Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/kmmio.c
10818 views
1
/* Support for MMIO probes.
2
* Benfit many code from kprobes
3
* (C) 2002 Louis Zhuang <[email protected]>.
4
* 2007 Alexander Eichner
5
* 2008 Pekka Paalanen <[email protected]>
6
*/
7
8
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10
#include <linux/list.h>
11
#include <linux/rculist.h>
12
#include <linux/spinlock.h>
13
#include <linux/hash.h>
14
#include <linux/init.h>
15
#include <linux/module.h>
16
#include <linux/kernel.h>
17
#include <linux/uaccess.h>
18
#include <linux/ptrace.h>
19
#include <linux/preempt.h>
20
#include <linux/percpu.h>
21
#include <linux/kdebug.h>
22
#include <linux/mutex.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <asm/cacheflush.h>
26
#include <asm/tlbflush.h>
27
#include <linux/errno.h>
28
#include <asm/debugreg.h>
29
#include <linux/mmiotrace.h>
30
31
#define KMMIO_PAGE_HASH_BITS 4
32
#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33
34
struct kmmio_fault_page {
35
struct list_head list;
36
struct kmmio_fault_page *release_next;
37
unsigned long page; /* location of the fault page */
38
pteval_t old_presence; /* page presence prior to arming */
39
bool armed;
40
41
/*
42
* Number of times this page has been registered as a part
43
* of a probe. If zero, page is disarmed and this may be freed.
44
* Used only by writers (RCU) and post_kmmio_handler().
45
* Protected by kmmio_lock, when linked into kmmio_page_table.
46
*/
47
int count;
48
49
bool scheduled_for_release;
50
};
51
52
struct kmmio_delayed_release {
53
struct rcu_head rcu;
54
struct kmmio_fault_page *release_list;
55
};
56
57
struct kmmio_context {
58
struct kmmio_fault_page *fpage;
59
struct kmmio_probe *probe;
60
unsigned long saved_flags;
61
unsigned long addr;
62
int active;
63
};
64
65
static DEFINE_SPINLOCK(kmmio_lock);
66
67
/* Protected by kmmio_lock */
68
unsigned int kmmio_count;
69
70
/* Read-protected by RCU, write-protected by kmmio_lock. */
71
static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
72
static LIST_HEAD(kmmio_probes);
73
74
static struct list_head *kmmio_page_list(unsigned long page)
75
{
76
return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
77
}
78
79
/* Accessed per-cpu */
80
static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
81
82
/*
83
* this is basically a dynamic stabbing problem:
84
* Could use the existing prio tree code or
85
* Possible better implementations:
86
* The Interval Skip List: A Data Structure for Finding All Intervals That
87
* Overlap a Point (might be simple)
88
* Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
89
*/
90
/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
91
static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
92
{
93
struct kmmio_probe *p;
94
list_for_each_entry_rcu(p, &kmmio_probes, list) {
95
if (addr >= p->addr && addr < (p->addr + p->len))
96
return p;
97
}
98
return NULL;
99
}
100
101
/* You must be holding RCU read lock. */
102
static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
103
{
104
struct list_head *head;
105
struct kmmio_fault_page *f;
106
107
page &= PAGE_MASK;
108
head = kmmio_page_list(page);
109
list_for_each_entry_rcu(f, head, list) {
110
if (f->page == page)
111
return f;
112
}
113
return NULL;
114
}
115
116
static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
117
{
118
pmdval_t v = pmd_val(*pmd);
119
if (clear) {
120
*old = v & _PAGE_PRESENT;
121
v &= ~_PAGE_PRESENT;
122
} else /* presume this has been called with clear==true previously */
123
v |= *old;
124
set_pmd(pmd, __pmd(v));
125
}
126
127
static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
128
{
129
pteval_t v = pte_val(*pte);
130
if (clear) {
131
*old = v & _PAGE_PRESENT;
132
v &= ~_PAGE_PRESENT;
133
} else /* presume this has been called with clear==true previously */
134
v |= *old;
135
set_pte_atomic(pte, __pte(v));
136
}
137
138
static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
139
{
140
unsigned int level;
141
pte_t *pte = lookup_address(f->page, &level);
142
143
if (!pte) {
144
pr_err("no pte for page 0x%08lx\n", f->page);
145
return -1;
146
}
147
148
switch (level) {
149
case PG_LEVEL_2M:
150
clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
151
break;
152
case PG_LEVEL_4K:
153
clear_pte_presence(pte, clear, &f->old_presence);
154
break;
155
default:
156
pr_err("unexpected page level 0x%x.\n", level);
157
return -1;
158
}
159
160
__flush_tlb_one(f->page);
161
return 0;
162
}
163
164
/*
165
* Mark the given page as not present. Access to it will trigger a fault.
166
*
167
* Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
168
* protection is ignored here. RCU read lock is assumed held, so the struct
169
* will not disappear unexpectedly. Furthermore, the caller must guarantee,
170
* that double arming the same virtual address (page) cannot occur.
171
*
172
* Double disarming on the other hand is allowed, and may occur when a fault
173
* and mmiotrace shutdown happen simultaneously.
174
*/
175
static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
176
{
177
int ret;
178
WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
179
if (f->armed) {
180
pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
181
f->page, f->count, !!f->old_presence);
182
}
183
ret = clear_page_presence(f, true);
184
WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
185
f->page);
186
f->armed = true;
187
return ret;
188
}
189
190
/** Restore the given page to saved presence state. */
191
static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
192
{
193
int ret = clear_page_presence(f, false);
194
WARN_ONCE(ret < 0,
195
KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
196
f->armed = false;
197
}
198
199
/*
200
* This is being called from do_page_fault().
201
*
202
* We may be in an interrupt or a critical section. Also prefecthing may
203
* trigger a page fault. We may be in the middle of process switch.
204
* We cannot take any locks, because we could be executing especially
205
* within a kmmio critical section.
206
*
207
* Local interrupts are disabled, so preemption cannot happen.
208
* Do not enable interrupts, do not sleep, and watch out for other CPUs.
209
*/
210
/*
211
* Interrupts are disabled on entry as trap3 is an interrupt gate
212
* and they remain disabled throughout this function.
213
*/
214
int kmmio_handler(struct pt_regs *regs, unsigned long addr)
215
{
216
struct kmmio_context *ctx;
217
struct kmmio_fault_page *faultpage;
218
int ret = 0; /* default to fault not handled */
219
220
/*
221
* Preemption is now disabled to prevent process switch during
222
* single stepping. We can only handle one active kmmio trace
223
* per cpu, so ensure that we finish it before something else
224
* gets to run. We also hold the RCU read lock over single
225
* stepping to avoid looking up the probe and kmmio_fault_page
226
* again.
227
*/
228
preempt_disable();
229
rcu_read_lock();
230
231
faultpage = get_kmmio_fault_page(addr);
232
if (!faultpage) {
233
/*
234
* Either this page fault is not caused by kmmio, or
235
* another CPU just pulled the kmmio probe from under
236
* our feet. The latter case should not be possible.
237
*/
238
goto no_kmmio;
239
}
240
241
ctx = &get_cpu_var(kmmio_ctx);
242
if (ctx->active) {
243
if (addr == ctx->addr) {
244
/*
245
* A second fault on the same page means some other
246
* condition needs handling by do_page_fault(), the
247
* page really not being present is the most common.
248
*/
249
pr_debug("secondary hit for 0x%08lx CPU %d.\n",
250
addr, smp_processor_id());
251
252
if (!faultpage->old_presence)
253
pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
254
addr, smp_processor_id());
255
} else {
256
/*
257
* Prevent overwriting already in-flight context.
258
* This should not happen, let's hope disarming at
259
* least prevents a panic.
260
*/
261
pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
262
smp_processor_id(), addr);
263
pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
264
disarm_kmmio_fault_page(faultpage);
265
}
266
goto no_kmmio_ctx;
267
}
268
ctx->active++;
269
270
ctx->fpage = faultpage;
271
ctx->probe = get_kmmio_probe(addr);
272
ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
273
ctx->addr = addr;
274
275
if (ctx->probe && ctx->probe->pre_handler)
276
ctx->probe->pre_handler(ctx->probe, regs, addr);
277
278
/*
279
* Enable single-stepping and disable interrupts for the faulting
280
* context. Local interrupts must not get enabled during stepping.
281
*/
282
regs->flags |= X86_EFLAGS_TF;
283
regs->flags &= ~X86_EFLAGS_IF;
284
285
/* Now we set present bit in PTE and single step. */
286
disarm_kmmio_fault_page(ctx->fpage);
287
288
/*
289
* If another cpu accesses the same page while we are stepping,
290
* the access will not be caught. It will simply succeed and the
291
* only downside is we lose the event. If this becomes a problem,
292
* the user should drop to single cpu before tracing.
293
*/
294
295
put_cpu_var(kmmio_ctx);
296
return 1; /* fault handled */
297
298
no_kmmio_ctx:
299
put_cpu_var(kmmio_ctx);
300
no_kmmio:
301
rcu_read_unlock();
302
preempt_enable_no_resched();
303
return ret;
304
}
305
306
/*
307
* Interrupts are disabled on entry as trap1 is an interrupt gate
308
* and they remain disabled throughout this function.
309
* This must always get called as the pair to kmmio_handler().
310
*/
311
static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
312
{
313
int ret = 0;
314
struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
315
316
if (!ctx->active) {
317
/*
318
* debug traps without an active context are due to either
319
* something external causing them (f.e. using a debugger while
320
* mmio tracing enabled), or erroneous behaviour
321
*/
322
pr_warning("unexpected debug trap on CPU %d.\n",
323
smp_processor_id());
324
goto out;
325
}
326
327
if (ctx->probe && ctx->probe->post_handler)
328
ctx->probe->post_handler(ctx->probe, condition, regs);
329
330
/* Prevent racing against release_kmmio_fault_page(). */
331
spin_lock(&kmmio_lock);
332
if (ctx->fpage->count)
333
arm_kmmio_fault_page(ctx->fpage);
334
spin_unlock(&kmmio_lock);
335
336
regs->flags &= ~X86_EFLAGS_TF;
337
regs->flags |= ctx->saved_flags;
338
339
/* These were acquired in kmmio_handler(). */
340
ctx->active--;
341
BUG_ON(ctx->active);
342
rcu_read_unlock();
343
preempt_enable_no_resched();
344
345
/*
346
* if somebody else is singlestepping across a probe point, flags
347
* will have TF set, in which case, continue the remaining processing
348
* of do_debug, as if this is not a probe hit.
349
*/
350
if (!(regs->flags & X86_EFLAGS_TF))
351
ret = 1;
352
out:
353
put_cpu_var(kmmio_ctx);
354
return ret;
355
}
356
357
/* You must be holding kmmio_lock. */
358
static int add_kmmio_fault_page(unsigned long page)
359
{
360
struct kmmio_fault_page *f;
361
362
page &= PAGE_MASK;
363
f = get_kmmio_fault_page(page);
364
if (f) {
365
if (!f->count)
366
arm_kmmio_fault_page(f);
367
f->count++;
368
return 0;
369
}
370
371
f = kzalloc(sizeof(*f), GFP_ATOMIC);
372
if (!f)
373
return -1;
374
375
f->count = 1;
376
f->page = page;
377
378
if (arm_kmmio_fault_page(f)) {
379
kfree(f);
380
return -1;
381
}
382
383
list_add_rcu(&f->list, kmmio_page_list(f->page));
384
385
return 0;
386
}
387
388
/* You must be holding kmmio_lock. */
389
static void release_kmmio_fault_page(unsigned long page,
390
struct kmmio_fault_page **release_list)
391
{
392
struct kmmio_fault_page *f;
393
394
page &= PAGE_MASK;
395
f = get_kmmio_fault_page(page);
396
if (!f)
397
return;
398
399
f->count--;
400
BUG_ON(f->count < 0);
401
if (!f->count) {
402
disarm_kmmio_fault_page(f);
403
if (!f->scheduled_for_release) {
404
f->release_next = *release_list;
405
*release_list = f;
406
f->scheduled_for_release = true;
407
}
408
}
409
}
410
411
/*
412
* With page-unaligned ioremaps, one or two armed pages may contain
413
* addresses from outside the intended mapping. Events for these addresses
414
* are currently silently dropped. The events may result only from programming
415
* mistakes by accessing addresses before the beginning or past the end of a
416
* mapping.
417
*/
418
int register_kmmio_probe(struct kmmio_probe *p)
419
{
420
unsigned long flags;
421
int ret = 0;
422
unsigned long size = 0;
423
const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
424
425
spin_lock_irqsave(&kmmio_lock, flags);
426
if (get_kmmio_probe(p->addr)) {
427
ret = -EEXIST;
428
goto out;
429
}
430
kmmio_count++;
431
list_add_rcu(&p->list, &kmmio_probes);
432
while (size < size_lim) {
433
if (add_kmmio_fault_page(p->addr + size))
434
pr_err("Unable to set page fault.\n");
435
size += PAGE_SIZE;
436
}
437
out:
438
spin_unlock_irqrestore(&kmmio_lock, flags);
439
/*
440
* XXX: What should I do here?
441
* Here was a call to global_flush_tlb(), but it does not exist
442
* anymore. It seems it's not needed after all.
443
*/
444
return ret;
445
}
446
EXPORT_SYMBOL(register_kmmio_probe);
447
448
static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
449
{
450
struct kmmio_delayed_release *dr = container_of(
451
head,
452
struct kmmio_delayed_release,
453
rcu);
454
struct kmmio_fault_page *f = dr->release_list;
455
while (f) {
456
struct kmmio_fault_page *next = f->release_next;
457
BUG_ON(f->count);
458
kfree(f);
459
f = next;
460
}
461
kfree(dr);
462
}
463
464
static void remove_kmmio_fault_pages(struct rcu_head *head)
465
{
466
struct kmmio_delayed_release *dr =
467
container_of(head, struct kmmio_delayed_release, rcu);
468
struct kmmio_fault_page *f = dr->release_list;
469
struct kmmio_fault_page **prevp = &dr->release_list;
470
unsigned long flags;
471
472
spin_lock_irqsave(&kmmio_lock, flags);
473
while (f) {
474
if (!f->count) {
475
list_del_rcu(&f->list);
476
prevp = &f->release_next;
477
} else {
478
*prevp = f->release_next;
479
f->release_next = NULL;
480
f->scheduled_for_release = false;
481
}
482
f = *prevp;
483
}
484
spin_unlock_irqrestore(&kmmio_lock, flags);
485
486
/* This is the real RCU destroy call. */
487
call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
488
}
489
490
/*
491
* Remove a kmmio probe. You have to synchronize_rcu() before you can be
492
* sure that the callbacks will not be called anymore. Only after that
493
* you may actually release your struct kmmio_probe.
494
*
495
* Unregistering a kmmio fault page has three steps:
496
* 1. release_kmmio_fault_page()
497
* Disarm the page, wait a grace period to let all faults finish.
498
* 2. remove_kmmio_fault_pages()
499
* Remove the pages from kmmio_page_table.
500
* 3. rcu_free_kmmio_fault_pages()
501
* Actually free the kmmio_fault_page structs as with RCU.
502
*/
503
void unregister_kmmio_probe(struct kmmio_probe *p)
504
{
505
unsigned long flags;
506
unsigned long size = 0;
507
const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
508
struct kmmio_fault_page *release_list = NULL;
509
struct kmmio_delayed_release *drelease;
510
511
spin_lock_irqsave(&kmmio_lock, flags);
512
while (size < size_lim) {
513
release_kmmio_fault_page(p->addr + size, &release_list);
514
size += PAGE_SIZE;
515
}
516
list_del_rcu(&p->list);
517
kmmio_count--;
518
spin_unlock_irqrestore(&kmmio_lock, flags);
519
520
if (!release_list)
521
return;
522
523
drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
524
if (!drelease) {
525
pr_crit("leaking kmmio_fault_page objects.\n");
526
return;
527
}
528
drelease->release_list = release_list;
529
530
/*
531
* This is not really RCU here. We have just disarmed a set of
532
* pages so that they cannot trigger page faults anymore. However,
533
* we cannot remove the pages from kmmio_page_table,
534
* because a probe hit might be in flight on another CPU. The
535
* pages are collected into a list, and they will be removed from
536
* kmmio_page_table when it is certain that no probe hit related to
537
* these pages can be in flight. RCU grace period sounds like a
538
* good choice.
539
*
540
* If we removed the pages too early, kmmio page fault handler might
541
* not find the respective kmmio_fault_page and determine it's not
542
* a kmmio fault, when it actually is. This would lead to madness.
543
*/
544
call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
545
}
546
EXPORT_SYMBOL(unregister_kmmio_probe);
547
548
static int
549
kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
550
{
551
struct die_args *arg = args;
552
unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
553
554
if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
555
if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
556
/*
557
* Reset the BS bit in dr6 (pointed by args->err) to
558
* denote completion of processing
559
*/
560
*dr6_p &= ~DR_STEP;
561
return NOTIFY_STOP;
562
}
563
564
return NOTIFY_DONE;
565
}
566
567
static struct notifier_block nb_die = {
568
.notifier_call = kmmio_die_notifier
569
};
570
571
int kmmio_init(void)
572
{
573
int i;
574
575
for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
576
INIT_LIST_HEAD(&kmmio_page_table[i]);
577
578
return register_die_notifier(&nb_die);
579
}
580
581
void kmmio_cleanup(void)
582
{
583
int i;
584
585
unregister_die_notifier(&nb_die);
586
for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
587
WARN_ONCE(!list_empty(&kmmio_page_table[i]),
588
KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
589
}
590
}
591
592