
3158
3159
mutex_lock(&kvm->slots_lock);
3160
spin_lock(&kvm->mmu_lock);
3161
3162
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3163
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3164
3165
spin_unlock(&kvm->mmu_lock);
3166
mutex_unlock(&kvm->slots_lock);
3167
return 0;
3168
}
3169
3170
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3171
{
3172
return kvm->arch.n_max_mmu_pages;
3173
}
3174
3175
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3176
{
3177
int r;
3178
3179
r = 0;
3180
switch (chip->chip_id) {
3181
case KVM_IRQCHIP_PIC_MASTER:
3182
memcpy(&chip->chip.pic,
3183
&pic_irqchip(kvm)->pics[0],
3184
sizeof(struct kvm_pic_state));
3185
break;
3186
case KVM_IRQCHIP_PIC_SLAVE:
3187
memcpy(&chip->chip.pic,
3188
&pic_irqchip(kvm)->pics[1],
3189
sizeof(struct kvm_pic_state));
3190
break;
3191
case KVM_IRQCHIP_IOAPIC:
3192
r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3193
break;
3194
default:
3195
r = -EINVAL;
3196
break;
3197
}
3198
return r;
3199
}
3200
3201
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3202
{
3203
int r;
3204
3205
r = 0;
3206
switch (chip->chip_id) {
3207
case KVM_IRQCHIP_PIC_MASTER:
3208
spin_lock(&pic_irqchip(kvm)->lock);
3209
memcpy(&pic_irqchip(kvm)->pics[0],
3210
&chip->chip.pic,
3211
sizeof(struct kvm_pic_state));
3212
spin_unlock(&pic_irqchip(kvm)->lock);
3213
break;
3214
case KVM_IRQCHIP_PIC_SLAVE:
3215
spin_lock(&pic_irqchip(kvm)->lock);
3216
memcpy(&pic_irqchip(kvm)->pics[1],
3217
&chip->chip.pic,
3218
sizeof(struct kvm_pic_state));
3219
spin_unlock(&pic_irqchip(kvm)->lock);
3220
break;
3221
case KVM_IRQCHIP_IOAPIC:
3222
r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3223
break;
3224
default:
3225
r = -EINVAL;
3226
break;
3227
}
3228
kvm_pic_update_irq(pic_irqchip(kvm));
3229
return r;
3230
}
3231
3232
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3233
{
3234
int r = 0;
3235
3236
mutex_lock(&kvm->arch.vpit->pit_state.lock);
3237
memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3238
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3239
return r;
3240
}
3241
3242
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3243
{
3244
int r = 0;
3245
3246
mutex_lock(&kvm->arch.vpit->pit_state.lock);
3247
memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3248
kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3249
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3250
return r;
3251
}
3252
3253
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3254
{
3255
int r = 0;
3256
3257
mutex_lock(&kvm->arch.vpit->pit_state.lock);
3258
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3259
sizeof(ps->channels));
3260
ps->flags = kvm->arch.vpit->pit_state.flags;
3261
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3262
memset(&ps->reserved, 0, sizeof(ps->reserved));
3263
return r;
3264
}
3265
3266
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3267
{
3268
int r = 0, start = 0;
3269
u32 prev_legacy, cur_legacy;
3270
mutex_lock(&kvm->arch.vpit->pit_state.lock);
3271
prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3272
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3273
if (!prev_legacy && cur_legacy)
3274
start = 1;
3275
memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3276
sizeof(kvm->arch.vpit->pit_state.channels));
3277
kvm->arch.vpit->pit_state.flags = ps->flags;
3278
kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3279
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3280
return r;
3281
}
3282
3283
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3284
struct kvm_reinject_control *control)
3285
{
3286
if (!kvm->arch.vpit)
3287
return -ENXIO;
3288
mutex_lock(&kvm->arch.vpit->pit_state.lock);
3289
kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3290
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3291
return 0;
3292
}
3293
3294
/*
3295
* Get (and clear) the dirty memory log for a memory slot.
3296
*/
3297
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3298
struct kvm_dirty_log *log)
3299
{
3300
int r, i;
3301
struct kvm_memory_slot *memslot;
3302
unsigned long n;
3303
unsigned long is_dirty = 0;
3304
3305
mutex_lock(&kvm->slots_lock);
3306
3307
r = -EINVAL;
3308
if (log->slot >= KVM_MEMORY_SLOTS)
3309
goto out;
3310
3311
memslot = &kvm->memslots->memslots[log->slot];
3312
r = -ENOENT;
3313
if (!memslot->dirty_bitmap)
3314
goto out;
3315
3316
n = kvm_dirty_bitmap_bytes(memslot);
3317
3318
for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3319
is_dirty = memslot->dirty_bitmap[i];
3320
3321
/* If nothing is dirty, don't bother messing with page tables. */
3322
if (is_dirty) {
3323
struct kvm_memslots *slots, *old_slots;
3324
unsigned long *dirty_bitmap;
3325
3326
dirty_bitmap = memslot->dirty_bitmap_head;
3327
if (memslot->dirty_bitmap == dirty_bitmap)
3328
dirty_bitmap += n / sizeof(long);
3329
memset(dirty_bitmap, 0, n);
3330
3331
r = -ENOMEM;
3332
slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3333
if (!slots)
3334
goto out;
3335
memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3336
slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3337
slots->generation++;
3338
3339
old_slots = kvm->memslots;
3340
rcu_assign_pointer(kvm->memslots, slots);
3341
synchronize_srcu_expedited(&kvm->srcu);
3342
dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3343
kfree(old_slots);
3344
3345
spin_lock(&kvm->mmu_lock);
3346
kvm_mmu_slot_remove_write_access(kvm, log->slot);
3347
spin_unlock(&kvm->mmu_lock);
3348
3349
r = -EFAULT;
3350
if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3351
goto out;
3352
} else {
3353
r = -EFAULT;
3354
if (clear_user(log->dirty_bitmap, n))
3355
goto out;
3356
}
3357
3358
r = 0;
3359
out:
3360
mutex_unlock(&kvm->slots_lock);
3361
return r;
3362
}
3363
3364
long kvm_arch_vm_ioctl(struct file *filp,
3365
unsigned int ioctl, unsigned long arg)
3366
{
3367
struct kvm *kvm = filp->private_data;
3368
void __user *argp = (void __user *)arg;
3369
int r = -ENOTTY;
3370
/*
3371
* This union makes it completely explicit to gcc-3.x
3372
* that these two variables' stack usage should be
3373
* combined, not added together.
3374
*/
3375
union {
3376
struct kvm_pit_state ps;
3377
struct kvm_pit_state2 ps2;
3378
struct kvm_pit_config pit_config;
3379
} u;
3380
3381
switch (ioctl) {
3382
case KVM_SET_TSS_ADDR:
3383
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3384
if (r < 0)
3385
goto out;
3386
break;
3387
case KVM_SET_IDENTITY_MAP_ADDR: {
3388
u64 ident_addr;
3389
3390
r = -EFAULT;
3391
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3392
goto out;
3393
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3394
if (r < 0)
3395
goto out;
3396
break;
3397
}
3398
case KVM_SET_NR_MMU_PAGES:
3399
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3400
if (r)
3401
goto out;
3402
break;
3403
case KVM_GET_NR_MMU_PAGES:
3404
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3405
break;
3406
case KVM_CREATE_IRQCHIP: {
3407
struct kvm_pic *vpic;
3408
3409
mutex_lock(&kvm->lock);
3410
r = -EEXIST;
3411
if (kvm->arch.vpic)
3412
goto create_irqchip_unlock;
3413
r = -ENOMEM;
3414
vpic = kvm_create_pic(kvm);
3415
if (vpic) {
3416
r = kvm_ioapic_init(kvm);
3417
if (r) {
3418
mutex_lock(&kvm->slots_lock);
3419
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3420
&vpic->dev);
3421
mutex_unlock(&kvm->slots_lock);
3422
kfree(vpic);
3423
goto create_irqchip_unlock;
3424
}
3425
} else
3426
goto create_irqchip_unlock;
3427
smp_wmb();
3428
kvm->arch.vpic = vpic;
3429
smp_wmb();
3430
r = kvm_setup_default_irq_routing(kvm);
3431
if (r) {
3432
mutex_lock(&kvm->slots_lock);
3433
mutex_lock(&kvm->irq_lock);
3434
kvm_ioapic_destroy(kvm);
3435
kvm_destroy_pic(kvm);
3436
mutex_unlock(&kvm->irq_lock);
3437
mutex_unlock(&kvm->slots_lock);
3438
}
3439
create_irqchip_unlock:
3440
mutex_unlock(&kvm->lock);
3441
break;
3442
}
3443
case KVM_CREATE_PIT:
3444
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3445
goto create_pit;
3446
case KVM_CREATE_PIT2:
3447
r = -EFAULT;
3448
if (copy_from_user(&u.pit_config, argp,
3449
sizeof(struct kvm_pit_config)))
3450
goto out;
3451
create_pit:
3452
mutex_lock(&kvm->slots_lock);
3453
r = -EEXIST;
3454
if (kvm->arch.vpit)
3455
goto create_pit_unlock;
3456
r = -ENOMEM;
3457
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3458
if (kvm->arch.vpit)
3459
r = 0;
3460
create_pit_unlock:
3461
mutex_unlock(&kvm->slots_lock);
3462
break;
3463
case KVM_IRQ_LINE_STATUS:
3464
case KVM_IRQ_LINE: {
3465
struct kvm_irq_level irq_event;
3466
3467
r = -EFAULT;
3468
if (copy_from_user(&irq_event, argp, sizeof irq_event))
3469
goto out;
3470
r = -ENXIO;
3471
if (irqchip_in_kernel(kvm)) {
3472
__s32 status;
3473
status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3474
irq_event.irq, irq_event.level);
3475
if (ioctl == KVM_IRQ_LINE_STATUS) {
3476
r = -EFAULT;
3477
irq_event.status = status;
3478
if (copy_to_user(argp, &irq_event,
3479
sizeof irq_event))
3480
goto out;
3481
}
3482
r = 0;
3483
}
3484
break;
3485
}
3486
case KVM_GET_IRQCHIP: {
3487
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3488
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3489
3490
r = -ENOMEM;
3491
if (!chip)
3492
goto out;
3493
r = -EFAULT;
3494
if (copy_from_user(chip, argp, sizeof *chip))
3495
goto get_irqchip_out;
3496
r = -ENXIO;
3497
if (!irqchip_in_kernel(kvm))
3498
goto get_irqchip_out;
3499
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3500
if (r)
3501
goto get_irqchip_out;
3502
r = -EFAULT;
3503
if (copy_to_user(argp, chip, sizeof *chip))
3504
goto get_irqchip_out;
3505
r = 0;
3506
get_irqchip_out:
3507
kfree(chip);
3508
if (r)
3509
goto out;
3510
break;
3511
}
3512
case KVM_SET_IRQCHIP: {
3513
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3514
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3515
3516
r = -ENOMEM;
3517
if (!chip)
3518
goto out;
3519
r = -EFAULT;
3520
if (copy_from_user(chip, argp, sizeof *chip))
3521
goto set_irqchip_out;
3522
r = -ENXIO;
3523
if (!irqchip_in_kernel(kvm))
3524
goto set_irqchip_out;
3525
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3526
if (r)
3527
goto set_irqchip_out;
3528
r = 0;
3529
set_irqchip_out:
3530
kfree(chip);
3531
if (r)
3532
goto out;
3533
break;
3534
}
3535
case KVM_GET_PIT: {
3536
r = -EFAULT;
3537
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3538
goto out;
3539
r = -ENXIO;
3540
if (!kvm->arch.vpit)
3541
goto out;
3542
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3543
if (r)
3544
goto out;
3545
r = -EFAULT;
3546
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3547
goto out;
3548
r = 0;
3549
break;
3550
}
3551
case KVM_SET_PIT: {
3552
r = -EFAULT;
3553
if (copy_from_user(&u.ps, argp, sizeof u.ps))
3554
goto out;
3555
r = -ENXIO;
3556
if (!kvm->arch.vpit)
3557
goto out;
3558
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3559
if (r)
3560
goto out;
3561
r = 0;
3562
break;
3563
}
3564
case KVM_GET_PIT2: {
3565
r = -ENXIO;
3566
if (!kvm->arch.vpit)
3567
goto out;
3568
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3569
if (r)
3570
goto out;
3571
r = -EFAULT;
3572
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3573
goto out;
3574
r = 0;
3575
break;
3576
}
3577
case KVM_SET_PIT2: {
3578
r = -EFAULT;
3579
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3580
goto out;
3581
r = -ENXIO;
3582
if (!kvm->arch.vpit)
3583
goto out;
3584
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3585
if (r)
3586
goto out;
3587
r = 0;
3588
break;
3589
}
3590
case KVM_REINJECT_CONTROL: {
3591
struct kvm_reinject_control control;
3592
r = -EFAULT;
3593
if (copy_from_user(&control, argp, sizeof(control)))
3594
goto out;
3595
r = kvm_vm_ioctl_reinject(kvm, &control);
3596
if (r)
3597
goto out;
3598
r = 0;
3599
break;
3600
}
3601
case KVM_XEN_HVM_CONFIG: {
3602
r = -EFAULT;
3603
if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3604
sizeof(struct kvm_xen_hvm_config)))
3605
goto out;
3606
r = -EINVAL;
3607
if (kvm->arch.xen_hvm_config.flags)
3608
goto out;
3609
r = 0;
3610
break;
3611
}
3612
case KVM_SET_CLOCK: {
3613
struct kvm_clock_data user_ns;
3614
u64 now_ns;
3615
s64 delta;
3616
3617
r = -EFAULT;
3618
if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3619
goto out;
3620
3621
r = -EINVAL;
3622
if (user_ns.flags)
3623
goto out;
3624
3625
r = 0;
3626
local_irq_disable();
3627
now_ns = get_kernel_ns();
3628
delta = user_ns.clock - now_ns;
3629
local_irq_enable();
3630
kvm->arch.kvmclock_offset = delta;
3631
break;
3632
}
3633
case KVM_GET_CLOCK: {
3634
struct kvm_clock_data user_ns;
3635
u64 now_ns;
3636
3637
local_irq_disable();
3638
now_ns = get_kernel_ns();
3639
user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3640
local_irq_enable();
3641
user_ns.flags = 0;
3642
memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3643
3644
r = -EFAULT;
3645
if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3646
goto out;
3647
r = 0;
3648
break;
3649
}
3650
3651
default:
3652
;
3653
}
3654
out:
3655
return r;
3656
}
3657
3658
static void kvm_init_msr_list(void)
3659
{
3660
u32 dummy[2];
3661
unsigned i, j;
3662
3663
/* skip the first msrs in the list. KVM-specific */
3664
for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3665
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3666
continue;
3667
if (j < i)
3668
msrs_to_save[j] = msrs_to_save[i];
3669
j++;
3670
}
3671
num_msrs_to_save = j;
3672
}
3673
3674
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3675
const void *v)
3676
{
3677
int handled = 0;
3678
int n;
3679
3680
do {
3681
n = min(len, 8);
3682
if (!(vcpu->arch.apic &&
3683
!kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3684
&& kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3685
break;
3686
handled += n;
3687
addr += n;
3688
len -= n;
3689
v += n;
3690
} while (len);
3691
3692
return handled;
3693
}
3694
3695
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3696
{
3697
int handled = 0;
3698
int n;
3699
3700
do {
3701
n = min(len, 8);
3702
if (!(vcpu->arch.apic &&
3703
!kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3704
&& kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3705
break;
3706
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3707
handled += n;
3708
addr += n;
3709
len -= n;
3710
v += n;
3711
} while (len);
3712
3713
return handled;
3714
}
3715
3716
static void kvm_set_segment(struct kvm_vcpu *vcpu,
3717
struct kvm_segment *var, int seg)
3718
{
3719
kvm_x86_ops->set_segment(vcpu, var, seg);
3720
}
3721
3722
void kvm_get_segment(struct kvm_vcpu *vcpu,
3723
struct kvm_segment *var, int seg)
3724
{
3725
kvm_x86_ops->get_segment(vcpu, var, seg);
3726
}
3727
3728
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3729
{
3730
return gpa;
3731
}
3732
3733
static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3734
{
3735
gpa_t t_gpa;
3736
struct x86_exception exception;
3737
3738
BUG_ON(!mmu_is_nested(vcpu));
3739
3740
/* NPT walks are always user-walks */
3741
access |= PFERR_USER_MASK;
3742
t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3743
3744
return t_gpa;
3745
}
3746
3747
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3748
struct x86_exception *exception)
3749
{
3750
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3751
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3752
}
3753
3754
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3755
struct x86_exception *exception)
3756
{
3757
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3758
access |= PFERR_FETCH_MASK;
3759
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3760
}
3761
3762
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3763
struct x86_exception *exception)
3764
{
3765
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3766
access |= PFERR_WRITE_MASK;
3767
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3768
}
3769
3770
/* uses this to access any guest's mapped memory without checking CPL */
3771
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3772
struct x86_exception *exception)
3773
{
3774
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3775
}
3776
3777
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3778
struct kvm_vcpu *vcpu, u32 access,
3779
struct x86_exception *exception)
3780
{
3781
void *data = val;
3782
int r = X86EMUL_CONTINUE;
3783
3784
while (bytes) {
3785
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3786
exception);
3787
unsigned offset = addr & (PAGE_SIZE-1);
3788
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3789
int ret;
3790
3791
if (gpa == UNMAPPED_GVA)
3792
return X86EMUL_PROPAGATE_FAULT;
3793
ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3794
if (ret < 0) {
3795
r = X86EMUL_IO_NEEDED;
3796
goto out;
3797
}
3798
3799
bytes -= toread;
3800
data += toread;
3801
addr += toread;
3802
}
3803
out:
3804
return r;
3805
}
3806
3807
/* used for instruction fetching */
3808
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3809
gva_t addr, void *val, unsigned int bytes,
3810
struct x86_exception *exception)
3811
{
3812
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3813
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3814
3815
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3816
access | PFERR_FETCH_MASK,
3817
exception);
3818
}
3819
3820
static int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3821
gva_t addr, void *val, unsigned int bytes,
3822
struct x86_exception *exception)
3823
{
3824
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3825
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3826
3827
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3828
exception);
3829
}
3830
3831
static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3832
gva_t addr, void *val, unsigned int bytes,
3833
struct x86_exception *exception)
3834
{
3835
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3836
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3837
}
3838
3839
static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3840
gva_t addr, void *val,
3841
unsigned int bytes,
3842
struct x86_exception *exception)
3843
{
3844
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3845
void *data = val;
3846
int r = X86EMUL_CONTINUE;
3847
3848
while (bytes) {
3849
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3850
PFERR_WRITE_MASK,
3851
exception);
3852
unsigned offset = addr & (PAGE_SIZE-1);
3853
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3854
int ret;
3855
3856
if (gpa == UNMAPPED_GVA)
3857
return X86EMUL_PROPAGATE_FAULT;
3858
ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3859
if (ret < 0) {
3860
r = X86EMUL_IO_NEEDED;
3861
goto out;
3862
}
3863
3864
bytes -= towrite;
3865
data += towrite;
3866
addr += towrite;
3867
}
3868
out:
3869
return r;
3870
}
3871
3872
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3873
unsigned long addr,
3874
void *val,
3875
unsigned int bytes,
3876
struct x86_exception *exception)
3877
{
3878
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3879
gpa_t gpa;
3880
int handled;
3881
3882
if (vcpu->mmio_read_completed) {
3883
memcpy(val, vcpu->mmio_data, bytes);
3884
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3885
vcpu->mmio_phys_addr, *(u64 *)val);
3886
vcpu->mmio_read_completed = 0;
3887
return X86EMUL_CONTINUE;
3888
}
3889
3890
gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3891
3892
if (gpa == UNMAPPED_GVA)
3893
return X86EMUL_PROPAGATE_FAULT;
3894
3895
/* For APIC access vmexit */
3896
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3897
goto mmio;
3898
3899
if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
3900
== X86EMUL_CONTINUE)
3901
return X86EMUL_CONTINUE;
3902
3903
mmio:
3904
/*
3905
* Is this MMIO handled locally?
3906
*/
3907
handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
3908
3909
if (handled == bytes)
3910
return X86EMUL_CONTINUE;
3911
3912
gpa += handled;
3913
bytes -= handled;
3914
val += handled;
3915
3916
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3917
3918
vcpu->mmio_needed = 1;
3919
vcpu->run->exit_reason = KVM_EXIT_MMIO;
3920
vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3921
vcpu->mmio_size = bytes;
3922
vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3923
vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3924
vcpu->mmio_index = 0;
3925
3926
return X86EMUL_IO_NEEDED;
3927
}
3928
3929
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3930
const void *val, int bytes)
3931
{
3932
int ret;
3933
3934
ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3935
if (ret < 0)
3936
return 0;
3937
kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3938
return 1;
3939
}
3940
3941
static int emulator_write_emulated_onepage(unsigned long addr,
3942
const void *val,
3943
unsigned int bytes,
3944
struct x86_exception *exception,
3945
struct kvm_vcpu *vcpu)
3946
{
3947
gpa_t gpa;
3948
int handled;
3949
3950
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3951
3952
if (gpa == UNMAPPED_GVA)
3953
return X86EMUL_PROPAGATE_FAULT;
3954
3955
/* For APIC access vmexit */
3956
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3957
goto mmio;
3958
3959
if (emulator_write_phys(vcpu, gpa, val, bytes))
3960
return X86EMUL_CONTINUE;
3961
3962
mmio:
3963
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3964
/*
3965
* Is this MMIO handled locally?
3966
*/
3967
handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
3968
if (handled == bytes)
3969
return X86EMUL_CONTINUE;
3970
3971
gpa += handled;
3972
bytes -= handled;
3973
val += handled;
3974
3975
vcpu->mmio_needed = 1;
3976
memcpy(vcpu->mmio_data, val, bytes);
3977
vcpu->run->exit_reason = KVM_EXIT_MMIO;
3978
vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3979
vcpu->mmio_size = bytes;
3980
vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3981
vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3982
memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3983
vcpu->mmio_index = 0;
3984
3985
return X86EMUL_CONTINUE;
3986
}
3987
3988
int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3989
unsigned long addr,
3990
const void *val,
3991
unsigned int bytes,
3992
struct x86_exception *exception)
3993
{
3994
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3995
3996
/* Crossing a page boundary? */
3997
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3998
int rc, now;
3999
4000
now = -addr & ~PAGE_MASK;
4001
rc = emulator_write_emulated_onepage(addr, val, now, exception,
4002
vcpu);
4003
if (rc != X86EMUL_CONTINUE)
4004
return rc;
4005
addr += now;
4006
val += now;
4007
bytes -= now;
4008
}
4009
return emulator_write_emulated_onepage(addr, val, bytes, exception,
4010
vcpu);
4011
}
4012
4013
#define CMPXCHG_TYPE(t, ptr, old, new) \
4014
(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4015
4016
#ifdef CONFIG_X86_64
4017
# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4018
#else
4019
# define CMPXCHG64(ptr, old, new) \
4020
(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4021
#endif
4022
4023
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4024
unsigned long addr,
4025
const void *old,
4026
const void *new,
4027
unsigned int bytes,
4028
struct x86_exception *exception)
4029
{
4030
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4031
gpa_t gpa;
4032
struct page *page;
4033
char *kaddr;
4034
bool exchanged;
4035
4036
/* guests cmpxchg8b have to be emulated atomically */
4037
if (bytes > 8 || (bytes & (bytes - 1)))
4038
goto emul_write;
4039
4040
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4041
4042
if (gpa == UNMAPPED_GVA ||
4043
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4044
goto emul_write;
4045
4046
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4047
goto emul_write;
4048
4049
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4050
if (is_error_page(page)) {
4051
kvm_release_page_clean(page);
4052
goto emul_write;
4053
}
4054
4055
kaddr = kmap_atomic(page, KM_USER0);
4056
kaddr += offset_in_page(gpa);
4057
switch (bytes) {
4058
case 1:
4059
exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4060
break;
4061
case 2:
4062
exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4063
break;
4064
case 4:
4065
exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4066
break;
4067
case 8:
4068
exchanged = CMPXCHG64(kaddr, old, new);
4069
break;
4070
default:
4071
BUG();
4072
}
4073
kunmap_atomic(kaddr, KM_USER0);
4074
kvm_release_page_dirty(page);
4075
4076
if (!exchanged)
4077
return X86EMUL_CMPXCHG_FAILED;
4078
4079
kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4080
4081
return X86EMUL_CONTINUE;
4082
4083
emul_write:
4084
printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4085
4086
return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4087
}
4088
4089
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4090
{
4091
/* TODO: String I/O for in kernel device */
4092
int r;
4093
4094
if (vcpu->arch.pio.in)
4095
r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4096
vcpu->arch.pio.size, pd);
4097
else
4098
r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4099
vcpu->arch.pio.port, vcpu->arch.pio.size,
4100
pd);
4101
return r;
4102
}
4103
4104
4105
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4106
int size, unsigned short port, void *val,
4107
unsigned int count)
4108
{
4109
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4110
4111
if (vcpu->arch.pio.count)
4112
goto data_avail;
4113
4114
trace_kvm_pio(0, port, size, count);
4115
4116
vcpu->arch.pio.port = port;
4117
vcpu->arch.pio.in = 1;
4118
vcpu->arch.pio.count = count;
4119
vcpu->arch.pio.size = size;
4120
4121
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4122
data_avail:
4123
memcpy(val, vcpu->arch.pio_data, size * count);
4124
vcpu->arch.pio.count = 0;
4125
return 1;
4126
}
4127
4128
vcpu->run->exit_reason = KVM_EXIT_IO;
4129
vcpu->run->io.direction = KVM_EXIT_IO_IN;
4130
vcpu->run->io.size = size;
4131
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4132
vcpu->run->io.count = count;
4133
vcpu->run->io.port = port;
4134
4135
return 0;
4136
}
4137
4138
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4139
int size, unsigned short port,
4140
const void *val, unsigned int count)
4141
{
4142
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4143
4144
trace_kvm_pio(1, port, size, count);
4145
4146
vcpu->arch.pio.port = port;
4147
vcpu->arch.pio.in = 0;
4148
vcpu->arch.pio.count = count;
4149
vcpu->arch.pio.size = size;
4150
4151
memcpy(vcpu->arch.pio_data, val, size * count);
4152
4153
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4154
vcpu->arch.pio.count = 0;
4155
return 1;
4156
}
4157
4158
vcpu->run->exit_reason = KVM_EXIT_IO;
4159
vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4160
vcpu->run->io.size = size;
4161
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4162
vcpu->run->io.count = count;
4163
vcpu->run->io.port = port;
4164
4165
return 0;
4166
}
4167
4168
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4169
{
4170
return kvm_x86_ops->get_segment_base(vcpu, seg);
4171
}
4172
4173
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4174
{
4175
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4176
}
4177
4178
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4179
{
4180
if (!need_emulate_wbinvd(vcpu))
4181
return X86EMUL_CONTINUE;
4182
4183
if (kvm_x86_ops->has_wbinvd_exit()) {
4184
int cpu = get_cpu();
4185
4186
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4187
smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4188
wbinvd_ipi, NULL, 1);
4189
put_cpu();
4190
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4191
} else
4192
wbinvd();
4193
return X86EMUL_CONTINUE;
4194
}
4195
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4196
4197
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4198
{
4199
kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4200
}
4201
4202
int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4203
{
4204
return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4205
}
4206
4207
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4208
{
4209
4210
return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4211
}
4212
4213
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4214
{
4215
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4216
}
4217
4218
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4219
{
4220
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4221
unsigned long value;
4222
4223
switch (cr) {
4224
case 0:
4225
value = kvm_read_cr0(vcpu);
4226
break;
4227
case 2:
4228
value = vcpu->arch.cr2;
4229
break;
4230
case 3:
4231
value = kvm_read_cr3(vcpu);
4232
break;
4233
case 4:
4234
value = kvm_read_cr4(vcpu);
4235
break;
4236
case 8:
4237
value = kvm_get_cr8(vcpu);
4238
break;
4239
default:
4240
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4241
return 0;
4242
}
4243
4244
return value;
4245
}
4246
4247
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4248
{
4249
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250
int res = 0;
4251
4252
switch (cr) {
4253
case 0:
4254
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4255
break;
4256
case 2:
4257
vcpu->arch.cr2 = val;
4258
break;
4259
case 3:
4260
res = kvm_set_cr3(vcpu, val);
4261
break;
4262
case 4:
4263
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4264
break;
4265
case 8:
4266
res = kvm_set_cr8(vcpu, val);
4267
break;
4268
default:
4269
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4270
res = -1;
4271
}
4272
4273
return res;
4274
}
4275
4276
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4277
{
4278
return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4279
}
4280
4281
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4282
{
4283
kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4284
}
4285
4286
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4287
{
4288
kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4289
}
4290
4291
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4292
{
4293
kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4294
}
4295
4296
static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4297
{
4298
kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4299
}
4300
4301
static unsigned long emulator_get_cached_segment_base(
4302
struct x86_emulate_ctxt *ctxt, int seg)
4303
{
4304
return get_segment_base(emul_to_vcpu(ctxt), seg);
4305
}
4306
4307
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4308
struct desc_struct *desc, u32 *base3,
4309
int seg)
4310
{
4311
struct kvm_segment var;
4312
4313
kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4314
*selector = var.selector;
4315
4316
if (var.unusable)
4317
return false;
4318
4319
if (var.g)
4320
var.limit >>= 12;
4321
set_desc_limit(desc, var.limit);
4322
set_desc_base(desc, (unsigned long)var.base);
4323
#ifdef CONFIG_X86_64
4324
if (base3)
4325
*base3 = var.base >> 32;
4326
#endif
4327
desc->type = var.type;
4328
desc->s = var.s;
4329
desc->dpl = var.dpl;
4330
desc->p = var.present;
4331
desc->avl = var.avl;
4332
desc->l = var.l;
4333
desc->d = var.db;
4334
desc->g = var.g;
4335
4336
return true;
4337
}
4338
4339
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4340
struct desc_struct *desc, u32 base3,
4341
int seg)
4342
{
4343
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4344
struct kvm_segment var;
4345
4346
var.selector = selector;
4347
var.base = get_desc_base(desc);
4348
#ifdef CONFIG_X86_64
4349
var.base |= ((u64)base3) << 32;
4350
#endif
4351
var.limit = get_desc_limit(desc);
4352
if (desc->g)
4353
var.limit = (var.limit << 12) | 0xfff;
4354
var.type = desc->type;
4355
var.present = desc->p;
4356
var.dpl = desc->dpl;
4357
var.db = desc->d;
4358
var.s = desc->s;
4359
var.l = desc->l;
4360
var.g = desc->g;
4361
var.avl = desc->avl;
4362
var.present = desc->p;
4363
var.unusable = !var.present;
4364
var.padding = 0;
4365
4366
kvm_set_segment(vcpu, &var, seg);
4367
return;
4368
}
4369
4370
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4371
u32 msr_index, u64 *pdata)
4372
{
4373
return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4374
}
4375
4376
static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4377
u32 msr_index, u64 data)
4378
{
4379
return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4380
}
4381
4382
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4383
{
4384
emul_to_vcpu(ctxt)->arch.halt_request = 1;
4385
}
4386
4387
static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4388
{
4389
preempt_disable();
4390
kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4391
/*
4392
* CR0.TS may reference the host fpu state, not the guest fpu state,
4393
* so it may be clear at this point.
4394
*/
4395
clts();
4396
}
4397
4398
static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4399
{
4400
preempt_enable();
4401
}
4402
4403
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4404
struct x86_instruction_info *info,
4405
enum x86_intercept_stage stage)
4406
{
4407
return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4408
}
4409
4410
static struct x86_emulate_ops emulate_ops = {
4411
.read_std = kvm_read_guest_virt_system,
4412
.write_std = kvm_write_guest_virt_system,
4413
.fetch = kvm_fetch_guest_virt,
4414
.read_emulated = emulator_read_emulated,
4415
.write_emulated = emulator_write_emulated,
4416
.cmpxchg_emulated = emulator_cmpxchg_emulated,
4417
.invlpg = emulator_invlpg,
4418
.pio_in_emulated = emulator_pio_in_emulated,
4419
.pio_out_emulated = emulator_pio_out_emulated,
4420
.get_segment = emulator_get_segment,
4421
.set_segment = emulator_set_segment,
4422
.get_cached_segment_base = emulator_get_cached_segment_base,
4423
.get_gdt = emulator_get_gdt,
4424
.get_idt = emulator_get_idt,
4425
.set_gdt = emulator_set_gdt,
4426
.set_idt = emulator_set_idt,
4427
.get_cr = emulator_get_cr,
4428
.set_cr = emulator_set_cr,
4429
.cpl = emulator_get_cpl,
4430
.get_dr = emulator_get_dr,
4431
.set_dr = emulator_set_dr,
4432
.set_msr = emulator_set_msr,
4433
.get_msr = emulator_get_msr,
4434
.halt = emulator_halt,
4435
.wbinvd = emulator_wbinvd,
4436
.fix_hypercall = emulator_fix_hypercall,
4437
.get_fpu = emulator_get_fpu,
4438
.put_fpu = emulator_put_fpu,
4439
.intercept = emulator_intercept,
4440
};
4441
4442
static void cache_all_regs(struct kvm_vcpu *vcpu)
4443
{
4444
kvm_register_read(vcpu, VCPU_REGS_RAX);
4445
kvm_register_read(vcpu, VCPU_REGS_RSP);
4446
kvm_register_read(vcpu, VCPU_REGS_RIP);
4447
vcpu->arch.regs_dirty = ~0;
4448
}
4449
4450
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4451
{
4452
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4453
/*
4454
* an sti; sti; sequence only disable interrupts for the first
4455
* instruction. So, if the last instruction, be it emulated or
4456
* not, left the system with the INT_STI flag enabled, it
4457
* means that the last instruction is an sti. We should not
4458
* leave the flag on in this case. The same goes for mov ss
4459
*/
4460
if (!(int_shadow & mask))
4461
kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4462
}
4463
4464
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4465
{
4466
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4467
if (ctxt->exception.vector == PF_VECTOR)
4468
kvm_propagate_fault(vcpu, &ctxt->exception);
4469
else if (ctxt->exception.error_code_valid)
4470
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4471
ctxt->exception.error_code);
4472
else
4473
kvm_queue_exception(vcpu, ctxt->exception.vector);
4474
}
4475
4476
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4477
{
4478
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4479
int cs_db, cs_l;
4480
4481
/*
4482
* TODO: fix emulate.c to use guest_read/write_register
4483
* instead of direct ->regs accesses, can save hundred cycles
4484
* on Intel for instructions that don't read/change RSP, for
4485
* for example.
4486
*/
4487
cache_all_regs(vcpu);
4488
4489
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4490
4491
vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
4492
vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4493
vcpu->arch.emulate_ctxt.mode =
4494
(!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4495
(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4496
? X86EMUL_MODE_VM86 : cs_l
4497
? X86EMUL_MODE_PROT64 : cs_db
4498
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4499
vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
4500
memset(c, 0, sizeof(struct decode_cache));
4501
memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4502
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4503
}
4504
4505
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4506
{
4507
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4508
int ret;
4509
4510
init_emulate_ctxt(vcpu);
4511
4512
vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4513
vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4514
vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip +
4515
inc_eip;
4516
ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4517
4518
if (ret != X86EMUL_CONTINUE)
4519
return EMULATE_FAIL;
4520
4521
vcpu->arch.emulate_ctxt.eip = c->eip;
4522
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4523
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4524
kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4525
4526
if (irq == NMI_VECTOR)
4527
vcpu->arch.nmi_pending = false;
4528
else
4529
vcpu->arch.interrupt.pending = false;
4530
4531
return EMULATE_DONE;
4532
}
4533
EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4534
4535
static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4536
{
4537
int r = EMULATE_DONE;
4538
4539
++vcpu->stat.insn_emulation_fail;
4540
trace_kvm_emulate_insn_failed(vcpu);
4541
if (!is_guest_mode(vcpu)) {
4542
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4543
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4544
vcpu->run->internal.ndata = 0;
4545
r = EMULATE_FAIL;
4546
}
4547
kvm_queue_exception(vcpu, UD_VECTOR);
4548
4549
return r;
4550
}
4551
4552
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4553
{
4554
gpa_t gpa;
4555
4556
if (tdp_enabled)
4557
return false;
4558
4559
/*
4560
* if emulation was due to access to shadowed page table
4561
* and it failed try to unshadow page and re-entetr the
4562
* guest to let CPU execute the instruction.
4563
*/
4564
if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4565
return true;
4566
4567
gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4568
4569
if (gpa == UNMAPPED_GVA)
4570
return true; /* let cpu generate fault */
4571
4572
if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4573
return true;
4574
4575
return false;
4576
}
4577
4578
int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4579
unsigned long cr2,
4580
int emulation_type,
4581
void *insn,
4582
int insn_len)
4583
{
4584
int r;
4585
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4586
bool writeback = true;
4587
4588
kvm_clear_exception_queue(vcpu);
4589
4590
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4591
init_emulate_ctxt(vcpu);
4592
vcpu->arch.emulate_ctxt.interruptibility = 0;
4593
vcpu->arch.emulate_ctxt.have_exception = false;
4594
vcpu->arch.emulate_ctxt.perm_ok = false;
4595
4596
vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4597
= emulation_type & EMULTYPE_TRAP_UD;
4598
4599
r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4600
4601
trace_kvm_emulate_insn_start(vcpu);
4602
++vcpu->stat.insn_emulation;
4603
if (r) {
4604
if (emulation_type & EMULTYPE_TRAP_UD)
4605
return EMULATE_FAIL;
4606
if (reexecute_instruction(vcpu, cr2))
4607
return EMULATE_DONE;
4608
if (emulation_type & EMULTYPE_SKIP)
4609
return EMULATE_FAIL;
4610
return handle_emulation_failure(vcpu);
4611
}
4612
}
4613
4614
if (emulation_type & EMULTYPE_SKIP) {
4615
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4616
return EMULATE_DONE;
4617
}
4618
4619
/* this is needed for vmware backdoor interface to work since it
4620
changes registers values during IO operation */
4621
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4622
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4623
memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4624
}
4625
4626
restart:
4627
r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4628
4629
if (r == EMULATION_INTERCEPTED)
4630
return EMULATE_DONE;
4631
4632
if (r == EMULATION_FAILED) {
4633
if (reexecute_instruction(vcpu, cr2))
4634
return EMULATE_DONE;
4635
4636
return handle_emulation_failure(vcpu);
4637
}
4638
4639
if (vcpu->arch.emulate_ctxt.have_exception) {
4640
inject_emulated_exception(vcpu);
4641
r = EMULATE_DONE;
4642
} else if (vcpu->arch.pio.count) {
4643
if (!vcpu->arch.pio.in)
4644
vcpu->arch.pio.count = 0;
4645
else
4646
writeback = false;
4647
r = EMULATE_DO_MMIO;
4648
} else if (vcpu->mmio_needed) {
4649
if (!vcpu->mmio_is_write)
4650
writeback = false;
4651
r = EMULATE_DO_MMIO;
4652
} else if (r == EMULATION_RESTART)
4653
goto restart;
4654
else
4655
r = EMULATE_DONE;
4656
4657
if (writeback) {
4658
toggle_interruptibility(vcpu,
4659
vcpu->arch.emulate_ctxt.interruptibility);
4660
kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4661
kvm_make_request(KVM_REQ_EVENT, vcpu);
4662
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4663
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4664
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4665
} else
4666
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4667
4668
return r;
4669
}
4670
EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4671
4672
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4673
{
4674
unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4675
int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4676
size, port, &val, 1);
4677
/* do not return to emulator after return from userspace */
4678
vcpu->arch.pio.count = 0;
4679
return ret;
4680
}
4681
EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4682
4683
static void tsc_bad(void *info)
4684
{
4685
__this_cpu_write(cpu_tsc_khz, 0);
4686
}
4687
4688
static void tsc_khz_changed(void *data)
4689
{
4690
struct cpufreq_freqs *freq = data;
4691
unsigned long khz = 0;
4692
4693
if (data)
4694
khz = freq->new;
4695
else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4696
khz = cpufreq_quick_get(raw_smp_processor_id());
4697
if (!khz)
4698
khz = tsc_khz;
4699
__this_cpu_write(cpu_tsc_khz, khz);
4700
}
4701
4702
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4703
void *data)
4704
{
4705
struct cpufreq_freqs *freq = data;
4706
struct kvm *kvm;
4707
struct kvm_vcpu *vcpu;
4708
int i, send_ipi = 0;
4709
4710
/*
4711
* We allow guests to temporarily run on slowing clocks,
4712
* provided we notify them after, or to run on accelerating
4713
* clocks, provided we notify them before. Thus time never
4714
* goes backwards.
4715
*
4716
* However, we have a problem. We can't atomically update
4717
* the frequency of a given CPU from this function; it is
4718
* merely a notifier, which can be called from any CPU.
4719
* Changing the TSC frequency at arbitrary points in time
4720
* requires a recomputation of local variables related to
4721
* the TSC for each VCPU. We must flag these local variables
4722
* to be updated and be sure the update takes place with the
4723
* new frequency before any guests proceed.
4724
*
4725
* Unfortunately, the combination of hotplug CPU and frequency
4726
* change creates an intractable locking scenario; the order
4727
* of when these callouts happen is undefined with respect to
4728
* CPU hotplug, and they can race with each other. As such,
4729
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4730
* undefined; you can actually have a CPU frequency change take
4731
* place in between the computation of X and the setting of the
4732
* variable. To protect against this problem, all updates of
4733
* the per_cpu tsc_khz variable are done in an interrupt
4734
* protected IPI, and all callers wishing to update the value
4735
* must wait for a synchronous IPI to complete (which is trivial
4736
* if the caller is on the CPU already). This establishes the
4737
* necessary total order on variable updates.
4738
*
4739
* Note that because a guest time update may take place
4740
* anytime after the setting of the VCPU's request bit, the
4741
* correct TSC value must be set before the request. However,
4742
* to ensure the update actually makes it to any guest which
4743
* starts running in hardware virtualization between the set
4744
* and the acquisition of the spinlock, we must also ping the
4745
* CPU after setting the request bit.
4746
*
4747
*/
4748
4749
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4750
return 0;
4751
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4752
return 0;
4753
4754
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4755
4756
raw_spin_lock(&kvm_lock);
4757
list_for_each_entry(kvm, &vm_list, vm_list) {
4758
kvm_for_each_vcpu(i, vcpu, kvm) {
4759
if (vcpu->cpu != freq->cpu)
4760
continue;
4761
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4762
if (vcpu->cpu != smp_processor_id())
4763
send_ipi = 1;
4764
}
4765
}
4766
raw_spin_unlock(&kvm_lock);
4767
4768
if (freq->old < freq->new && send_ipi) {
4769
/*
4770
* We upscale the frequency. Must make the guest
4771
* doesn't see old kvmclock values while running with
4772
* the new frequency, otherwise we risk the guest sees
4773
* time go backwards.
4774
*
4775
* In case we update the frequency for another cpu
4776
* (which might be in guest context) send an interrupt
4777
* to kick the cpu out of guest context. Next time
4778
* guest context is entered kvmclock will be updated,
4779
* so the guest will not see stale values.
4780
*/
4781
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4782
}
4783
return 0;
4784
}
4785
4786
static struct notifier_block kvmclock_cpufreq_notifier_block = {
4787
.notifier_call = kvmclock_cpufreq_notifier
4788
};
4789
4790
static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4791
unsigned long action, void *hcpu)
4792
{
4793
unsigned int cpu = (unsigned long)hcpu;
4794
4795
switch (action) {
4796
case CPU_ONLINE:
4797
case CPU_DOWN_FAILED:
4798
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4799
break;
4800
case CPU_DOWN_PREPARE:
4801
smp_call_function_single(cpu, tsc_bad, NULL, 1);
4802
break;
4803
}
4804
return NOTIFY_OK;
4805
}
4806
4807
static struct notifier_block kvmclock_cpu_notifier_block = {
4808
.notifier_call = kvmclock_cpu_notifier,
4809
.priority = -INT_MAX
4810
};
4811
4812
static void kvm_timer_init(void)
4813
{
4814
int cpu;
4815
4816
max_tsc_khz = tsc_khz;
4817
register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4818
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4819
#ifdef CONFIG_CPU_FREQ
4820
struct cpufreq_policy policy;
4821
memset(&policy, 0, sizeof(policy));
4822
cpu = get_cpu();
4823
cpufreq_get_policy(&policy, cpu);
4824
if (policy.cpuinfo.max_freq)
4825
max_tsc_khz = policy.cpuinfo.max_freq;
4826
put_cpu();
4827
#endif
4828
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4829
CPUFREQ_TRANSITION_NOTIFIER);
4830
}
4831
pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4832
for_each_online_cpu(cpu)
4833
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4834
}
4835
4836
static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4837
4838
static int kvm_is_in_guest(void)
4839
{
4840
return percpu_read(current_vcpu) != NULL;
4841
}
4842
4843
static int kvm_is_user_mode(void)
4844
{
4845
int user_mode = 3;
4846
4847
if (percpu_read(current_vcpu))
4848
user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4849
4850
return user_mode != 0;
4851
}
4852
4853
static unsigned long kvm_get_guest_ip(void)
4854
{
4855
unsigned long ip = 0;
4856
4857
if (percpu_read(current_vcpu))
4858
ip = kvm_rip_read(percpu_read(current_vcpu));
4859
4860
return ip;
4861
}
4862
4863
static struct perf_guest_info_callbacks kvm_guest_cbs = {
4864
.is_in_guest = kvm_is_in_guest,
4865
.is_user_mode = kvm_is_user_mode,
4866
.get_guest_ip = kvm_get_guest_ip,
4867
};
4868
4869
void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4870
{
4871
percpu_write(current_vcpu, vcpu);
4872
}
4873
EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4874
4875
void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4876
{
4877
percpu_write(current_vcpu, NULL);
4878
}
4879
EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4880
4881
int kvm_arch_init(void *opaque)
4882
{
4883
int r;
4884
struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4885
4886
if (kvm_x86_ops) {
4887
printk(KERN_ERR "kvm: already loaded the other module\n");
4888
r = -EEXIST;
4889
goto out;
4890
}
4891
4892
if (!ops->cpu_has_kvm_support()) {
4893
printk(KERN_ERR "kvm: no hardware support\n");
4894
r = -EOPNOTSUPP;
4895
goto out;
4896
}
4897
if (ops->disabled_by_bios()) {
4898
printk(KERN_ERR "kvm: disabled by bios\n");
4899
r = -EOPNOTSUPP;
4900
goto out;
4901
}
4902
4903
r = kvm_mmu_module_init();
4904
if (r)
4905
goto out;
4906
4907
kvm_init_msr_list();
4908
4909
kvm_x86_ops = ops;
4910
kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4911
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4912
PT_DIRTY_MASK, PT64_NX_MASK, 0);
4913
4914
kvm_timer_init();
4915
4916
perf_register_guest_info_callbacks(&kvm_guest_cbs);
4917
4918
if (cpu_has_xsave)
4919
host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4920
4921
return 0;
4922
4923
out:
4924
return r;
4925
}
4926
4927
void kvm_arch_exit(void)
4928
{
4929
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4930
4931
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4932
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4933
CPUFREQ_TRANSITION_NOTIFIER);
4934
unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4935
kvm_x86_ops = NULL;
4936
kvm_mmu_module_exit();
4937
}
4938
4939
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4940
{
4941
++vcpu->stat.halt_exits;
4942
if (irqchip_in_kernel(vcpu->kvm)) {
4943
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4944
return 1;
4945
} else {
4946
vcpu->run->exit_reason = KVM_EXIT_HLT;
4947
return 0;
4948
}
4949
}
4950
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4951
4952
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4953
unsigned long a1)
4954
{
4955
if (is_long_mode(vcpu))
4956
return a0;
4957
else
4958
return a0 | ((gpa_t)a1 << 32);
4959
}
4960
4961
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4962
{
4963
u64 param, ingpa, outgpa, ret;
4964
uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4965
bool fast, longmode;
4966
int cs_db, cs_l;
4967
4968
/*
4969
* hypercall generates UD from non zero cpl and real mode
4970
* per HYPER-V spec
4971
*/
4972
if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4973
kvm_queue_exception(vcpu, UD_VECTOR);
4974
return 0;
4975
}
4976
4977
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4978
longmode = is_long_mode(vcpu) && cs_l == 1;
4979
4980
if (!longmode) {
4981
param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4982
(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4983
ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4984
(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4985
outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4986
(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4987
}
4988
#ifdef CONFIG_X86_64
4989
else {
4990
param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4991
ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4992
outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4993
}
4994
#endif
4995
4996
code = param & 0xffff;
4997
fast = (param >> 16) & 0x1;
4998
rep_cnt = (param >> 32) & 0xfff;
4999
rep_idx = (param >> 48) & 0xfff;
5000
5001
trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5002
5003
switch (code) {
5004
case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5005
kvm_vcpu_on_spin(vcpu);
5006
break;
5007
default:
5008
res = HV_STATUS_INVALID_HYPERCALL_CODE;
5009
break;
5010
}
5011
5012
ret = res | (((u64)rep_done & 0xfff) << 32);
5013
if (longmode) {
5014
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5015
} else {
5016
kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5017
kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5018
}
5019
5020
return 1;
5021
}
5022
5023
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5024
{
5025
unsigned long nr, a0, a1, a2, a3, ret;
5026
int r = 1;
5027
5028
if (kvm_hv_hypercall_enabled(vcpu->kvm))
5029
return kvm_hv_hypercall(vcpu);
5030
5031
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5032
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5033
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5034
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5035
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5036
5037
trace_kvm_hypercall(nr, a0, a1, a2, a3);
5038
5039
if (!is_long_mode(vcpu)) {
5040
nr &= 0xFFFFFFFF;
5041
a0 &= 0xFFFFFFFF;
5042
a1 &= 0xFFFFFFFF;
5043
a2 &= 0xFFFFFFFF;
5044
a3 &= 0xFFFFFFFF;
5045
}
5046
5047
if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5048
ret = -KVM_EPERM;
5049
goto out;
5050
}
5051
5052
switch (nr) {
5053
case KVM_HC_VAPIC_POLL_IRQ:
5054
ret = 0;
5055
break;
5056
case KVM_HC_MMU_OP:
5057
r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5058
break;
5059
default:
5060
ret = -KVM_ENOSYS;
5061
break;
5062
}
5063
out:
5064
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5065
++vcpu->stat.hypercalls;
5066
return r;
5067
}
5068
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5069
5070
int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5071
{
5072
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5073
char instruction[3];
5074
unsigned long rip = kvm_rip_read(vcpu);
5075
5076
/*
5077
* Blow out the MMU to ensure that no other VCPU has an active mapping
5078
* to ensure that the updated hypercall appears atomically across all
5079
* VCPUs.
5080
*/
5081
kvm_mmu_zap_all(vcpu->kvm);
5082
5083
kvm_x86_ops->patch_hypercall(vcpu, instruction);
5084
5085
return emulator_write_emulated(&vcpu->arch.emulate_ctxt,
5086
rip, instruction, 3, NULL);
5087
}
5088
5089
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5090
{
5091
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5092
int j, nent = vcpu->arch.cpuid_nent;
5093
5094
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5095
/* when no next entry is found, the current entry[i] is reselected */
5096
for (j = i + 1; ; j = (j + 1) % nent) {
5097
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5098
if (ej->function == e->function) {
5099
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5100
return j;
5101
}
5102
}
5103
return 0; /* silence gcc, even though control never reaches here */
5104
}
5105
5106
/* find an entry with matching function, matching index (if needed), and that
5107
* should be read next (if it's stateful) */
5108
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5109
u32 function, u32 index)
5110
{
5111
if (e->function != function)
5112
return 0;
5113
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5114
return 0;
5115
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5116
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5117
return 0;
5118
return 1;
5119
}
5120
5121
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5122
u32 function, u32 index)
5123
{
5124
int i;
5125
struct kvm_cpuid_entry2 *best = NULL;
5126
5127
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5128
struct kvm_cpuid_entry2 *e;
5129
5130
e = &vcpu->arch.cpuid_entries[i];
5131
if (is_matching_cpuid_entry(e, function, index)) {
5132
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5133
move_to_next_stateful_cpuid_entry(vcpu, i);
5134
best = e;
5135
break;
5136
}
5137
}
5138
return best;
5139
}
5140
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5141
5142
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5143
{
5144
struct kvm_cpuid_entry2 *best;
5145
5146
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5147
if (!best || best->eax < 0x80000008)
5148
goto not_found;
5149
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5150
if (best)
5151
return best->eax & 0xff;
5152
not_found:
5153
return 36;
5154
}
5155
5156
/*
5157
* If no match is found, check whether we exceed the vCPU's limit
5158
* and return the content of the highest valid _standard_ leaf instead.
5159
* This is to satisfy the CPUID specification.
5160
*/
5161
static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5162
u32 function, u32 index)
5163
{
5164
struct kvm_cpuid_entry2 *maxlevel;
5165
5166
maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5167
if (!maxlevel || maxlevel->eax >= function)
5168
return NULL;
5169
if (function & 0x80000000) {
5170
maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5171
if (!maxlevel)
5172
return NULL;
5173
}
5174
return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5175
}
5176
5177
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5178
{
5179
u32 function, index;
5180
struct kvm_cpuid_entry2 *best;
5181
5182
function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5183
index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5184
kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5185
kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5186
kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5187
kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5188
best = kvm_find_cpuid_entry(vcpu, function, index);
5189
5190
if (!best)
5191
best = check_cpuid_limit(vcpu, function, index);
5192
5193
if (best) {
5194
kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5195
kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5196
kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5197
kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5198
}
5199
kvm_x86_ops->skip_emulated_instruction(vcpu);
5200
trace_kvm_cpuid(function,
5201
kvm_register_read(vcpu, VCPU_REGS_RAX),
5202
kvm_register_read(vcpu, VCPU_REGS_RBX),
5203
kvm_register_read(vcpu, VCPU_REGS_RCX),
5204
kvm_register_read(vcpu, VCPU_REGS_RDX));
5205
}
5206
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5207
5208
/*
5209
* Check if userspace requested an interrupt window, and that the
5210
* interrupt window is open.
5211
*
5212
* No need to exit to userspace if we already have an interrupt queued.
5213
*/
5214
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5215
{
5216
return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5217
vcpu->run->request_interrupt_window &&
5218
kvm_arch_interrupt_allowed(vcpu));
5219
}
5220
5221
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5222
{
5223
struct kvm_run *kvm_run = vcpu->run;
5224
5225
kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5226
kvm_run->cr8 = kvm_get_cr8(vcpu);
5227
kvm_run->apic_base = kvm_get_apic_base(vcpu);
5228
if (irqchip_in_kernel(vcpu->kvm))
5229
kvm_run->ready_for_interrupt_injection = 1;
5230
else
5231
kvm_run->ready_for_interrupt_injection =
5232
kvm_arch_interrupt_allowed(vcpu) &&
5233
!kvm_cpu_has_interrupt(vcpu) &&
5234
!kvm_event_needs_reinjection(vcpu);
5235
}
5236
5237
static void vapic_enter(struct kvm_vcpu *vcpu)
5238
{
5239
struct kvm_lapic *apic = vcpu->arch.apic;
5240
struct page *page;
5241
5242
if (!apic || !apic->vapic_addr)
5243
return;
5244
5245
page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5246
5247
vcpu->arch.apic->vapic_page = page;
5248
}
5249
5250
static void vapic_exit(struct kvm_vcpu *vcpu)
5251
{
5252
struct kvm_lapic *apic = vcpu->arch.apic;
5253
int idx;
5254
5255
if (!apic || !apic->vapic_addr)
5256
return;
5257
5258
idx = srcu_read_lock(&vcpu->kvm->srcu);
5259
kvm_release_page_dirty(apic->vapic_page);
5260
mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5261
srcu_read_unlock(&vcpu->kvm->srcu, idx);
5262
}
5263
5264
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5265
{
5266
int max_irr, tpr;
5267
5268
if (!kvm_x86_ops->update_cr8_intercept)
5269
return;
5270
5271
if (!vcpu->arch.apic)
5272
return;
5273
5274
if (!vcpu->arch.apic->vapic_addr)
5275
max_irr = kvm_lapic_find_highest_irr(vcpu);
5276
else
5277
max_irr = -1;
5278
5279
if (max_irr != -1)
5280
max_irr >>= 4;
5281
5282
tpr = kvm_lapic_get_cr8(vcpu);
5283
5284
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5285
}
5286
5287
static void inject_pending_event(struct kvm_vcpu *vcpu)
5288
{
5289
/* try to reinject previous events if any */
5290
if (vcpu->arch.exception.pending) {
5291
trace_kvm_inj_exception(vcpu->arch.exception.nr,
5292
vcpu->arch.exception.has_error_code,
5293
vcpu->arch.exception.error_code);
5294
kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5295
vcpu->arch.exception.has_error_code,
5296
vcpu->arch.exception.error_code,
5297
vcpu->arch.exception.reinject);
5298
return;
5299
}
5300
5301
if (vcpu->arch.nmi_injected) {
5302
kvm_x86_ops->set_nmi(vcpu);
5303
return;
5304
}
5305
5306
if (vcpu->arch.interrupt.pending) {
5307
kvm_x86_ops->set_irq(vcpu);
5308
return;
5309
}
5310
5311
/* try to inject new event if pending */
5312
if (vcpu->arch.nmi_pending) {
5313
if (kvm_x86_ops->nmi_allowed(vcpu)) {
5314
vcpu->arch.nmi_pending = false;
5315
vcpu->arch.nmi_injected = true;
5316
kvm_x86_ops->set_nmi(vcpu);
5317
}
5318
} else if (kvm_cpu_has_interrupt(vcpu)) {
5319
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5320
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5321
false);
5322
kvm_x86_ops->set_irq(vcpu);
5323
}
5324
}
5325
}
5326
5327
static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5328
{
5329
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5330
!vcpu->guest_xcr0_loaded) {
5331
/* kvm_set_xcr() also depends on this */
5332
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5333
vcpu->guest_xcr0_loaded = 1;
5334
}
5335
}
5336
5337
static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5338
{
5339
if (vcpu->guest_xcr0_loaded) {
5340
if (vcpu->arch.xcr0 != host_xcr0)
5341
xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5342
vcpu->guest_xcr0_loaded = 0;
5343
}
5344
}
5345
5346
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5347
{
5348
int r;
5349
bool nmi_pending;
5350
bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5351
vcpu->run->request_interrupt_window;
5352
5353
if (vcpu->requests) {
5354
if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5355
kvm_mmu_unload(vcpu);
5356
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5357
__kvm_migrate_timers(vcpu);
5358
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5359
r = kvm_guest_time_update(vcpu);
5360
if (unlikely(r))
5361
goto out;
5362
}
5363
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5364
kvm_mmu_sync_roots(vcpu);
5365
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5366
kvm_x86_ops->tlb_flush(vcpu);
5367
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5368
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5369
r = 0;
5370
goto out;
5371
}
5372
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5373
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5374
r = 0;
5375
goto out;
5376
}
5377
if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5378
vcpu->fpu_active = 0;
5379
kvm_x86_ops->fpu_deactivate(vcpu);
5380
}
5381
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5382
/* Page is swapped out. Do synthetic halt */
5383
vcpu->arch.apf.halted = true;
5384
r = 1;
5385
goto out;
5386
}
5387
}
5388
5389
r = kvm_mmu_reload(vcpu);
5390
if (unlikely(r))
5391
goto out;
5392
5393
/*
5394
* An NMI can be injected between local nmi_pending read and
5395
* vcpu->arch.nmi_pending read inside inject_pending_event().
5396
* But in that case, KVM_REQ_EVENT will be set, which makes
5397
* the race described above benign.
5398
*/
5399
nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5400
5401
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5402
inject_pending_event(vcpu);
5403
5404
/* enable NMI/IRQ window open exits if needed */
5405
if (nmi_pending)
5406
kvm_x86_ops->enable_nmi_window(vcpu);
5407
else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5408
kvm_x86_ops->enable_irq_window(vcpu);
5409
5410
if (kvm_lapic_enabled(vcpu)) {
5411
update_cr8_intercept(vcpu);
5412
kvm_lapic_sync_to_vapic(vcpu);
5413
}
5414
}
5415
5416
preempt_disable();
5417
5418
kvm_x86_ops->prepare_guest_switch(vcpu);
5419
if (vcpu->fpu_active)
5420
kvm_load_guest_fpu(vcpu);
5421
kvm_load_guest_xcr0(vcpu);
5422
5423
vcpu->mode = IN_GUEST_MODE;
5424
5425
/* We should set ->mode before check ->requests,
5426
* see the comment in make_all_cpus_request.
5427
*/
5428
smp_mb();
5429
5430
local_irq_disable();
5431
5432
if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5433
|| need_resched() || signal_pending(current)) {
5434
vcpu->mode = OUTSIDE_GUEST_MODE;
5435
smp_wmb();
5436
local_irq_enable();
5437
preempt_enable();
5438
kvm_x86_ops->cancel_injection(vcpu);
5439
r = 1;
5440
goto out;
5441
}
5442
5443
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5444
5445
kvm_guest_enter();
5446
5447
if (unlikely(vcpu->arch.switch_db_regs)) {
5448
set_debugreg(0, 7);
5449
set_debugreg(vcpu->arch.eff_db[0], 0);
5450
set_debugreg(vcpu->arch.eff_db[1], 1);
5451
set_debugreg(vcpu->arch.eff_db[2], 2);
5452
set_debugreg(vcpu->arch.eff_db[3], 3);
5453
}
5454
5455
trace_kvm_entry(vcpu->vcpu_id);
5456
kvm_x86_ops->run(vcpu);
5457
5458
/*
5459
* If the guest has used debug registers, at least dr7
5460
* will be disabled while returning to the host.
5461
* If we don't have active breakpoints in the host, we don't
5462
* care about the messed up debug address registers. But if
5463
* we have some of them active, restore the old state.
5464
*/
5465
if (hw_breakpoint_active())
5466
hw_breakpoint_restore();
5467
5468
kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5469
5470
vcpu->mode = OUTSIDE_GUEST_MODE;
5471
smp_wmb();
5472
local_irq_enable();
5473
5474
++vcpu->stat.exits;
5475
5476
/*
5477
* We must have an instruction between local_irq_enable() and
5478
* kvm_guest_exit(), so the timer interrupt isn't delayed by
5479
* the interrupt shadow. The stat.exits increment will do nicely.
5480
* But we need to prevent reordering, hence this barrier():
5481
*/
5482
barrier();
5483
5484
kvm_guest_exit();
5485
5486
preempt_enable();
5487
5488
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5489
5490
/*
5491
* Profile KVM exit RIPs:
5492
*/
5493
if (unlikely(prof_on == KVM_PROFILING)) {
5494
unsigned long rip = kvm_rip_read(vcpu);
5495
profile_hit(KVM_PROFILING, (void *)rip);
5496
}
5497
5498
5499
kvm_lapic_sync_from_vapic(vcpu);
5500
5501
r = kvm_x86_ops->handle_exit(vcpu);
5502
out:
5503
return r;
5504
}
5505
5506
5507
static int __vcpu_run(struct kvm_vcpu *vcpu)
5508
{
5509
int r;
5510
struct kvm *kvm = vcpu->kvm;
5511
5512
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5513
pr_debug("vcpu %d received sipi with vector # %x\n",
5514
vcpu->vcpu_id, vcpu->arch.sipi_vector);
5515
kvm_lapic_reset(vcpu);
5516
r = kvm_arch_vcpu_reset(vcpu);
5517
if (r)
5518
return r;
5519
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5520
}
5521
5522
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5523
vapic_enter(vcpu);
5524
5525
r = 1;
5526
while (r > 0) {
5527
if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5528
!vcpu->arch.apf.halted)
5529
r = vcpu_enter_guest(vcpu);
5530
else {
5531
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5532
kvm_vcpu_block(vcpu);
5533
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5534
if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5535
{
5536
switch(vcpu->arch.mp_state) {
5537
case KVM_MP_STATE_HALTED:
5538
vcpu->arch.mp_state =
5539
KVM_MP_STATE_RUNNABLE;
5540
case KVM_MP_STATE_RUNNABLE:
5541
vcpu->arch.apf.halted = false;
5542
break;
5543
case KVM_MP_STATE_SIPI_RECEIVED:
5544
default:
5545
r = -EINTR;
5546
break;
5547
}
5548
}
5549
}
5550
5551
if (r <= 0)
5552
break;
5553
5554
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5555
if (kvm_cpu_has_pending_timer(vcpu))
5556
kvm_inject_pending_timer_irqs(vcpu);
5557
5558
if (dm_request_for_irq_injection(vcpu)) {
5559
r = -EINTR;
5560
vcpu->run->exit_reason = KVM_EXIT_INTR;
5561
++vcpu->stat.request_irq_exits;
5562
}
5563
5564
kvm_check_async_pf_completion(vcpu);
5565
5566
if (signal_pending(current)) {
5567
r = -EINTR;
5568
vcpu->run->exit_reason = KVM_EXIT_INTR;
5569
++vcpu->stat.signal_exits;
5570
}
5571
if (need_resched()) {
5572
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5573
kvm_resched(vcpu);
5574
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5575
}
5576
}
5577
5578
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5579
5580
vapic_exit(vcpu);
5581
5582
return r;
5583
}
5584
5585
static int complete_mmio(struct kvm_vcpu *vcpu)
5586
{
5587
struct kvm_run *run = vcpu->run;
5588
int r;
5589
5590
if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5591
return 1;
5592
5593
if (vcpu->mmio_needed) {
5594
vcpu->mmio_needed = 0;
5595
if (!vcpu->mmio_is_write)
5596
memcpy(vcpu->mmio_data + vcpu->mmio_index,
5597
run->mmio.data, 8);
5598
vcpu->mmio_index += 8;
5599
if (vcpu->mmio_index < vcpu->mmio_size) {
5600
run->exit_reason = KVM_EXIT_MMIO;
5601
run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5602
memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5603
run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5604
run->mmio.is_write = vcpu->mmio_is_write;
5605
vcpu->mmio_needed = 1;
5606
return 0;
5607
}
5608
if (vcpu->mmio_is_write)
5609
return 1;
5610
vcpu->mmio_read_completed = 1;
5611
}
5612
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5613
r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5614
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5615
if (r != EMULATE_DONE)
5616
return 0;
5617
return 1;
5618
}
5619
5620
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5621
{
5622
int r;
5623
sigset_t sigsaved;
5624
5625
if (!tsk_used_math(current) && init_fpu(current))
5626
return -ENOMEM;
5627
5628
if (vcpu->sigset_active)
5629
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5630
5631
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5632
kvm_vcpu_block(vcpu);
5633
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5634
r = -EAGAIN;
5635
goto out;
5636
}
5637
5638
/* re-sync apic's tpr */
5639
if (!irqchip_in_kernel(vcpu->kvm)) {
5640
if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5641
r = -EINVAL;
5642
goto out;
5643
}
5644
}
5645
5646
r = complete_mmio(vcpu);
5647
if (r <= 0)
5648
goto out;
5649
5650
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5651
kvm_register_write(vcpu, VCPU_REGS_RAX,
5652
kvm_run->hypercall.ret);
5653
5654
r = __vcpu_run(vcpu);
5655
5656
out:
5657
post_kvm_run_save(vcpu);
5658
if (vcpu->sigset_active)
5659
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5660
5661
return r;
5662
}
5663
5664
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5665
{
5666
if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5667
/*
5668
* We are here if userspace calls get_regs() in the middle of
5669
* instruction emulation. Registers state needs to be copied
5670
* back from emulation context to vcpu. Usrapace shouldn't do
5671
* that usually, but some bad designed PV devices (vmware
5672
* backdoor interface) need this to work
5673
*/
5674
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5675
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5676
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5677
}
5678
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5679
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5680
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5681
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5682
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5683
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5684
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5685
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5686
#ifdef CONFIG_X86_64
5687
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5688
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5689
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5690
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5691
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5692
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5693
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5694
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5695
#endif
5696
5697
regs->rip = kvm_rip_read(vcpu);
5698
regs->rflags = kvm_get_rflags(vcpu);
5699
5700
return 0;
5701
}
5702
5703
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5704
{
5705
vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5706
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5707
5708
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5709
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5710
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5711
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5712
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5713
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5714
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5715
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5716
#ifdef CONFIG_X86_64
5717
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5718
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5719
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5720
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5721
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5722
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5723
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5724
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5725
#endif
5726
5727
kvm_rip_write(vcpu, regs->rip);
5728
kvm_set_rflags(vcpu, regs->rflags);
5729
5730
vcpu->arch.exception.pending = false;
5731
5732
kvm_make_request(KVM_REQ_EVENT, vcpu);
5733
5734
return 0;
5735
}
5736
5737
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5738
{
5739
struct kvm_segment cs;
5740
5741
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5742
*db = cs.db;
5743
*l = cs.l;
5744
}
5745
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5746
5747
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5748
struct kvm_sregs *sregs)
5749
{
5750
struct desc_ptr dt;
5751
5752
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5753
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5754
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5755
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5756
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5757
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5758
5759
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5760
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5761
5762
kvm_x86_ops->get_idt(vcpu, &dt);
5763
sregs->idt.limit = dt.size;
5764
sregs->idt.base = dt.address;
5765
kvm_x86_ops->get_gdt(vcpu, &dt);
5766
sregs->gdt.limit = dt.size;
5767
sregs->gdt.base = dt.address;
5768
5769
sregs->cr0 = kvm_read_cr0(vcpu);
5770
sregs->cr2 = vcpu->arch.cr2;
5771
sregs->cr3 = kvm_read_cr3(vcpu);
5772
sregs->cr4 = kvm_read_cr4(vcpu);
5773
sregs->cr8 = kvm_get_cr8(vcpu);
5774
sregs->efer = vcpu->arch.efer;
5775
sregs->apic_base = kvm_get_apic_base(vcpu);
5776
5777
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5778
5779
if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5780
set_bit(vcpu->arch.interrupt.nr,
5781
(unsigned long *)sregs->interrupt_bitmap);
5782
5783
return 0;
5784
}
5785
5786
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5787
struct kvm_mp_state *mp_state)
5788
{
5789
mp_state->mp_state = vcpu->arch.mp_state;
5790
return 0;
5791
}
5792
5793
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5794
struct kvm_mp_state *mp_state)
5795
{
5796
vcpu->arch.mp_state = mp_state->mp_state;
5797
kvm_make_request(KVM_REQ_EVENT, vcpu);
5798
return 0;
5799
}
5800
5801
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5802
bool has_error_code, u32 error_code)
5803
{
5804
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5805
int ret;
5806
5807
init_emulate_ctxt(vcpu);
5808
5809
ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5810
tss_selector, reason, has_error_code,
5811
error_code);
5812
5813
if (ret)
5814
return EMULATE_FAIL;
5815
5816
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5817
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5818
kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5819
kvm_make_request(KVM_REQ_EVENT, vcpu);
5820
return EMULATE_DONE;
5821
}
5822
EXPORT_SYMBOL_GPL(kvm_task_switch);
5823
5824
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5825
struct kvm_sregs *sregs)
5826
{
5827
int mmu_reset_needed = 0;
5828
int pending_vec, max_bits, idx;
5829
struct desc_ptr dt;
5830
5831
dt.size = sregs->idt.limit;
5832
dt.address = sregs->idt.base;
5833
kvm_x86_ops->set_idt(vcpu, &dt);
5834
dt.size = sregs->gdt.limit;
5835
dt.address = sregs->gdt.base;
5836
kvm_x86_ops->set_gdt(vcpu, &dt);
5837
5838
vcpu->arch.cr2 = sregs->cr2;
5839
mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5840
vcpu->arch.cr3 = sregs->cr3;
5841
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5842
5843
kvm_set_cr8(vcpu, sregs->cr8);
5844
5845
mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5846
kvm_x86_ops->set_efer(vcpu, sregs->efer);
5847
kvm_set_apic_base(vcpu, sregs->apic_base);
5848
5849
mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5850
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5851
vcpu->arch.cr0 = sregs->cr0;
5852
5853
mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5854
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5855
if (sregs->cr4 & X86_CR4_OSXSAVE)
5856
update_cpuid(vcpu);
5857
5858
idx = srcu_read_lock(&vcpu->kvm->srcu);
5859
if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5860
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5861
mmu_reset_needed = 1;
5862
}
5863
srcu_read_unlock(&vcpu->kvm->srcu, idx);
5864
5865
if (mmu_reset_needed)
5866
kvm_mmu_reset_context(vcpu);
5867
5868
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5869
pending_vec = find_first_bit(
5870
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5871
if (pending_vec < max_bits) {
5872
kvm_queue_interrupt(vcpu, pending_vec, false);
5873
pr_debug("Set back pending irq %d\n", pending_vec);
5874
}
5875
5876
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5877
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5878
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5879
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5880
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5881
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5882
5883
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5884
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5885
5886
update_cr8_intercept(vcpu);
5887
5888
/* Older userspace won't unhalt the vcpu on reset. */
5889
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5890
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5891
!is_protmode(vcpu))
5892
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5893
5894
kvm_make_request(KVM_REQ_EVENT, vcpu);
5895
5896
return 0;
5897
}
5898
5899
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5900
struct kvm_guest_debug *dbg)
5901
{
5902
unsigned long rflags;
5903
int i, r;
5904
5905
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5906
r = -EBUSY;
5907
if (vcpu->arch.exception.pending)
5908
goto out;
5909
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5910
kvm_queue_exception(vcpu, DB_VECTOR);
5911
else
5912
kvm_queue_exception(vcpu, BP_VECTOR);
5913
}
5914
5915
/*
5916
* Read rflags as long as potentially injected trace flags are still
5917
* filtered out.
5918
*/
5919
rflags = kvm_get_rflags(vcpu);
5920
5921
vcpu->guest_debug = dbg->control;
5922
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5923
vcpu->guest_debug = 0;
5924
5925
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5926
for (i = 0; i < KVM_NR_DB_REGS; ++i)
5927
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5928
vcpu->arch.switch_db_regs =
5929
(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5930
} else {
5931
for (i = 0; i < KVM_NR_DB_REGS; i++)
5932
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5933
vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5934
}
5935
5936
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5937
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5938
get_segment_base(vcpu, VCPU_SREG_CS);
5939
5940
/*
5941
* Trigger an rflags update that will inject or remove the trace
5942
* flags.
5943
*/
5944
kvm_set_rflags(vcpu, rflags);
5945
5946
kvm_x86_ops->set_guest_debug(vcpu, dbg);
5947
5948
r = 0;
5949
5950
out:
5951
5952
return r;
5953
}
5954
5955
/*
5956
* Translate a guest virtual address to a guest physical address.
5957
*/
5958
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5959
struct kvm_translation *tr)
5960
{
5961
unsigned long vaddr = tr->linear_address;
5962
gpa_t gpa;
5963
int idx;
5964
5965
idx = srcu_read_lock(&vcpu->kvm->srcu);
5966
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5967
srcu_read_unlock(&vcpu->kvm->srcu, idx);
5968
tr->physical_address = gpa;
5969
tr->valid = gpa != UNMAPPED_GVA;
5970
tr->writeable = 1;
5971
tr->usermode = 0;
5972
5973
return 0;
5974
}
5975
5976
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5977
{
5978
struct i387_fxsave_struct *fxsave =
5979
&vcpu->arch.guest_fpu.state->fxsave;
5980
5981
memcpy(fpu->fpr, fxsave->st_space, 128);
5982
fpu->fcw = fxsave->cwd;
5983
fpu->fsw = fxsave->swd;
5984
fpu->ftwx = fxsave->twd;
5985
fpu->last_opcode = fxsave->fop;
5986
fpu->last_ip = fxsave->rip;
5987
fpu->last_dp = fxsave->rdp;
5988
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5989
5990
return 0;
5991
}
5992
5993
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5994
{
5995
struct i387_fxsave_struct *fxsave =
5996
&vcpu->arch.guest_fpu.state->fxsave;
5997
5998
memcpy(fxsave->st_space, fpu->fpr, 128);
5999
fxsave->cwd = fpu->fcw;
6000
fxsave->swd = fpu->fsw;
6001
fxsave->twd = fpu->ftwx;
6002
fxsave->fop = fpu->last_opcode;
6003
fxsave->rip = fpu->last_ip;
6004
fxsave->rdp = fpu->last_dp;
6005
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6006
6007
return 0;
6008
}
6009
6010
int fx_init(struct kvm_vcpu *vcpu)
6011
{
6012
int err;
6013
6014
err = fpu_alloc(&vcpu->arch.guest_fpu);
6015
if (err)
6016
return err;
6017
6018
fpu_finit(&vcpu->arch.guest_fpu);
6019
6020
/*
6021
* Ensure guest xcr0 is valid for loading
6022
*/
6023
vcpu->arch.xcr0 = XSTATE_FP;
6024
6025
vcpu->arch.cr0 |= X86_CR0_ET;
6026
6027
return 0;
6028
}
6029
EXPORT_SYMBOL_GPL(fx_init);
6030
6031
static void fx_free(struct kvm_vcpu *vcpu)
6032
{
6033
fpu_free(&vcpu->arch.guest_fpu);
6034
}
6035
6036
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6037
{
6038
if (vcpu->guest_fpu_loaded)
6039
return;
6040
6041
/*
6042
* Restore all possible states in the guest,
6043
* and assume host would use all available bits.
6044
* Guest xcr0 would be loaded later.
6045
*/
6046
kvm_put_guest_xcr0(vcpu);
6047
vcpu->guest_fpu_loaded = 1;
6048
unlazy_fpu(current);
6049
fpu_restore_checking(&vcpu->arch.guest_fpu);
6050
trace_kvm_fpu(1);
6051
}
6052
6053
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6054
{
6055
kvm_put_guest_xcr0(vcpu);
6056
6057
if (!vcpu->guest_fpu_loaded)
6058
return;
6059
6060
vcpu->guest_fpu_loaded = 0;
6061
fpu_save_init(&vcpu->arch.guest_fpu);
6062
++vcpu->stat.fpu_reload;
6063
kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6064
trace_kvm_fpu(0);
6065
}
6066
6067
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6068
{
6069
kvmclock_reset(vcpu);
6070
6071
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6072
fx_free(vcpu);
6073
kvm_x86_ops->vcpu_free(vcpu);
6074
}
6075
6076
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6077
unsigned int id)
6078
{
6079
if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6080
printk_once(KERN_WARNING
6081
"kvm: SMP vm created on host with unstable TSC; "
6082
"guest TSC will not be reliable\n");
6083
return kvm_x86_ops->vcpu_create(kvm, id);
6084
}
6085
6086
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6087
{
6088
int r;
6089
6090
vcpu->arch.mtrr_state.have_fixed = 1;
6091
vcpu_load(vcpu);
6092
r = kvm_arch_vcpu_reset(vcpu);
6093
if (r == 0)
6094
r = kvm_mmu_setup(vcpu);
6095
vcpu_put(vcpu);
6096
if (r < 0)
6097
goto free_vcpu;
6098
6099
return 0;
6100
free_vcpu:
6101
kvm_x86_ops->vcpu_free(vcpu);
6102
return r;
6103
}
6104
6105
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6106
{
6107
vcpu->arch.apf.msr_val = 0;
6108
6109
vcpu_load(vcpu);
6110
kvm_mmu_unload(vcpu);
6111
vcpu_put(vcpu);
6112
6113
fx_free(vcpu);
6114
kvm_x86_ops->vcpu_free(vcpu);
6115
}
6116
6117
int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6118
{
6119
vcpu->arch.nmi_pending = false;
6120
vcpu->arch.nmi_injected = false;
6121
6122
vcpu->arch.switch_db_regs = 0;
6123
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6124
vcpu->arch.dr6 = DR6_FIXED_1;
6125
vcpu->arch.dr7 = DR7_FIXED_1;
6126
6127
kvm_make_request(KVM_REQ_EVENT, vcpu);
6128
vcpu->arch.apf.msr_val = 0;
6129
6130
kvmclock_reset(vcpu);
6131
6132
kvm_clear_async_pf_completion_queue(vcpu);
6133
kvm_async_pf_hash_reset(vcpu);
6134
vcpu->arch.apf.halted = false;
6135
6136
return kvm_x86_ops->vcpu_reset(vcpu);
6137
}
6138
6139
int kvm_arch_hardware_enable(void *garbage)
6140
{
6141
struct kvm *kvm;
6142
struct kvm_vcpu *vcpu;
6143
int i;
6144
6145
kvm_shared_msr_cpu_online();
6146
list_for_each_entry(kvm, &vm_list, vm_list)
6147
kvm_for_each_vcpu(i, vcpu, kvm)
6148
if (vcpu->cpu == smp_processor_id())
6149
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6150
return kvm_x86_ops->hardware_enable(garbage);
6151
}
6152
6153
void kvm_arch_hardware_disable(void *garbage)
6154
{
6155
kvm_x86_ops->hardware_disable(garbage);
6156
drop_user_return_notifiers(garbage);
6157
}
6158
6159
int kvm_arch_hardware_setup(void)
6160
{
6161
return kvm_x86_ops->hardware_setup();
6162
}
6163
6164
void kvm_arch_hardware_unsetup(void)
6165
{
6166
kvm_x86_ops->hardware_unsetup();
6167
}
6168
6169
void kvm_arch_check_processor_compat(void *rtn)
6170
{
6171
kvm_x86_ops->check_processor_compatibility(rtn);
6172
}
6173
6174
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6175
{
6176
struct page *page;
6177
struct kvm *kvm;
6178
int r;
6179
6180
BUG_ON(vcpu->kvm == NULL);
6181
kvm = vcpu->kvm;
6182
6183
vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6184
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6185
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6186
vcpu->arch.mmu.translate_gpa = translate_gpa;
6187
vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6188
if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6189
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6190
else
6191
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6192
6193
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6194
if (!page) {
6195
r = -ENOMEM;
6196
goto fail;
6197
}
6198
vcpu->arch.pio_data = page_address(page);
6199
6200
kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6201
6202
r = kvm_mmu_create(vcpu);
6203
if (r < 0)
6204
goto fail_free_pio_data;
6205
6206
if (irqchip_in_kernel(kvm)) {
6207
r = kvm_create_lapic(vcpu);
6208
if (r < 0)
6209
goto fail_mmu_destroy;
6210
}
6211
6212
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6213
GFP_KERNEL);
6214
if (!vcpu->arch.mce_banks) {
6215
r = -ENOMEM;
6216
goto fail_free_lapic;
6217
}
6218
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6219
6220
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6221
goto fail_free_mce_banks;
6222
6223
kvm_async_pf_hash_reset(vcpu);
6224
6225
return 0;
6226
fail_free_mce_banks:
6227
kfree(vcpu->arch.mce_banks);
6228
fail_free_lapic:
6229
kvm_free_lapic(vcpu);
6230
fail_mmu_destroy:
6231
kvm_mmu_destroy(vcpu);
6232
fail_free_pio_data:
6233
free_page((unsigned long)vcpu->arch.pio_data);
6234
fail:
6235
return r;
6236
}
6237
6238
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6239
{
6240
int idx;
6241
6242
kfree(vcpu->arch.mce_banks);
6243
kvm_free_lapic(vcpu);
6244
idx = srcu_read_lock(&vcpu->kvm->srcu);
6245
kvm_mmu_destroy(vcpu);
6246
srcu_read_unlock(&vcpu->kvm->srcu, idx);
6247
free_page((unsigned long)vcpu->arch.pio_data);
6248
}
6249
6250
int kvm_arch_init_vm(struct kvm *kvm)
6251
{
6252
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6253
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6254
6255
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6256
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6257
6258
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6259
6260
return 0;
6261
}
6262
6263
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6264
{
6265
vcpu_load(vcpu);
6266
kvm_mmu_unload(vcpu);
6267
vcpu_put(vcpu);
6268
}
6269
6270
static void kvm_free_vcpus(struct kvm *kvm)
6271
{
6272
unsigned int i;
6273
struct kvm_vcpu *vcpu;
6274
6275
/*
6276
* Unpin any mmu pages first.
6277
*/
6278
kvm_for_each_vcpu(i, vcpu, kvm) {
6279
kvm_clear_async_pf_completion_queue(vcpu);
6280
kvm_unload_vcpu_mmu(vcpu);
6281
}
6282
kvm_for_each_vcpu(i, vcpu, kvm)
6283
kvm_arch_vcpu_free(vcpu);
6284
6285
mutex_lock(&kvm->lock);
6286
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6287
kvm->vcpus[i] = NULL;
6288
6289
atomic_set(&kvm->online_vcpus, 0);
6290
mutex_unlock(&kvm->lock);
6291
}
6292
6293
void kvm_arch_sync_events(struct kvm *kvm)
6294
{
6295
kvm_free_all_assigned_devices(kvm);
6296
kvm_free_pit(kvm);
6297
}
6298
6299
void kvm_arch_destroy_vm(struct kvm *kvm)
6300
{
6301
kvm_iommu_unmap_guest(kvm);
6302
kfree(kvm->arch.vpic);
6303
kfree(kvm->arch.vioapic);
6304
kvm_free_vcpus(kvm);
6305
if (kvm->arch.apic_access_page)
6306
put_page(kvm->arch.apic_access_page);
6307
if (kvm->arch.ept_identity_pagetable)
6308
put_page(kvm->arch.ept_identity_pagetable);
6309
}
6310
6311
int kvm_arch_prepare_memory_region(struct kvm *kvm,
6312
struct kvm_memory_slot *memslot,
6313
struct kvm_memory_slot old,
6314
struct kvm_userspace_memory_region *mem,
6315
int user_alloc)
6316
{
6317
int npages = memslot->npages;
6318
int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6319
6320
/* Prevent internal slot pages from being moved by fork()/COW. */
6321
if (memslot->id >= KVM_MEMORY_SLOTS)
6322
map_flags = MAP_SHARED | MAP_ANONYMOUS;
6323
6324
/*To keep backward compatibility with older userspace,
6325
*x86 needs to hanlde !user_alloc case.
6326
*/
6327
if (!user_alloc) {
6328
if (npages && !old.rmap) {
6329
unsigned long userspace_addr;
6330
6331
down_write(&current->mm->mmap_sem);
6332
userspace_addr = do_mmap(NULL, 0,
6333
npages * PAGE_SIZE,
6334
PROT_READ | PROT_WRITE,
6335
map_flags,
6336
0);
6337
up_write(&current->mm->mmap_sem);
6338
6339
if (IS_ERR((void *)userspace_addr))
6340
return PTR_ERR((void *)userspace_addr);
6341
6342
memslot->userspace_addr = userspace_addr;
6343
}
6344
}
6345
6346
6347
return 0;
6348
}
6349
6350
void kvm_arch_commit_memory_region(struct kvm *kvm,
6351
struct kvm_userspace_memory_region *mem,
6352
struct kvm_memory_slot old,
6353
int user_alloc)
6354
{
6355
6356
int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6357
6358
if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6359
int ret;
6360
6361
down_write(&current->mm->mmap_sem);
6362
ret = do_munmap(current->mm, old.userspace_addr,
6363
old.npages * PAGE_SIZE);
6364
up_write(&current->mm->mmap_sem);
6365
if (ret < 0)
6366
printk(KERN_WARNING
6367
"kvm_vm_ioctl_set_memory_region: "
6368
"failed to munmap memory\n");
6369
}
6370
6371
if (!kvm->arch.n_requested_mmu_pages)
6372
nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6373
6374
spin_lock(&kvm->mmu_lock);
6375
if (nr_mmu_pages)
6376
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6377
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6378
spin_unlock(&kvm->mmu_lock);
6379
}
6380
6381
void kvm_arch_flush_shadow(struct kvm *kvm)
6382
{
6383
kvm_mmu_zap_all(kvm);
6384
kvm_reload_remote_mmus(kvm);
6385
}
6386
6387
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6388
{
6389
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6390
!vcpu->arch.apf.halted)
6391
|| !list_empty_careful(&vcpu->async_pf.done)
6392
|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6393
|| vcpu->arch.nmi_pending ||
6394
(kvm_arch_interrupt_allowed(vcpu) &&
6395
kvm_cpu_has_interrupt(vcpu));
6396
}
6397
6398
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6399
{
6400
int me;
6401
int cpu = vcpu->cpu;
6402
6403
if (waitqueue_active(&vcpu->wq)) {
6404
wake_up_interruptible(&vcpu->wq);
6405
++vcpu->stat.halt_wakeup;
6406
}
6407
6408
me = get_cpu();
6409
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6410
if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6411
smp_send_reschedule(cpu);
6412
put_cpu();
6413
}
6414
6415
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6416
{
6417
return kvm_x86_ops->interrupt_allowed(vcpu);
6418
}
6419
6420
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6421
{
6422
unsigned long current_rip = kvm_rip_read(vcpu) +
6423
get_segment_base(vcpu, VCPU_SREG_CS);
6424
6425
return current_rip == linear_rip;
6426
}
6427
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6428
6429
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6430
{
6431
unsigned long rflags;
6432
6433
rflags = kvm_x86_ops->get_rflags(vcpu);
6434
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6435
rflags &= ~X86_EFLAGS_TF;
6436
return rflags;
6437
}
6438
EXPORT_SYMBOL_GPL(kvm_get_rflags);
6439
6440
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6441
{
6442
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6443
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6444
rflags |= X86_EFLAGS_TF;
6445
kvm_x86_ops->set_rflags(vcpu, rflags);
6446
kvm_make_request(KVM_REQ_EVENT, vcpu);
6447
}
6448
EXPORT_SYMBOL_GPL(kvm_set_rflags);
6449
6450
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6451
{
6452
int r;
6453
6454
if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6455
is_error_page(work->page))
6456
return;
6457
6458
r = kvm_mmu_reload(vcpu);
6459
if (unlikely(r))
6460
return;
6461
6462
if (!vcpu->arch.mmu.direct_map &&
6463
work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6464
return;
6465
6466
vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6467
}
6468
6469
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6470
{
6471
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6472
}
6473
6474
static inline u32 kvm_async_pf_next_probe(u32 key)
6475
{
6476
return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6477
}
6478
6479
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6480
{
6481
u32 key = kvm_async_pf_hash_fn(gfn);
6482
6483
while (vcpu->arch.apf.gfns[key] != ~0)
6484
key = kvm_async_pf_next_probe(key);
6485
6486
vcpu->arch.apf.gfns[key] = gfn;
6487
}
6488
6489
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6490
{
6491
int i;
6492
u32 key = kvm_async_pf_hash_fn(gfn);
6493
6494
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6495
(vcpu->arch.apf.gfns[key] != gfn &&
6496
vcpu->arch.apf.gfns[key] != ~0); i++)
6497
key = kvm_async_pf_next_probe(key);
6498
6499
return key;
6500
}
6501
6502
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6503
{
6504
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6505
}
6506
6507
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6508
{
6509
u32 i, j, k;
6510
6511
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6512
while (true) {
6513
vcpu->arch.apf.gfns[i] = ~0;
6514
do {
6515
j = kvm_async_pf_next_probe(j);
6516
if (vcpu->arch.apf.gfns[j] == ~0)
6517
return;
6518
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6519
/*
6520
* k lies cyclically in ]i,j]
6521
* | i.k.j |
6522
* |....j i.k.| or |.k..j i...|
6523
*/
6524
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6525
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6526
i = j;
6527
}
6528
}
6529
6530
static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6531
{
6532
6533
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6534
sizeof(val));
6535
}
6536
6537
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6538
struct kvm_async_pf *work)
6539
{
6540
struct x86_exception fault;
6541
6542
trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6543
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6544
6545
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6546
(vcpu->arch.apf.send_user_only &&
6547
kvm_x86_ops->get_cpl(vcpu) == 0))
6548
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6549
else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6550
fault.vector = PF_VECTOR;
6551
fault.error_code_valid = true;
6552
fault.error_code = 0;
6553
fault.nested_page_fault = false;
6554
fault.address = work->arch.token;
6555
kvm_inject_page_fault(vcpu, &fault);
6556
}
6557
}
6558
6559
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6560
struct kvm_async_pf *work)
6561
{
6562
struct x86_exception fault;
6563
6564
trace_kvm_async_pf_ready(work->arch.token, work->gva);
6565
if (is_error_page(work->page))
6566
work->arch.token = ~0; /* broadcast wakeup */
6567
else
6568
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6569
6570
if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6571
!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6572
fault.vector = PF_VECTOR;
6573
fault.error_code_valid = true;
6574
fault.error_code = 0;
6575
fault.nested_page_fault = false;
6576
fault.address = work->arch.token;
6577
kvm_inject_page_fault(vcpu, &fault);
6578
}
6579
vcpu->arch.apf.halted = false;
6580
}
6581
6582
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6583
{
6584
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6585
return true;
6586
else
6587
return !kvm_event_needs_reinjection(vcpu) &&
6588
kvm_x86_ops->interrupt_allowed(vcpu);
6589
}
6590
6591
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6592
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6593
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6594
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6595
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6596
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6597
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6598
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6599
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6600
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6601
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6602
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6603
6604