Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/hugetlbpage.c
10817 views
1
/*
2
* IA-32 Huge TLB Page Support for Kernel.
3
*
4
* Copyright (C) 2002, Rohit Seth <[email protected]>
5
*/
6
7
#include <linux/init.h>
8
#include <linux/fs.h>
9
#include <linux/mm.h>
10
#include <linux/hugetlb.h>
11
#include <linux/pagemap.h>
12
#include <linux/err.h>
13
#include <linux/sysctl.h>
14
#include <asm/mman.h>
15
#include <asm/tlb.h>
16
#include <asm/tlbflush.h>
17
#include <asm/pgalloc.h>
18
19
static unsigned long page_table_shareable(struct vm_area_struct *svma,
20
struct vm_area_struct *vma,
21
unsigned long addr, pgoff_t idx)
22
{
23
unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
24
svma->vm_start;
25
unsigned long sbase = saddr & PUD_MASK;
26
unsigned long s_end = sbase + PUD_SIZE;
27
28
/* Allow segments to share if only one is marked locked */
29
unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
30
unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
31
32
/*
33
* match the virtual addresses, permission and the alignment of the
34
* page table page.
35
*/
36
if (pmd_index(addr) != pmd_index(saddr) ||
37
vm_flags != svm_flags ||
38
sbase < svma->vm_start || svma->vm_end < s_end)
39
return 0;
40
41
return saddr;
42
}
43
44
static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
45
{
46
unsigned long base = addr & PUD_MASK;
47
unsigned long end = base + PUD_SIZE;
48
49
/*
50
* check on proper vm_flags and page table alignment
51
*/
52
if (vma->vm_flags & VM_MAYSHARE &&
53
vma->vm_start <= base && end <= vma->vm_end)
54
return 1;
55
return 0;
56
}
57
58
/*
59
* search for a shareable pmd page for hugetlb.
60
*/
61
static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
62
{
63
struct vm_area_struct *vma = find_vma(mm, addr);
64
struct address_space *mapping = vma->vm_file->f_mapping;
65
pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
66
vma->vm_pgoff;
67
struct prio_tree_iter iter;
68
struct vm_area_struct *svma;
69
unsigned long saddr;
70
pte_t *spte = NULL;
71
72
if (!vma_shareable(vma, addr))
73
return;
74
75
mutex_lock(&mapping->i_mmap_mutex);
76
vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
77
if (svma == vma)
78
continue;
79
80
saddr = page_table_shareable(svma, vma, addr, idx);
81
if (saddr) {
82
spte = huge_pte_offset(svma->vm_mm, saddr);
83
if (spte) {
84
get_page(virt_to_page(spte));
85
break;
86
}
87
}
88
}
89
90
if (!spte)
91
goto out;
92
93
spin_lock(&mm->page_table_lock);
94
if (pud_none(*pud))
95
pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
96
else
97
put_page(virt_to_page(spte));
98
spin_unlock(&mm->page_table_lock);
99
out:
100
mutex_unlock(&mapping->i_mmap_mutex);
101
}
102
103
/*
104
* unmap huge page backed by shared pte.
105
*
106
* Hugetlb pte page is ref counted at the time of mapping. If pte is shared
107
* indicated by page_count > 1, unmap is achieved by clearing pud and
108
* decrementing the ref count. If count == 1, the pte page is not shared.
109
*
110
* called with vma->vm_mm->page_table_lock held.
111
*
112
* returns: 1 successfully unmapped a shared pte page
113
* 0 the underlying pte page is not shared, or it is the last user
114
*/
115
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
116
{
117
pgd_t *pgd = pgd_offset(mm, *addr);
118
pud_t *pud = pud_offset(pgd, *addr);
119
120
BUG_ON(page_count(virt_to_page(ptep)) == 0);
121
if (page_count(virt_to_page(ptep)) == 1)
122
return 0;
123
124
pud_clear(pud);
125
put_page(virt_to_page(ptep));
126
*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
127
return 1;
128
}
129
130
pte_t *huge_pte_alloc(struct mm_struct *mm,
131
unsigned long addr, unsigned long sz)
132
{
133
pgd_t *pgd;
134
pud_t *pud;
135
pte_t *pte = NULL;
136
137
pgd = pgd_offset(mm, addr);
138
pud = pud_alloc(mm, pgd, addr);
139
if (pud) {
140
if (sz == PUD_SIZE) {
141
pte = (pte_t *)pud;
142
} else {
143
BUG_ON(sz != PMD_SIZE);
144
if (pud_none(*pud))
145
huge_pmd_share(mm, addr, pud);
146
pte = (pte_t *) pmd_alloc(mm, pud, addr);
147
}
148
}
149
BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
150
151
return pte;
152
}
153
154
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
155
{
156
pgd_t *pgd;
157
pud_t *pud;
158
pmd_t *pmd = NULL;
159
160
pgd = pgd_offset(mm, addr);
161
if (pgd_present(*pgd)) {
162
pud = pud_offset(pgd, addr);
163
if (pud_present(*pud)) {
164
if (pud_large(*pud))
165
return (pte_t *)pud;
166
pmd = pmd_offset(pud, addr);
167
}
168
}
169
return (pte_t *) pmd;
170
}
171
172
#if 0 /* This is just for testing */
173
struct page *
174
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
175
{
176
unsigned long start = address;
177
int length = 1;
178
int nr;
179
struct page *page;
180
struct vm_area_struct *vma;
181
182
vma = find_vma(mm, addr);
183
if (!vma || !is_vm_hugetlb_page(vma))
184
return ERR_PTR(-EINVAL);
185
186
pte = huge_pte_offset(mm, address);
187
188
/* hugetlb should be locked, and hence, prefaulted */
189
WARN_ON(!pte || pte_none(*pte));
190
191
page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
192
193
WARN_ON(!PageHead(page));
194
195
return page;
196
}
197
198
int pmd_huge(pmd_t pmd)
199
{
200
return 0;
201
}
202
203
int pud_huge(pud_t pud)
204
{
205
return 0;
206
}
207
208
struct page *
209
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
210
pmd_t *pmd, int write)
211
{
212
return NULL;
213
}
214
215
#else
216
217
struct page *
218
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
219
{
220
return ERR_PTR(-EINVAL);
221
}
222
223
int pmd_huge(pmd_t pmd)
224
{
225
return !!(pmd_val(pmd) & _PAGE_PSE);
226
}
227
228
int pud_huge(pud_t pud)
229
{
230
return !!(pud_val(pud) & _PAGE_PSE);
231
}
232
233
struct page *
234
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
235
pmd_t *pmd, int write)
236
{
237
struct page *page;
238
239
page = pte_page(*(pte_t *)pmd);
240
if (page)
241
page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
242
return page;
243
}
244
245
struct page *
246
follow_huge_pud(struct mm_struct *mm, unsigned long address,
247
pud_t *pud, int write)
248
{
249
struct page *page;
250
251
page = pte_page(*(pte_t *)pud);
252
if (page)
253
page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
254
return page;
255
}
256
257
#endif
258
259
/* x86_64 also uses this file */
260
261
#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
262
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
263
unsigned long addr, unsigned long len,
264
unsigned long pgoff, unsigned long flags)
265
{
266
struct hstate *h = hstate_file(file);
267
struct mm_struct *mm = current->mm;
268
struct vm_area_struct *vma;
269
unsigned long start_addr;
270
271
if (len > mm->cached_hole_size) {
272
start_addr = mm->free_area_cache;
273
} else {
274
start_addr = TASK_UNMAPPED_BASE;
275
mm->cached_hole_size = 0;
276
}
277
278
full_search:
279
addr = ALIGN(start_addr, huge_page_size(h));
280
281
for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
282
/* At this point: (!vma || addr < vma->vm_end). */
283
if (TASK_SIZE - len < addr) {
284
/*
285
* Start a new search - just in case we missed
286
* some holes.
287
*/
288
if (start_addr != TASK_UNMAPPED_BASE) {
289
start_addr = TASK_UNMAPPED_BASE;
290
mm->cached_hole_size = 0;
291
goto full_search;
292
}
293
return -ENOMEM;
294
}
295
if (!vma || addr + len <= vma->vm_start) {
296
mm->free_area_cache = addr + len;
297
return addr;
298
}
299
if (addr + mm->cached_hole_size < vma->vm_start)
300
mm->cached_hole_size = vma->vm_start - addr;
301
addr = ALIGN(vma->vm_end, huge_page_size(h));
302
}
303
}
304
305
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
306
unsigned long addr0, unsigned long len,
307
unsigned long pgoff, unsigned long flags)
308
{
309
struct hstate *h = hstate_file(file);
310
struct mm_struct *mm = current->mm;
311
struct vm_area_struct *vma, *prev_vma;
312
unsigned long base = mm->mmap_base, addr = addr0;
313
unsigned long largest_hole = mm->cached_hole_size;
314
int first_time = 1;
315
316
/* don't allow allocations above current base */
317
if (mm->free_area_cache > base)
318
mm->free_area_cache = base;
319
320
if (len <= largest_hole) {
321
largest_hole = 0;
322
mm->free_area_cache = base;
323
}
324
try_again:
325
/* make sure it can fit in the remaining address space */
326
if (mm->free_area_cache < len)
327
goto fail;
328
329
/* either no address requested or can't fit in requested address hole */
330
addr = (mm->free_area_cache - len) & huge_page_mask(h);
331
do {
332
/*
333
* Lookup failure means no vma is above this address,
334
* i.e. return with success:
335
*/
336
if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
337
return addr;
338
339
/*
340
* new region fits between prev_vma->vm_end and
341
* vma->vm_start, use it:
342
*/
343
if (addr + len <= vma->vm_start &&
344
(!prev_vma || (addr >= prev_vma->vm_end))) {
345
/* remember the address as a hint for next time */
346
mm->cached_hole_size = largest_hole;
347
return (mm->free_area_cache = addr);
348
} else {
349
/* pull free_area_cache down to the first hole */
350
if (mm->free_area_cache == vma->vm_end) {
351
mm->free_area_cache = vma->vm_start;
352
mm->cached_hole_size = largest_hole;
353
}
354
}
355
356
/* remember the largest hole we saw so far */
357
if (addr + largest_hole < vma->vm_start)
358
largest_hole = vma->vm_start - addr;
359
360
/* try just below the current vma->vm_start */
361
addr = (vma->vm_start - len) & huge_page_mask(h);
362
} while (len <= vma->vm_start);
363
364
fail:
365
/*
366
* if hint left us with no space for the requested
367
* mapping then try again:
368
*/
369
if (first_time) {
370
mm->free_area_cache = base;
371
largest_hole = 0;
372
first_time = 0;
373
goto try_again;
374
}
375
/*
376
* A failed mmap() very likely causes application failure,
377
* so fall back to the bottom-up function here. This scenario
378
* can happen with large stack limits and large mmap()
379
* allocations.
380
*/
381
mm->free_area_cache = TASK_UNMAPPED_BASE;
382
mm->cached_hole_size = ~0UL;
383
addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
384
len, pgoff, flags);
385
386
/*
387
* Restore the topdown base:
388
*/
389
mm->free_area_cache = base;
390
mm->cached_hole_size = ~0UL;
391
392
return addr;
393
}
394
395
unsigned long
396
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
397
unsigned long len, unsigned long pgoff, unsigned long flags)
398
{
399
struct hstate *h = hstate_file(file);
400
struct mm_struct *mm = current->mm;
401
struct vm_area_struct *vma;
402
403
if (len & ~huge_page_mask(h))
404
return -EINVAL;
405
if (len > TASK_SIZE)
406
return -ENOMEM;
407
408
if (flags & MAP_FIXED) {
409
if (prepare_hugepage_range(file, addr, len))
410
return -EINVAL;
411
return addr;
412
}
413
414
if (addr) {
415
addr = ALIGN(addr, huge_page_size(h));
416
vma = find_vma(mm, addr);
417
if (TASK_SIZE - len >= addr &&
418
(!vma || addr + len <= vma->vm_start))
419
return addr;
420
}
421
if (mm->get_unmapped_area == arch_get_unmapped_area)
422
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
423
pgoff, flags);
424
else
425
return hugetlb_get_unmapped_area_topdown(file, addr, len,
426
pgoff, flags);
427
}
428
429
#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
430
431
#ifdef CONFIG_X86_64
432
static __init int setup_hugepagesz(char *opt)
433
{
434
unsigned long ps = memparse(opt, &opt);
435
if (ps == PMD_SIZE) {
436
hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
437
} else if (ps == PUD_SIZE && cpu_has_gbpages) {
438
hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
439
} else {
440
printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
441
ps >> 20);
442
return 0;
443
}
444
return 1;
445
}
446
__setup("hugepagesz=", setup_hugepagesz);
447
#endif
448
449