Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/gup.c
10818 views
1
/*
2
* Lockless get_user_pages_fast for x86
3
*
4
* Copyright (C) 2008 Nick Piggin
5
* Copyright (C) 2008 Novell Inc.
6
*/
7
#include <linux/sched.h>
8
#include <linux/mm.h>
9
#include <linux/vmstat.h>
10
#include <linux/highmem.h>
11
#include <linux/swap.h>
12
13
#include <asm/pgtable.h>
14
15
static inline pte_t gup_get_pte(pte_t *ptep)
16
{
17
#ifndef CONFIG_X86_PAE
18
return ACCESS_ONCE(*ptep);
19
#else
20
/*
21
* With get_user_pages_fast, we walk down the pagetables without taking
22
* any locks. For this we would like to load the pointers atomically,
23
* but that is not possible (without expensive cmpxchg8b) on PAE. What
24
* we do have is the guarantee that a pte will only either go from not
25
* present to present, or present to not present or both -- it will not
26
* switch to a completely different present page without a TLB flush in
27
* between; something that we are blocking by holding interrupts off.
28
*
29
* Setting ptes from not present to present goes:
30
* ptep->pte_high = h;
31
* smp_wmb();
32
* ptep->pte_low = l;
33
*
34
* And present to not present goes:
35
* ptep->pte_low = 0;
36
* smp_wmb();
37
* ptep->pte_high = 0;
38
*
39
* We must ensure here that the load of pte_low sees l iff pte_high
40
* sees h. We load pte_high *after* loading pte_low, which ensures we
41
* don't see an older value of pte_high. *Then* we recheck pte_low,
42
* which ensures that we haven't picked up a changed pte high. We might
43
* have got rubbish values from pte_low and pte_high, but we are
44
* guaranteed that pte_low will not have the present bit set *unless*
45
* it is 'l'. And get_user_pages_fast only operates on present ptes, so
46
* we're safe.
47
*
48
* gup_get_pte should not be used or copied outside gup.c without being
49
* very careful -- it does not atomically load the pte or anything that
50
* is likely to be useful for you.
51
*/
52
pte_t pte;
53
54
retry:
55
pte.pte_low = ptep->pte_low;
56
smp_rmb();
57
pte.pte_high = ptep->pte_high;
58
smp_rmb();
59
if (unlikely(pte.pte_low != ptep->pte_low))
60
goto retry;
61
62
return pte;
63
#endif
64
}
65
66
/*
67
* The performance critical leaf functions are made noinline otherwise gcc
68
* inlines everything into a single function which results in too much
69
* register pressure.
70
*/
71
static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
72
unsigned long end, int write, struct page **pages, int *nr)
73
{
74
unsigned long mask;
75
pte_t *ptep;
76
77
mask = _PAGE_PRESENT|_PAGE_USER;
78
if (write)
79
mask |= _PAGE_RW;
80
81
ptep = pte_offset_map(&pmd, addr);
82
do {
83
pte_t pte = gup_get_pte(ptep);
84
struct page *page;
85
86
if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
87
pte_unmap(ptep);
88
return 0;
89
}
90
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
91
page = pte_page(pte);
92
get_page(page);
93
SetPageReferenced(page);
94
pages[*nr] = page;
95
(*nr)++;
96
97
} while (ptep++, addr += PAGE_SIZE, addr != end);
98
pte_unmap(ptep - 1);
99
100
return 1;
101
}
102
103
static inline void get_head_page_multiple(struct page *page, int nr)
104
{
105
VM_BUG_ON(page != compound_head(page));
106
VM_BUG_ON(page_count(page) == 0);
107
atomic_add(nr, &page->_count);
108
SetPageReferenced(page);
109
}
110
111
static inline void get_huge_page_tail(struct page *page)
112
{
113
/*
114
* __split_huge_page_refcount() cannot run
115
* from under us.
116
*/
117
VM_BUG_ON(atomic_read(&page->_count) < 0);
118
atomic_inc(&page->_count);
119
}
120
121
static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
122
unsigned long end, int write, struct page **pages, int *nr)
123
{
124
unsigned long mask;
125
pte_t pte = *(pte_t *)&pmd;
126
struct page *head, *page;
127
int refs;
128
129
mask = _PAGE_PRESENT|_PAGE_USER;
130
if (write)
131
mask |= _PAGE_RW;
132
if ((pte_flags(pte) & mask) != mask)
133
return 0;
134
/* hugepages are never "special" */
135
VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
136
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
137
138
refs = 0;
139
head = pte_page(pte);
140
page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
141
do {
142
VM_BUG_ON(compound_head(page) != head);
143
pages[*nr] = page;
144
if (PageTail(page))
145
get_huge_page_tail(page);
146
(*nr)++;
147
page++;
148
refs++;
149
} while (addr += PAGE_SIZE, addr != end);
150
get_head_page_multiple(head, refs);
151
152
return 1;
153
}
154
155
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
156
int write, struct page **pages, int *nr)
157
{
158
unsigned long next;
159
pmd_t *pmdp;
160
161
pmdp = pmd_offset(&pud, addr);
162
do {
163
pmd_t pmd = *pmdp;
164
165
next = pmd_addr_end(addr, end);
166
/*
167
* The pmd_trans_splitting() check below explains why
168
* pmdp_splitting_flush has to flush the tlb, to stop
169
* this gup-fast code from running while we set the
170
* splitting bit in the pmd. Returning zero will take
171
* the slow path that will call wait_split_huge_page()
172
* if the pmd is still in splitting state. gup-fast
173
* can't because it has irq disabled and
174
* wait_split_huge_page() would never return as the
175
* tlb flush IPI wouldn't run.
176
*/
177
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
178
return 0;
179
if (unlikely(pmd_large(pmd))) {
180
if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
181
return 0;
182
} else {
183
if (!gup_pte_range(pmd, addr, next, write, pages, nr))
184
return 0;
185
}
186
} while (pmdp++, addr = next, addr != end);
187
188
return 1;
189
}
190
191
static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
192
unsigned long end, int write, struct page **pages, int *nr)
193
{
194
unsigned long mask;
195
pte_t pte = *(pte_t *)&pud;
196
struct page *head, *page;
197
int refs;
198
199
mask = _PAGE_PRESENT|_PAGE_USER;
200
if (write)
201
mask |= _PAGE_RW;
202
if ((pte_flags(pte) & mask) != mask)
203
return 0;
204
/* hugepages are never "special" */
205
VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
206
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
207
208
refs = 0;
209
head = pte_page(pte);
210
page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
211
do {
212
VM_BUG_ON(compound_head(page) != head);
213
pages[*nr] = page;
214
(*nr)++;
215
page++;
216
refs++;
217
} while (addr += PAGE_SIZE, addr != end);
218
get_head_page_multiple(head, refs);
219
220
return 1;
221
}
222
223
static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
224
int write, struct page **pages, int *nr)
225
{
226
unsigned long next;
227
pud_t *pudp;
228
229
pudp = pud_offset(&pgd, addr);
230
do {
231
pud_t pud = *pudp;
232
233
next = pud_addr_end(addr, end);
234
if (pud_none(pud))
235
return 0;
236
if (unlikely(pud_large(pud))) {
237
if (!gup_huge_pud(pud, addr, next, write, pages, nr))
238
return 0;
239
} else {
240
if (!gup_pmd_range(pud, addr, next, write, pages, nr))
241
return 0;
242
}
243
} while (pudp++, addr = next, addr != end);
244
245
return 1;
246
}
247
248
/*
249
* Like get_user_pages_fast() except its IRQ-safe in that it won't fall
250
* back to the regular GUP.
251
*/
252
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
253
struct page **pages)
254
{
255
struct mm_struct *mm = current->mm;
256
unsigned long addr, len, end;
257
unsigned long next;
258
unsigned long flags;
259
pgd_t *pgdp;
260
int nr = 0;
261
262
start &= PAGE_MASK;
263
addr = start;
264
len = (unsigned long) nr_pages << PAGE_SHIFT;
265
end = start + len;
266
if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
267
(void __user *)start, len)))
268
return 0;
269
270
/*
271
* XXX: batch / limit 'nr', to avoid large irq off latency
272
* needs some instrumenting to determine the common sizes used by
273
* important workloads (eg. DB2), and whether limiting the batch size
274
* will decrease performance.
275
*
276
* It seems like we're in the clear for the moment. Direct-IO is
277
* the main guy that batches up lots of get_user_pages, and even
278
* they are limited to 64-at-a-time which is not so many.
279
*/
280
/*
281
* This doesn't prevent pagetable teardown, but does prevent
282
* the pagetables and pages from being freed on x86.
283
*
284
* So long as we atomically load page table pointers versus teardown
285
* (which we do on x86, with the above PAE exception), we can follow the
286
* address down to the the page and take a ref on it.
287
*/
288
local_irq_save(flags);
289
pgdp = pgd_offset(mm, addr);
290
do {
291
pgd_t pgd = *pgdp;
292
293
next = pgd_addr_end(addr, end);
294
if (pgd_none(pgd))
295
break;
296
if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
297
break;
298
} while (pgdp++, addr = next, addr != end);
299
local_irq_restore(flags);
300
301
return nr;
302
}
303
304
/**
305
* get_user_pages_fast() - pin user pages in memory
306
* @start: starting user address
307
* @nr_pages: number of pages from start to pin
308
* @write: whether pages will be written to
309
* @pages: array that receives pointers to the pages pinned.
310
* Should be at least nr_pages long.
311
*
312
* Attempt to pin user pages in memory without taking mm->mmap_sem.
313
* If not successful, it will fall back to taking the lock and
314
* calling get_user_pages().
315
*
316
* Returns number of pages pinned. This may be fewer than the number
317
* requested. If nr_pages is 0 or negative, returns 0. If no pages
318
* were pinned, returns -errno.
319
*/
320
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
321
struct page **pages)
322
{
323
struct mm_struct *mm = current->mm;
324
unsigned long addr, len, end;
325
unsigned long next;
326
pgd_t *pgdp;
327
int nr = 0;
328
329
start &= PAGE_MASK;
330
addr = start;
331
len = (unsigned long) nr_pages << PAGE_SHIFT;
332
333
end = start + len;
334
if (end < start)
335
goto slow_irqon;
336
337
#ifdef CONFIG_X86_64
338
if (end >> __VIRTUAL_MASK_SHIFT)
339
goto slow_irqon;
340
#endif
341
342
/*
343
* XXX: batch / limit 'nr', to avoid large irq off latency
344
* needs some instrumenting to determine the common sizes used by
345
* important workloads (eg. DB2), and whether limiting the batch size
346
* will decrease performance.
347
*
348
* It seems like we're in the clear for the moment. Direct-IO is
349
* the main guy that batches up lots of get_user_pages, and even
350
* they are limited to 64-at-a-time which is not so many.
351
*/
352
/*
353
* This doesn't prevent pagetable teardown, but does prevent
354
* the pagetables and pages from being freed on x86.
355
*
356
* So long as we atomically load page table pointers versus teardown
357
* (which we do on x86, with the above PAE exception), we can follow the
358
* address down to the the page and take a ref on it.
359
*/
360
local_irq_disable();
361
pgdp = pgd_offset(mm, addr);
362
do {
363
pgd_t pgd = *pgdp;
364
365
next = pgd_addr_end(addr, end);
366
if (pgd_none(pgd))
367
goto slow;
368
if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
369
goto slow;
370
} while (pgdp++, addr = next, addr != end);
371
local_irq_enable();
372
373
VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
374
return nr;
375
376
{
377
int ret;
378
379
slow:
380
local_irq_enable();
381
slow_irqon:
382
/* Try to get the remaining pages with get_user_pages */
383
start += nr << PAGE_SHIFT;
384
pages += nr;
385
386
down_read(&mm->mmap_sem);
387
ret = get_user_pages(current, mm, start,
388
(end - start) >> PAGE_SHIFT, write, 0, pages, NULL);
389
up_read(&mm->mmap_sem);
390
391
/* Have to be a bit careful with return values */
392
if (nr > 0) {
393
if (ret < 0)
394
ret = nr;
395
else
396
ret += nr;
397
}
398
399
return ret;
400
}
401
}
402
403