Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/math-emu/poly_tan.c
10817 views
1
/*---------------------------------------------------------------------------+
2
| poly_tan.c |
3
| |
4
| Compute the tan of a FPU_REG, using a polynomial approximation. |
5
| |
6
| Copyright (C) 1992,1993,1994,1997,1999 |
7
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
8
| Australia. E-mail [email protected] |
9
| |
10
| |
11
+---------------------------------------------------------------------------*/
12
13
#include "exception.h"
14
#include "reg_constant.h"
15
#include "fpu_emu.h"
16
#include "fpu_system.h"
17
#include "control_w.h"
18
#include "poly.h"
19
20
#define HiPOWERop 3 /* odd poly, positive terms */
21
static const unsigned long long oddplterm[HiPOWERop] = {
22
0x0000000000000000LL,
23
0x0051a1cf08fca228LL,
24
0x0000000071284ff7LL
25
};
26
27
#define HiPOWERon 2 /* odd poly, negative terms */
28
static const unsigned long long oddnegterm[HiPOWERon] = {
29
0x1291a9a184244e80LL,
30
0x0000583245819c21LL
31
};
32
33
#define HiPOWERep 2 /* even poly, positive terms */
34
static const unsigned long long evenplterm[HiPOWERep] = {
35
0x0e848884b539e888LL,
36
0x00003c7f18b887daLL
37
};
38
39
#define HiPOWERen 2 /* even poly, negative terms */
40
static const unsigned long long evennegterm[HiPOWERen] = {
41
0xf1f0200fd51569ccLL,
42
0x003afb46105c4432LL
43
};
44
45
static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
46
47
/*--- poly_tan() ------------------------------------------------------------+
48
| |
49
+---------------------------------------------------------------------------*/
50
void poly_tan(FPU_REG *st0_ptr)
51
{
52
long int exponent;
53
int invert;
54
Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
55
argSignif, fix_up;
56
unsigned long adj;
57
58
exponent = exponent(st0_ptr);
59
60
#ifdef PARANOID
61
if (signnegative(st0_ptr)) { /* Can't hack a number < 0.0 */
62
arith_invalid(0);
63
return;
64
} /* Need a positive number */
65
#endif /* PARANOID */
66
67
/* Split the problem into two domains, smaller and larger than pi/4 */
68
if ((exponent == 0)
69
|| ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
70
/* The argument is greater than (approx) pi/4 */
71
invert = 1;
72
accum.lsw = 0;
73
XSIG_LL(accum) = significand(st0_ptr);
74
75
if (exponent == 0) {
76
/* The argument is >= 1.0 */
77
/* Put the binary point at the left. */
78
XSIG_LL(accum) <<= 1;
79
}
80
/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
81
XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
82
/* This is a special case which arises due to rounding. */
83
if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
84
FPU_settag0(TAG_Valid);
85
significand(st0_ptr) = 0x8a51e04daabda360LL;
86
setexponent16(st0_ptr,
87
(0x41 + EXTENDED_Ebias) | SIGN_Negative);
88
return;
89
}
90
91
argSignif.lsw = accum.lsw;
92
XSIG_LL(argSignif) = XSIG_LL(accum);
93
exponent = -1 + norm_Xsig(&argSignif);
94
} else {
95
invert = 0;
96
argSignif.lsw = 0;
97
XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
98
99
if (exponent < -1) {
100
/* shift the argument right by the required places */
101
if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
102
0x80000000U)
103
XSIG_LL(accum)++; /* round up */
104
}
105
}
106
107
XSIG_LL(argSq) = XSIG_LL(accum);
108
argSq.lsw = accum.lsw;
109
mul_Xsig_Xsig(&argSq, &argSq);
110
XSIG_LL(argSqSq) = XSIG_LL(argSq);
111
argSqSq.lsw = argSq.lsw;
112
mul_Xsig_Xsig(&argSqSq, &argSqSq);
113
114
/* Compute the negative terms for the numerator polynomial */
115
accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
116
polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
117
HiPOWERon - 1);
118
mul_Xsig_Xsig(&accumulatoro, &argSq);
119
negate_Xsig(&accumulatoro);
120
/* Add the positive terms */
121
polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
122
HiPOWERop - 1);
123
124
/* Compute the positive terms for the denominator polynomial */
125
accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
126
polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
127
HiPOWERep - 1);
128
mul_Xsig_Xsig(&accumulatore, &argSq);
129
negate_Xsig(&accumulatore);
130
/* Add the negative terms */
131
polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
132
HiPOWERen - 1);
133
/* Multiply by arg^2 */
134
mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
135
mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
136
/* de-normalize and divide by 2 */
137
shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
138
negate_Xsig(&accumulatore); /* This does 1 - accumulator */
139
140
/* Now find the ratio. */
141
if (accumulatore.msw == 0) {
142
/* accumulatoro must contain 1.0 here, (actually, 0) but it
143
really doesn't matter what value we use because it will
144
have negligible effect in later calculations
145
*/
146
XSIG_LL(accum) = 0x8000000000000000LL;
147
accum.lsw = 0;
148
} else {
149
div_Xsig(&accumulatoro, &accumulatore, &accum);
150
}
151
152
/* Multiply by 1/3 * arg^3 */
153
mul64_Xsig(&accum, &XSIG_LL(argSignif));
154
mul64_Xsig(&accum, &XSIG_LL(argSignif));
155
mul64_Xsig(&accum, &XSIG_LL(argSignif));
156
mul64_Xsig(&accum, &twothirds);
157
shr_Xsig(&accum, -2 * (exponent + 1));
158
159
/* tan(arg) = arg + accum */
160
add_two_Xsig(&accum, &argSignif, &exponent);
161
162
if (invert) {
163
/* We now have the value of tan(pi_2 - arg) where pi_2 is an
164
approximation for pi/2
165
*/
166
/* The next step is to fix the answer to compensate for the
167
error due to the approximation used for pi/2
168
*/
169
170
/* This is (approx) delta, the error in our approx for pi/2
171
(see above). It has an exponent of -65
172
*/
173
XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
174
fix_up.lsw = 0;
175
176
if (exponent == 0)
177
adj = 0xffffffff; /* We want approx 1.0 here, but
178
this is close enough. */
179
else if (exponent > -30) {
180
adj = accum.msw >> -(exponent + 1); /* tan */
181
adj = mul_32_32(adj, adj); /* tan^2 */
182
} else
183
adj = 0;
184
adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */
185
186
fix_up.msw += adj;
187
if (!(fix_up.msw & 0x80000000)) { /* did fix_up overflow ? */
188
/* Yes, we need to add an msb */
189
shr_Xsig(&fix_up, 1);
190
fix_up.msw |= 0x80000000;
191
shr_Xsig(&fix_up, 64 + exponent);
192
} else
193
shr_Xsig(&fix_up, 65 + exponent);
194
195
add_two_Xsig(&accum, &fix_up, &exponent);
196
197
/* accum now contains tan(pi/2 - arg).
198
Use tan(arg) = 1.0 / tan(pi/2 - arg)
199
*/
200
accumulatoro.lsw = accumulatoro.midw = 0;
201
accumulatoro.msw = 0x80000000;
202
div_Xsig(&accumulatoro, &accum, &accum);
203
exponent = -exponent - 1;
204
}
205
206
/* Transfer the result */
207
round_Xsig(&accum);
208
FPU_settag0(TAG_Valid);
209
significand(st0_ptr) = XSIG_LL(accum);
210
setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */
211
212
}
213
214