Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/numa_32.c
10817 views
1
/*
2
* Written by: Patricia Gaughen <[email protected]>, IBM Corporation
3
* August 2002: added remote node KVA remap - Martin J. Bligh
4
*
5
* Copyright (C) 2002, IBM Corp.
6
*
7
* All rights reserved.
8
*
9
* This program is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License as published by
11
* the Free Software Foundation; either version 2 of the License, or
12
* (at your option) any later version.
13
*
14
* This program is distributed in the hope that it will be useful, but
15
* WITHOUT ANY WARRANTY; without even the implied warranty of
16
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17
* NON INFRINGEMENT. See the GNU General Public License for more
18
* details.
19
*
20
* You should have received a copy of the GNU General Public License
21
* along with this program; if not, write to the Free Software
22
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23
*/
24
25
#include <linux/bootmem.h>
26
#include <linux/memblock.h>
27
#include <linux/module.h>
28
29
#include "numa_internal.h"
30
31
#ifdef CONFIG_DISCONTIGMEM
32
/*
33
* 4) physnode_map - the mapping between a pfn and owning node
34
* physnode_map keeps track of the physical memory layout of a generic
35
* numa node on a 64Mb break (each element of the array will
36
* represent 64Mb of memory and will be marked by the node id. so,
37
* if the first gig is on node 0, and the second gig is on node 1
38
* physnode_map will contain:
39
*
40
* physnode_map[0-15] = 0;
41
* physnode_map[16-31] = 1;
42
* physnode_map[32- ] = -1;
43
*/
44
s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
45
EXPORT_SYMBOL(physnode_map);
46
47
void memory_present(int nid, unsigned long start, unsigned long end)
48
{
49
unsigned long pfn;
50
51
printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
52
nid, start, end);
53
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
54
printk(KERN_DEBUG " ");
55
for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
56
physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
57
printk(KERN_CONT "%lx ", pfn);
58
}
59
printk(KERN_CONT "\n");
60
}
61
62
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
63
unsigned long end_pfn)
64
{
65
unsigned long nr_pages = end_pfn - start_pfn;
66
67
if (!nr_pages)
68
return 0;
69
70
return (nr_pages + 1) * sizeof(struct page);
71
}
72
#endif
73
74
extern unsigned long highend_pfn, highstart_pfn;
75
76
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
77
78
static void *node_remap_start_vaddr[MAX_NUMNODES];
79
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
80
81
/*
82
* Remap memory allocator
83
*/
84
static unsigned long node_remap_start_pfn[MAX_NUMNODES];
85
static void *node_remap_end_vaddr[MAX_NUMNODES];
86
static void *node_remap_alloc_vaddr[MAX_NUMNODES];
87
88
/**
89
* alloc_remap - Allocate remapped memory
90
* @nid: NUMA node to allocate memory from
91
* @size: The size of allocation
92
*
93
* Allocate @size bytes from the remap area of NUMA node @nid. The
94
* size of the remap area is predetermined by init_alloc_remap() and
95
* only the callers considered there should call this function. For
96
* more info, please read the comment on top of init_alloc_remap().
97
*
98
* The caller must be ready to handle allocation failure from this
99
* function and fall back to regular memory allocator in such cases.
100
*
101
* CONTEXT:
102
* Single CPU early boot context.
103
*
104
* RETURNS:
105
* Pointer to the allocated memory on success, %NULL on failure.
106
*/
107
void *alloc_remap(int nid, unsigned long size)
108
{
109
void *allocation = node_remap_alloc_vaddr[nid];
110
111
size = ALIGN(size, L1_CACHE_BYTES);
112
113
if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
114
return NULL;
115
116
node_remap_alloc_vaddr[nid] += size;
117
memset(allocation, 0, size);
118
119
return allocation;
120
}
121
122
#ifdef CONFIG_HIBERNATION
123
/**
124
* resume_map_numa_kva - add KVA mapping to the temporary page tables created
125
* during resume from hibernation
126
* @pgd_base - temporary resume page directory
127
*/
128
void resume_map_numa_kva(pgd_t *pgd_base)
129
{
130
int node;
131
132
for_each_online_node(node) {
133
unsigned long start_va, start_pfn, nr_pages, pfn;
134
135
start_va = (unsigned long)node_remap_start_vaddr[node];
136
start_pfn = node_remap_start_pfn[node];
137
nr_pages = (node_remap_end_vaddr[node] -
138
node_remap_start_vaddr[node]) >> PAGE_SHIFT;
139
140
printk(KERN_DEBUG "%s: node %d\n", __func__, node);
141
142
for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
143
unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
144
pgd_t *pgd = pgd_base + pgd_index(vaddr);
145
pud_t *pud = pud_offset(pgd, vaddr);
146
pmd_t *pmd = pmd_offset(pud, vaddr);
147
148
set_pmd(pmd, pfn_pmd(start_pfn + pfn,
149
PAGE_KERNEL_LARGE_EXEC));
150
151
printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
152
__func__, vaddr, start_pfn + pfn);
153
}
154
}
155
}
156
#endif
157
158
/**
159
* init_alloc_remap - Initialize remap allocator for a NUMA node
160
* @nid: NUMA node to initizlie remap allocator for
161
*
162
* NUMA nodes may end up without any lowmem. As allocating pgdat and
163
* memmap on a different node with lowmem is inefficient, a special
164
* remap allocator is implemented which can be used by alloc_remap().
165
*
166
* For each node, the amount of memory which will be necessary for
167
* pgdat and memmap is calculated and two memory areas of the size are
168
* allocated - one in the node and the other in lowmem; then, the area
169
* in the node is remapped to the lowmem area.
170
*
171
* As pgdat and memmap must be allocated in lowmem anyway, this
172
* doesn't waste lowmem address space; however, the actual lowmem
173
* which gets remapped over is wasted. The amount shouldn't be
174
* problematic on machines this feature will be used.
175
*
176
* Initialization failure isn't fatal. alloc_remap() is used
177
* opportunistically and the callers will fall back to other memory
178
* allocation mechanisms on failure.
179
*/
180
void __init init_alloc_remap(int nid, u64 start, u64 end)
181
{
182
unsigned long start_pfn = start >> PAGE_SHIFT;
183
unsigned long end_pfn = end >> PAGE_SHIFT;
184
unsigned long size, pfn;
185
u64 node_pa, remap_pa;
186
void *remap_va;
187
188
/*
189
* The acpi/srat node info can show hot-add memroy zones where
190
* memory could be added but not currently present.
191
*/
192
printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
193
nid, start_pfn, end_pfn);
194
195
/* calculate the necessary space aligned to large page size */
196
size = node_memmap_size_bytes(nid, start_pfn, end_pfn);
197
size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
198
size = ALIGN(size, LARGE_PAGE_BYTES);
199
200
/* allocate node memory and the lowmem remap area */
201
node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES);
202
if (node_pa == MEMBLOCK_ERROR) {
203
pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
204
size, nid);
205
return;
206
}
207
memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM");
208
209
remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
210
max_low_pfn << PAGE_SHIFT,
211
size, LARGE_PAGE_BYTES);
212
if (remap_pa == MEMBLOCK_ERROR) {
213
pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
214
size, nid);
215
memblock_x86_free_range(node_pa, node_pa + size);
216
return;
217
}
218
memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG");
219
remap_va = phys_to_virt(remap_pa);
220
221
/* perform actual remap */
222
for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
223
set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
224
(node_pa >> PAGE_SHIFT) + pfn,
225
PAGE_KERNEL_LARGE);
226
227
/* initialize remap allocator parameters */
228
node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
229
node_remap_start_vaddr[nid] = remap_va;
230
node_remap_end_vaddr[nid] = remap_va + size;
231
node_remap_alloc_vaddr[nid] = remap_va;
232
233
printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
234
nid, node_pa, node_pa + size, remap_va, remap_va + size);
235
}
236
237
void __init initmem_init(void)
238
{
239
x86_numa_init();
240
241
#ifdef CONFIG_HIGHMEM
242
highstart_pfn = highend_pfn = max_pfn;
243
if (max_pfn > max_low_pfn)
244
highstart_pfn = max_low_pfn;
245
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
246
pages_to_mb(highend_pfn - highstart_pfn));
247
num_physpages = highend_pfn;
248
high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
249
#else
250
num_physpages = max_low_pfn;
251
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
252
#endif
253
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
254
pages_to_mb(max_low_pfn));
255
printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
256
max_low_pfn, highstart_pfn);
257
258
printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
259
(ulong) pfn_to_kaddr(max_low_pfn));
260
261
printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
262
(ulong) pfn_to_kaddr(highstart_pfn));
263
264
setup_bootmem_allocator();
265
}
266
267