Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/init_64.c
10818 views
1
/*
2
* linux/arch/x86_64/mm/init.c
3
*
4
* Copyright (C) 1995 Linus Torvalds
5
* Copyright (C) 2000 Pavel Machek <[email protected]>
6
* Copyright (C) 2002,2003 Andi Kleen <[email protected]>
7
*/
8
9
#include <linux/signal.h>
10
#include <linux/sched.h>
11
#include <linux/kernel.h>
12
#include <linux/errno.h>
13
#include <linux/string.h>
14
#include <linux/types.h>
15
#include <linux/ptrace.h>
16
#include <linux/mman.h>
17
#include <linux/mm.h>
18
#include <linux/swap.h>
19
#include <linux/smp.h>
20
#include <linux/init.h>
21
#include <linux/initrd.h>
22
#include <linux/pagemap.h>
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
25
#include <linux/proc_fs.h>
26
#include <linux/pci.h>
27
#include <linux/pfn.h>
28
#include <linux/poison.h>
29
#include <linux/dma-mapping.h>
30
#include <linux/module.h>
31
#include <linux/memory.h>
32
#include <linux/memory_hotplug.h>
33
#include <linux/nmi.h>
34
#include <linux/gfp.h>
35
36
#include <asm/processor.h>
37
#include <asm/bios_ebda.h>
38
#include <asm/system.h>
39
#include <asm/uaccess.h>
40
#include <asm/pgtable.h>
41
#include <asm/pgalloc.h>
42
#include <asm/dma.h>
43
#include <asm/fixmap.h>
44
#include <asm/e820.h>
45
#include <asm/apic.h>
46
#include <asm/tlb.h>
47
#include <asm/mmu_context.h>
48
#include <asm/proto.h>
49
#include <asm/smp.h>
50
#include <asm/sections.h>
51
#include <asm/kdebug.h>
52
#include <asm/numa.h>
53
#include <asm/cacheflush.h>
54
#include <asm/init.h>
55
#include <asm/uv/uv.h>
56
#include <asm/setup.h>
57
58
static int __init parse_direct_gbpages_off(char *arg)
59
{
60
direct_gbpages = 0;
61
return 0;
62
}
63
early_param("nogbpages", parse_direct_gbpages_off);
64
65
static int __init parse_direct_gbpages_on(char *arg)
66
{
67
direct_gbpages = 1;
68
return 0;
69
}
70
early_param("gbpages", parse_direct_gbpages_on);
71
72
/*
73
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
74
* physical space so we can cache the place of the first one and move
75
* around without checking the pgd every time.
76
*/
77
78
pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
79
EXPORT_SYMBOL_GPL(__supported_pte_mask);
80
81
int force_personality32;
82
83
/*
84
* noexec32=on|off
85
* Control non executable heap for 32bit processes.
86
* To control the stack too use noexec=off
87
*
88
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
89
* off PROT_READ implies PROT_EXEC
90
*/
91
static int __init nonx32_setup(char *str)
92
{
93
if (!strcmp(str, "on"))
94
force_personality32 &= ~READ_IMPLIES_EXEC;
95
else if (!strcmp(str, "off"))
96
force_personality32 |= READ_IMPLIES_EXEC;
97
return 1;
98
}
99
__setup("noexec32=", nonx32_setup);
100
101
/*
102
* When memory was added/removed make sure all the processes MM have
103
* suitable PGD entries in the local PGD level page.
104
*/
105
void sync_global_pgds(unsigned long start, unsigned long end)
106
{
107
unsigned long address;
108
109
for (address = start; address <= end; address += PGDIR_SIZE) {
110
const pgd_t *pgd_ref = pgd_offset_k(address);
111
struct page *page;
112
113
if (pgd_none(*pgd_ref))
114
continue;
115
116
spin_lock(&pgd_lock);
117
list_for_each_entry(page, &pgd_list, lru) {
118
pgd_t *pgd;
119
spinlock_t *pgt_lock;
120
121
pgd = (pgd_t *)page_address(page) + pgd_index(address);
122
/* the pgt_lock only for Xen */
123
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
124
spin_lock(pgt_lock);
125
126
if (pgd_none(*pgd))
127
set_pgd(pgd, *pgd_ref);
128
else
129
BUG_ON(pgd_page_vaddr(*pgd)
130
!= pgd_page_vaddr(*pgd_ref));
131
132
spin_unlock(pgt_lock);
133
}
134
spin_unlock(&pgd_lock);
135
}
136
}
137
138
/*
139
* NOTE: This function is marked __ref because it calls __init function
140
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
141
*/
142
static __ref void *spp_getpage(void)
143
{
144
void *ptr;
145
146
if (after_bootmem)
147
ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
148
else
149
ptr = alloc_bootmem_pages(PAGE_SIZE);
150
151
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
152
panic("set_pte_phys: cannot allocate page data %s\n",
153
after_bootmem ? "after bootmem" : "");
154
}
155
156
pr_debug("spp_getpage %p\n", ptr);
157
158
return ptr;
159
}
160
161
static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
162
{
163
if (pgd_none(*pgd)) {
164
pud_t *pud = (pud_t *)spp_getpage();
165
pgd_populate(&init_mm, pgd, pud);
166
if (pud != pud_offset(pgd, 0))
167
printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
168
pud, pud_offset(pgd, 0));
169
}
170
return pud_offset(pgd, vaddr);
171
}
172
173
static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
174
{
175
if (pud_none(*pud)) {
176
pmd_t *pmd = (pmd_t *) spp_getpage();
177
pud_populate(&init_mm, pud, pmd);
178
if (pmd != pmd_offset(pud, 0))
179
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
180
pmd, pmd_offset(pud, 0));
181
}
182
return pmd_offset(pud, vaddr);
183
}
184
185
static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
186
{
187
if (pmd_none(*pmd)) {
188
pte_t *pte = (pte_t *) spp_getpage();
189
pmd_populate_kernel(&init_mm, pmd, pte);
190
if (pte != pte_offset_kernel(pmd, 0))
191
printk(KERN_ERR "PAGETABLE BUG #02!\n");
192
}
193
return pte_offset_kernel(pmd, vaddr);
194
}
195
196
void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
197
{
198
pud_t *pud;
199
pmd_t *pmd;
200
pte_t *pte;
201
202
pud = pud_page + pud_index(vaddr);
203
pmd = fill_pmd(pud, vaddr);
204
pte = fill_pte(pmd, vaddr);
205
206
set_pte(pte, new_pte);
207
208
/*
209
* It's enough to flush this one mapping.
210
* (PGE mappings get flushed as well)
211
*/
212
__flush_tlb_one(vaddr);
213
}
214
215
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
216
{
217
pgd_t *pgd;
218
pud_t *pud_page;
219
220
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
221
222
pgd = pgd_offset_k(vaddr);
223
if (pgd_none(*pgd)) {
224
printk(KERN_ERR
225
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
226
return;
227
}
228
pud_page = (pud_t*)pgd_page_vaddr(*pgd);
229
set_pte_vaddr_pud(pud_page, vaddr, pteval);
230
}
231
232
pmd_t * __init populate_extra_pmd(unsigned long vaddr)
233
{
234
pgd_t *pgd;
235
pud_t *pud;
236
237
pgd = pgd_offset_k(vaddr);
238
pud = fill_pud(pgd, vaddr);
239
return fill_pmd(pud, vaddr);
240
}
241
242
pte_t * __init populate_extra_pte(unsigned long vaddr)
243
{
244
pmd_t *pmd;
245
246
pmd = populate_extra_pmd(vaddr);
247
return fill_pte(pmd, vaddr);
248
}
249
250
/*
251
* Create large page table mappings for a range of physical addresses.
252
*/
253
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
254
pgprot_t prot)
255
{
256
pgd_t *pgd;
257
pud_t *pud;
258
pmd_t *pmd;
259
260
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
261
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
262
pgd = pgd_offset_k((unsigned long)__va(phys));
263
if (pgd_none(*pgd)) {
264
pud = (pud_t *) spp_getpage();
265
set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
266
_PAGE_USER));
267
}
268
pud = pud_offset(pgd, (unsigned long)__va(phys));
269
if (pud_none(*pud)) {
270
pmd = (pmd_t *) spp_getpage();
271
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
272
_PAGE_USER));
273
}
274
pmd = pmd_offset(pud, phys);
275
BUG_ON(!pmd_none(*pmd));
276
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
277
}
278
}
279
280
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
281
{
282
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
283
}
284
285
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
286
{
287
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
288
}
289
290
/*
291
* The head.S code sets up the kernel high mapping:
292
*
293
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
294
*
295
* phys_addr holds the negative offset to the kernel, which is added
296
* to the compile time generated pmds. This results in invalid pmds up
297
* to the point where we hit the physaddr 0 mapping.
298
*
299
* We limit the mappings to the region from _text to _brk_end. _brk_end
300
* is rounded up to the 2MB boundary. This catches the invalid pmds as
301
* well, as they are located before _text:
302
*/
303
void __init cleanup_highmap(void)
304
{
305
unsigned long vaddr = __START_KERNEL_map;
306
unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
307
unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
308
pmd_t *pmd = level2_kernel_pgt;
309
310
for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
311
if (pmd_none(*pmd))
312
continue;
313
if (vaddr < (unsigned long) _text || vaddr > end)
314
set_pmd(pmd, __pmd(0));
315
}
316
}
317
318
static __ref void *alloc_low_page(unsigned long *phys)
319
{
320
unsigned long pfn = pgt_buf_end++;
321
void *adr;
322
323
if (after_bootmem) {
324
adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
325
*phys = __pa(adr);
326
327
return adr;
328
}
329
330
if (pfn >= pgt_buf_top)
331
panic("alloc_low_page: ran out of memory");
332
333
adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
334
clear_page(adr);
335
*phys = pfn * PAGE_SIZE;
336
return adr;
337
}
338
339
static __ref void *map_low_page(void *virt)
340
{
341
void *adr;
342
unsigned long phys, left;
343
344
if (after_bootmem)
345
return virt;
346
347
phys = __pa(virt);
348
left = phys & (PAGE_SIZE - 1);
349
adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
350
adr = (void *)(((unsigned long)adr) | left);
351
352
return adr;
353
}
354
355
static __ref void unmap_low_page(void *adr)
356
{
357
if (after_bootmem)
358
return;
359
360
early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
361
}
362
363
static unsigned long __meminit
364
phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
365
pgprot_t prot)
366
{
367
unsigned pages = 0;
368
unsigned long last_map_addr = end;
369
int i;
370
371
pte_t *pte = pte_page + pte_index(addr);
372
373
for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
374
375
if (addr >= end) {
376
if (!after_bootmem) {
377
for(; i < PTRS_PER_PTE; i++, pte++)
378
set_pte(pte, __pte(0));
379
}
380
break;
381
}
382
383
/*
384
* We will re-use the existing mapping.
385
* Xen for example has some special requirements, like mapping
386
* pagetable pages as RO. So assume someone who pre-setup
387
* these mappings are more intelligent.
388
*/
389
if (pte_val(*pte)) {
390
pages++;
391
continue;
392
}
393
394
if (0)
395
printk(" pte=%p addr=%lx pte=%016lx\n",
396
pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
397
pages++;
398
set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
399
last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
400
}
401
402
update_page_count(PG_LEVEL_4K, pages);
403
404
return last_map_addr;
405
}
406
407
static unsigned long __meminit
408
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
409
unsigned long page_size_mask, pgprot_t prot)
410
{
411
unsigned long pages = 0;
412
unsigned long last_map_addr = end;
413
414
int i = pmd_index(address);
415
416
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
417
unsigned long pte_phys;
418
pmd_t *pmd = pmd_page + pmd_index(address);
419
pte_t *pte;
420
pgprot_t new_prot = prot;
421
422
if (address >= end) {
423
if (!after_bootmem) {
424
for (; i < PTRS_PER_PMD; i++, pmd++)
425
set_pmd(pmd, __pmd(0));
426
}
427
break;
428
}
429
430
if (pmd_val(*pmd)) {
431
if (!pmd_large(*pmd)) {
432
spin_lock(&init_mm.page_table_lock);
433
pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
434
last_map_addr = phys_pte_init(pte, address,
435
end, prot);
436
unmap_low_page(pte);
437
spin_unlock(&init_mm.page_table_lock);
438
continue;
439
}
440
/*
441
* If we are ok with PG_LEVEL_2M mapping, then we will
442
* use the existing mapping,
443
*
444
* Otherwise, we will split the large page mapping but
445
* use the same existing protection bits except for
446
* large page, so that we don't violate Intel's TLB
447
* Application note (317080) which says, while changing
448
* the page sizes, new and old translations should
449
* not differ with respect to page frame and
450
* attributes.
451
*/
452
if (page_size_mask & (1 << PG_LEVEL_2M)) {
453
pages++;
454
continue;
455
}
456
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
457
}
458
459
if (page_size_mask & (1<<PG_LEVEL_2M)) {
460
pages++;
461
spin_lock(&init_mm.page_table_lock);
462
set_pte((pte_t *)pmd,
463
pfn_pte(address >> PAGE_SHIFT,
464
__pgprot(pgprot_val(prot) | _PAGE_PSE)));
465
spin_unlock(&init_mm.page_table_lock);
466
last_map_addr = (address & PMD_MASK) + PMD_SIZE;
467
continue;
468
}
469
470
pte = alloc_low_page(&pte_phys);
471
last_map_addr = phys_pte_init(pte, address, end, new_prot);
472
unmap_low_page(pte);
473
474
spin_lock(&init_mm.page_table_lock);
475
pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
476
spin_unlock(&init_mm.page_table_lock);
477
}
478
update_page_count(PG_LEVEL_2M, pages);
479
return last_map_addr;
480
}
481
482
static unsigned long __meminit
483
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
484
unsigned long page_size_mask)
485
{
486
unsigned long pages = 0;
487
unsigned long last_map_addr = end;
488
int i = pud_index(addr);
489
490
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
491
unsigned long pmd_phys;
492
pud_t *pud = pud_page + pud_index(addr);
493
pmd_t *pmd;
494
pgprot_t prot = PAGE_KERNEL;
495
496
if (addr >= end)
497
break;
498
499
if (!after_bootmem &&
500
!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
501
set_pud(pud, __pud(0));
502
continue;
503
}
504
505
if (pud_val(*pud)) {
506
if (!pud_large(*pud)) {
507
pmd = map_low_page(pmd_offset(pud, 0));
508
last_map_addr = phys_pmd_init(pmd, addr, end,
509
page_size_mask, prot);
510
unmap_low_page(pmd);
511
__flush_tlb_all();
512
continue;
513
}
514
/*
515
* If we are ok with PG_LEVEL_1G mapping, then we will
516
* use the existing mapping.
517
*
518
* Otherwise, we will split the gbpage mapping but use
519
* the same existing protection bits except for large
520
* page, so that we don't violate Intel's TLB
521
* Application note (317080) which says, while changing
522
* the page sizes, new and old translations should
523
* not differ with respect to page frame and
524
* attributes.
525
*/
526
if (page_size_mask & (1 << PG_LEVEL_1G)) {
527
pages++;
528
continue;
529
}
530
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
531
}
532
533
if (page_size_mask & (1<<PG_LEVEL_1G)) {
534
pages++;
535
spin_lock(&init_mm.page_table_lock);
536
set_pte((pte_t *)pud,
537
pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
538
spin_unlock(&init_mm.page_table_lock);
539
last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
540
continue;
541
}
542
543
pmd = alloc_low_page(&pmd_phys);
544
last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
545
prot);
546
unmap_low_page(pmd);
547
548
spin_lock(&init_mm.page_table_lock);
549
pud_populate(&init_mm, pud, __va(pmd_phys));
550
spin_unlock(&init_mm.page_table_lock);
551
}
552
__flush_tlb_all();
553
554
update_page_count(PG_LEVEL_1G, pages);
555
556
return last_map_addr;
557
}
558
559
unsigned long __meminit
560
kernel_physical_mapping_init(unsigned long start,
561
unsigned long end,
562
unsigned long page_size_mask)
563
{
564
bool pgd_changed = false;
565
unsigned long next, last_map_addr = end;
566
unsigned long addr;
567
568
start = (unsigned long)__va(start);
569
end = (unsigned long)__va(end);
570
addr = start;
571
572
for (; start < end; start = next) {
573
pgd_t *pgd = pgd_offset_k(start);
574
unsigned long pud_phys;
575
pud_t *pud;
576
577
next = (start + PGDIR_SIZE) & PGDIR_MASK;
578
if (next > end)
579
next = end;
580
581
if (pgd_val(*pgd)) {
582
pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
583
last_map_addr = phys_pud_init(pud, __pa(start),
584
__pa(end), page_size_mask);
585
unmap_low_page(pud);
586
continue;
587
}
588
589
pud = alloc_low_page(&pud_phys);
590
last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
591
page_size_mask);
592
unmap_low_page(pud);
593
594
spin_lock(&init_mm.page_table_lock);
595
pgd_populate(&init_mm, pgd, __va(pud_phys));
596
spin_unlock(&init_mm.page_table_lock);
597
pgd_changed = true;
598
}
599
600
if (pgd_changed)
601
sync_global_pgds(addr, end);
602
603
__flush_tlb_all();
604
605
return last_map_addr;
606
}
607
608
#ifndef CONFIG_NUMA
609
void __init initmem_init(void)
610
{
611
memblock_x86_register_active_regions(0, 0, max_pfn);
612
}
613
#endif
614
615
void __init paging_init(void)
616
{
617
unsigned long max_zone_pfns[MAX_NR_ZONES];
618
619
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
620
#ifdef CONFIG_ZONE_DMA
621
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
622
#endif
623
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
624
max_zone_pfns[ZONE_NORMAL] = max_pfn;
625
626
sparse_memory_present_with_active_regions(MAX_NUMNODES);
627
sparse_init();
628
629
/*
630
* clear the default setting with node 0
631
* note: don't use nodes_clear here, that is really clearing when
632
* numa support is not compiled in, and later node_set_state
633
* will not set it back.
634
*/
635
node_clear_state(0, N_NORMAL_MEMORY);
636
637
free_area_init_nodes(max_zone_pfns);
638
}
639
640
/*
641
* Memory hotplug specific functions
642
*/
643
#ifdef CONFIG_MEMORY_HOTPLUG
644
/*
645
* After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
646
* updating.
647
*/
648
static void update_end_of_memory_vars(u64 start, u64 size)
649
{
650
unsigned long end_pfn = PFN_UP(start + size);
651
652
if (end_pfn > max_pfn) {
653
max_pfn = end_pfn;
654
max_low_pfn = end_pfn;
655
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
656
}
657
}
658
659
/*
660
* Memory is added always to NORMAL zone. This means you will never get
661
* additional DMA/DMA32 memory.
662
*/
663
int arch_add_memory(int nid, u64 start, u64 size)
664
{
665
struct pglist_data *pgdat = NODE_DATA(nid);
666
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
667
unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
668
unsigned long nr_pages = size >> PAGE_SHIFT;
669
int ret;
670
671
last_mapped_pfn = init_memory_mapping(start, start + size);
672
if (last_mapped_pfn > max_pfn_mapped)
673
max_pfn_mapped = last_mapped_pfn;
674
675
ret = __add_pages(nid, zone, start_pfn, nr_pages);
676
WARN_ON_ONCE(ret);
677
678
/* update max_pfn, max_low_pfn and high_memory */
679
update_end_of_memory_vars(start, size);
680
681
return ret;
682
}
683
EXPORT_SYMBOL_GPL(arch_add_memory);
684
685
#endif /* CONFIG_MEMORY_HOTPLUG */
686
687
static struct kcore_list kcore_vsyscall;
688
689
void __init mem_init(void)
690
{
691
long codesize, reservedpages, datasize, initsize;
692
unsigned long absent_pages;
693
694
pci_iommu_alloc();
695
696
/* clear_bss() already clear the empty_zero_page */
697
698
reservedpages = 0;
699
700
/* this will put all low memory onto the freelists */
701
#ifdef CONFIG_NUMA
702
totalram_pages = numa_free_all_bootmem();
703
#else
704
totalram_pages = free_all_bootmem();
705
#endif
706
707
absent_pages = absent_pages_in_range(0, max_pfn);
708
reservedpages = max_pfn - totalram_pages - absent_pages;
709
after_bootmem = 1;
710
711
codesize = (unsigned long) &_etext - (unsigned long) &_text;
712
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
713
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
714
715
/* Register memory areas for /proc/kcore */
716
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
717
VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
718
719
printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
720
"%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
721
nr_free_pages() << (PAGE_SHIFT-10),
722
max_pfn << (PAGE_SHIFT-10),
723
codesize >> 10,
724
absent_pages << (PAGE_SHIFT-10),
725
reservedpages << (PAGE_SHIFT-10),
726
datasize >> 10,
727
initsize >> 10);
728
}
729
730
#ifdef CONFIG_DEBUG_RODATA
731
const int rodata_test_data = 0xC3;
732
EXPORT_SYMBOL_GPL(rodata_test_data);
733
734
int kernel_set_to_readonly;
735
736
void set_kernel_text_rw(void)
737
{
738
unsigned long start = PFN_ALIGN(_text);
739
unsigned long end = PFN_ALIGN(__stop___ex_table);
740
741
if (!kernel_set_to_readonly)
742
return;
743
744
pr_debug("Set kernel text: %lx - %lx for read write\n",
745
start, end);
746
747
/*
748
* Make the kernel identity mapping for text RW. Kernel text
749
* mapping will always be RO. Refer to the comment in
750
* static_protections() in pageattr.c
751
*/
752
set_memory_rw(start, (end - start) >> PAGE_SHIFT);
753
}
754
755
void set_kernel_text_ro(void)
756
{
757
unsigned long start = PFN_ALIGN(_text);
758
unsigned long end = PFN_ALIGN(__stop___ex_table);
759
760
if (!kernel_set_to_readonly)
761
return;
762
763
pr_debug("Set kernel text: %lx - %lx for read only\n",
764
start, end);
765
766
/*
767
* Set the kernel identity mapping for text RO.
768
*/
769
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
770
}
771
772
void mark_rodata_ro(void)
773
{
774
unsigned long start = PFN_ALIGN(_text);
775
unsigned long rodata_start =
776
((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
777
unsigned long end = (unsigned long) &__end_rodata_hpage_align;
778
unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
779
unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
780
unsigned long data_start = (unsigned long) &_sdata;
781
782
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
783
(end - start) >> 10);
784
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
785
786
kernel_set_to_readonly = 1;
787
788
/*
789
* The rodata section (but not the kernel text!) should also be
790
* not-executable.
791
*/
792
set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
793
794
rodata_test();
795
796
#ifdef CONFIG_CPA_DEBUG
797
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
798
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
799
800
printk(KERN_INFO "Testing CPA: again\n");
801
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
802
#endif
803
804
free_init_pages("unused kernel memory",
805
(unsigned long) page_address(virt_to_page(text_end)),
806
(unsigned long)
807
page_address(virt_to_page(rodata_start)));
808
free_init_pages("unused kernel memory",
809
(unsigned long) page_address(virt_to_page(rodata_end)),
810
(unsigned long) page_address(virt_to_page(data_start)));
811
}
812
813
#endif
814
815
int kern_addr_valid(unsigned long addr)
816
{
817
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
818
pgd_t *pgd;
819
pud_t *pud;
820
pmd_t *pmd;
821
pte_t *pte;
822
823
if (above != 0 && above != -1UL)
824
return 0;
825
826
pgd = pgd_offset_k(addr);
827
if (pgd_none(*pgd))
828
return 0;
829
830
pud = pud_offset(pgd, addr);
831
if (pud_none(*pud))
832
return 0;
833
834
pmd = pmd_offset(pud, addr);
835
if (pmd_none(*pmd))
836
return 0;
837
838
if (pmd_large(*pmd))
839
return pfn_valid(pmd_pfn(*pmd));
840
841
pte = pte_offset_kernel(pmd, addr);
842
if (pte_none(*pte))
843
return 0;
844
845
return pfn_valid(pte_pfn(*pte));
846
}
847
848
/*
849
* A pseudo VMA to allow ptrace access for the vsyscall page. This only
850
* covers the 64bit vsyscall page now. 32bit has a real VMA now and does
851
* not need special handling anymore:
852
*/
853
static struct vm_area_struct gate_vma = {
854
.vm_start = VSYSCALL_START,
855
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
856
.vm_page_prot = PAGE_READONLY_EXEC,
857
.vm_flags = VM_READ | VM_EXEC
858
};
859
860
struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
861
{
862
#ifdef CONFIG_IA32_EMULATION
863
if (!mm || mm->context.ia32_compat)
864
return NULL;
865
#endif
866
return &gate_vma;
867
}
868
869
int in_gate_area(struct mm_struct *mm, unsigned long addr)
870
{
871
struct vm_area_struct *vma = get_gate_vma(mm);
872
873
if (!vma)
874
return 0;
875
876
return (addr >= vma->vm_start) && (addr < vma->vm_end);
877
}
878
879
/*
880
* Use this when you have no reliable mm, typically from interrupt
881
* context. It is less reliable than using a task's mm and may give
882
* false positives.
883
*/
884
int in_gate_area_no_mm(unsigned long addr)
885
{
886
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
887
}
888
889
const char *arch_vma_name(struct vm_area_struct *vma)
890
{
891
if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
892
return "[vdso]";
893
if (vma == &gate_vma)
894
return "[vsyscall]";
895
return NULL;
896
}
897
898
#ifdef CONFIG_X86_UV
899
unsigned long memory_block_size_bytes(void)
900
{
901
if (is_uv_system()) {
902
printk(KERN_INFO "UV: memory block size 2GB\n");
903
return 2UL * 1024 * 1024 * 1024;
904
}
905
return MIN_MEMORY_BLOCK_SIZE;
906
}
907
#endif
908
909
#ifdef CONFIG_SPARSEMEM_VMEMMAP
910
/*
911
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
912
*/
913
static long __meminitdata addr_start, addr_end;
914
static void __meminitdata *p_start, *p_end;
915
static int __meminitdata node_start;
916
917
int __meminit
918
vmemmap_populate(struct page *start_page, unsigned long size, int node)
919
{
920
unsigned long addr = (unsigned long)start_page;
921
unsigned long end = (unsigned long)(start_page + size);
922
unsigned long next;
923
pgd_t *pgd;
924
pud_t *pud;
925
pmd_t *pmd;
926
927
for (; addr < end; addr = next) {
928
void *p = NULL;
929
930
pgd = vmemmap_pgd_populate(addr, node);
931
if (!pgd)
932
return -ENOMEM;
933
934
pud = vmemmap_pud_populate(pgd, addr, node);
935
if (!pud)
936
return -ENOMEM;
937
938
if (!cpu_has_pse) {
939
next = (addr + PAGE_SIZE) & PAGE_MASK;
940
pmd = vmemmap_pmd_populate(pud, addr, node);
941
942
if (!pmd)
943
return -ENOMEM;
944
945
p = vmemmap_pte_populate(pmd, addr, node);
946
947
if (!p)
948
return -ENOMEM;
949
950
addr_end = addr + PAGE_SIZE;
951
p_end = p + PAGE_SIZE;
952
} else {
953
next = pmd_addr_end(addr, end);
954
955
pmd = pmd_offset(pud, addr);
956
if (pmd_none(*pmd)) {
957
pte_t entry;
958
959
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
960
if (!p)
961
return -ENOMEM;
962
963
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
964
PAGE_KERNEL_LARGE);
965
set_pmd(pmd, __pmd(pte_val(entry)));
966
967
/* check to see if we have contiguous blocks */
968
if (p_end != p || node_start != node) {
969
if (p_start)
970
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
971
addr_start, addr_end-1, p_start, p_end-1, node_start);
972
addr_start = addr;
973
node_start = node;
974
p_start = p;
975
}
976
977
addr_end = addr + PMD_SIZE;
978
p_end = p + PMD_SIZE;
979
} else
980
vmemmap_verify((pte_t *)pmd, node, addr, next);
981
}
982
983
}
984
sync_global_pgds((unsigned long)start_page, end);
985
return 0;
986
}
987
988
void __meminit vmemmap_populate_print_last(void)
989
{
990
if (p_start) {
991
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
992
addr_start, addr_end-1, p_start, p_end-1, node_start);
993
p_start = NULL;
994
p_end = NULL;
995
node_start = 0;
996
}
997
}
998
#endif
999
1000