Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/pageattr.c
10817 views
1
/*
2
* Copyright 2002 Andi Kleen, SuSE Labs.
3
* Thanks to Ben LaHaise for precious feedback.
4
*/
5
#include <linux/highmem.h>
6
#include <linux/bootmem.h>
7
#include <linux/module.h>
8
#include <linux/sched.h>
9
#include <linux/mm.h>
10
#include <linux/interrupt.h>
11
#include <linux/seq_file.h>
12
#include <linux/debugfs.h>
13
#include <linux/pfn.h>
14
#include <linux/percpu.h>
15
#include <linux/gfp.h>
16
#include <linux/pci.h>
17
18
#include <asm/e820.h>
19
#include <asm/processor.h>
20
#include <asm/tlbflush.h>
21
#include <asm/sections.h>
22
#include <asm/setup.h>
23
#include <asm/uaccess.h>
24
#include <asm/pgalloc.h>
25
#include <asm/proto.h>
26
#include <asm/pat.h>
27
28
/*
29
* The current flushing context - we pass it instead of 5 arguments:
30
*/
31
struct cpa_data {
32
unsigned long *vaddr;
33
pgprot_t mask_set;
34
pgprot_t mask_clr;
35
int numpages;
36
int flags;
37
unsigned long pfn;
38
unsigned force_split : 1;
39
int curpage;
40
struct page **pages;
41
};
42
43
/*
44
* Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45
* using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46
* entries change the page attribute in parallel to some other cpu
47
* splitting a large page entry along with changing the attribute.
48
*/
49
static DEFINE_SPINLOCK(cpa_lock);
50
51
#define CPA_FLUSHTLB 1
52
#define CPA_ARRAY 2
53
#define CPA_PAGES_ARRAY 4
54
55
#ifdef CONFIG_PROC_FS
56
static unsigned long direct_pages_count[PG_LEVEL_NUM];
57
58
void update_page_count(int level, unsigned long pages)
59
{
60
/* Protect against CPA */
61
spin_lock(&pgd_lock);
62
direct_pages_count[level] += pages;
63
spin_unlock(&pgd_lock);
64
}
65
66
static void split_page_count(int level)
67
{
68
direct_pages_count[level]--;
69
direct_pages_count[level - 1] += PTRS_PER_PTE;
70
}
71
72
void arch_report_meminfo(struct seq_file *m)
73
{
74
seq_printf(m, "DirectMap4k: %8lu kB\n",
75
direct_pages_count[PG_LEVEL_4K] << 2);
76
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77
seq_printf(m, "DirectMap2M: %8lu kB\n",
78
direct_pages_count[PG_LEVEL_2M] << 11);
79
#else
80
seq_printf(m, "DirectMap4M: %8lu kB\n",
81
direct_pages_count[PG_LEVEL_2M] << 12);
82
#endif
83
#ifdef CONFIG_X86_64
84
if (direct_gbpages)
85
seq_printf(m, "DirectMap1G: %8lu kB\n",
86
direct_pages_count[PG_LEVEL_1G] << 20);
87
#endif
88
}
89
#else
90
static inline void split_page_count(int level) { }
91
#endif
92
93
#ifdef CONFIG_X86_64
94
95
static inline unsigned long highmap_start_pfn(void)
96
{
97
return __pa(_text) >> PAGE_SHIFT;
98
}
99
100
static inline unsigned long highmap_end_pfn(void)
101
{
102
return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103
}
104
105
#endif
106
107
#ifdef CONFIG_DEBUG_PAGEALLOC
108
# define debug_pagealloc 1
109
#else
110
# define debug_pagealloc 0
111
#endif
112
113
static inline int
114
within(unsigned long addr, unsigned long start, unsigned long end)
115
{
116
return addr >= start && addr < end;
117
}
118
119
/*
120
* Flushing functions
121
*/
122
123
/**
124
* clflush_cache_range - flush a cache range with clflush
125
* @addr: virtual start address
126
* @size: number of bytes to flush
127
*
128
* clflush is an unordered instruction which needs fencing with mfence
129
* to avoid ordering issues.
130
*/
131
void clflush_cache_range(void *vaddr, unsigned int size)
132
{
133
void *vend = vaddr + size - 1;
134
135
mb();
136
137
for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138
clflush(vaddr);
139
/*
140
* Flush any possible final partial cacheline:
141
*/
142
clflush(vend);
143
144
mb();
145
}
146
EXPORT_SYMBOL_GPL(clflush_cache_range);
147
148
static void __cpa_flush_all(void *arg)
149
{
150
unsigned long cache = (unsigned long)arg;
151
152
/*
153
* Flush all to work around Errata in early athlons regarding
154
* large page flushing.
155
*/
156
__flush_tlb_all();
157
158
if (cache && boot_cpu_data.x86 >= 4)
159
wbinvd();
160
}
161
162
static void cpa_flush_all(unsigned long cache)
163
{
164
BUG_ON(irqs_disabled());
165
166
on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167
}
168
169
static void __cpa_flush_range(void *arg)
170
{
171
/*
172
* We could optimize that further and do individual per page
173
* tlb invalidates for a low number of pages. Caveat: we must
174
* flush the high aliases on 64bit as well.
175
*/
176
__flush_tlb_all();
177
}
178
179
static void cpa_flush_range(unsigned long start, int numpages, int cache)
180
{
181
unsigned int i, level;
182
unsigned long addr;
183
184
BUG_ON(irqs_disabled());
185
WARN_ON(PAGE_ALIGN(start) != start);
186
187
on_each_cpu(__cpa_flush_range, NULL, 1);
188
189
if (!cache)
190
return;
191
192
/*
193
* We only need to flush on one CPU,
194
* clflush is a MESI-coherent instruction that
195
* will cause all other CPUs to flush the same
196
* cachelines:
197
*/
198
for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199
pte_t *pte = lookup_address(addr, &level);
200
201
/*
202
* Only flush present addresses:
203
*/
204
if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205
clflush_cache_range((void *) addr, PAGE_SIZE);
206
}
207
}
208
209
static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210
int in_flags, struct page **pages)
211
{
212
unsigned int i, level;
213
unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215
BUG_ON(irqs_disabled());
216
217
on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219
if (!cache || do_wbinvd)
220
return;
221
222
/*
223
* We only need to flush on one CPU,
224
* clflush is a MESI-coherent instruction that
225
* will cause all other CPUs to flush the same
226
* cachelines:
227
*/
228
for (i = 0; i < numpages; i++) {
229
unsigned long addr;
230
pte_t *pte;
231
232
if (in_flags & CPA_PAGES_ARRAY)
233
addr = (unsigned long)page_address(pages[i]);
234
else
235
addr = start[i];
236
237
pte = lookup_address(addr, &level);
238
239
/*
240
* Only flush present addresses:
241
*/
242
if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243
clflush_cache_range((void *)addr, PAGE_SIZE);
244
}
245
}
246
247
/*
248
* Certain areas of memory on x86 require very specific protection flags,
249
* for example the BIOS area or kernel text. Callers don't always get this
250
* right (again, ioremap() on BIOS memory is not uncommon) so this function
251
* checks and fixes these known static required protection bits.
252
*/
253
static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254
unsigned long pfn)
255
{
256
pgprot_t forbidden = __pgprot(0);
257
258
/*
259
* The BIOS area between 640k and 1Mb needs to be executable for
260
* PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261
*/
262
#ifdef CONFIG_PCI_BIOS
263
if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264
pgprot_val(forbidden) |= _PAGE_NX;
265
#endif
266
267
/*
268
* The kernel text needs to be executable for obvious reasons
269
* Does not cover __inittext since that is gone later on. On
270
* 64bit we do not enforce !NX on the low mapping
271
*/
272
if (within(address, (unsigned long)_text, (unsigned long)_etext))
273
pgprot_val(forbidden) |= _PAGE_NX;
274
275
/*
276
* The .rodata section needs to be read-only. Using the pfn
277
* catches all aliases.
278
*/
279
if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280
__pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
281
pgprot_val(forbidden) |= _PAGE_RW;
282
283
#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284
/*
285
* Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286
* kernel text mappings for the large page aligned text, rodata sections
287
* will be always read-only. For the kernel identity mappings covering
288
* the holes caused by this alignment can be anything that user asks.
289
*
290
* This will preserve the large page mappings for kernel text/data
291
* at no extra cost.
292
*/
293
if (kernel_set_to_readonly &&
294
within(address, (unsigned long)_text,
295
(unsigned long)__end_rodata_hpage_align)) {
296
unsigned int level;
297
298
/*
299
* Don't enforce the !RW mapping for the kernel text mapping,
300
* if the current mapping is already using small page mapping.
301
* No need to work hard to preserve large page mappings in this
302
* case.
303
*
304
* This also fixes the Linux Xen paravirt guest boot failure
305
* (because of unexpected read-only mappings for kernel identity
306
* mappings). In this paravirt guest case, the kernel text
307
* mapping and the kernel identity mapping share the same
308
* page-table pages. Thus we can't really use different
309
* protections for the kernel text and identity mappings. Also,
310
* these shared mappings are made of small page mappings.
311
* Thus this don't enforce !RW mapping for small page kernel
312
* text mapping logic will help Linux Xen parvirt guest boot
313
* as well.
314
*/
315
if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316
pgprot_val(forbidden) |= _PAGE_RW;
317
}
318
#endif
319
320
prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321
322
return prot;
323
}
324
325
/*
326
* Lookup the page table entry for a virtual address. Return a pointer
327
* to the entry and the level of the mapping.
328
*
329
* Note: We return pud and pmd either when the entry is marked large
330
* or when the present bit is not set. Otherwise we would return a
331
* pointer to a nonexisting mapping.
332
*/
333
pte_t *lookup_address(unsigned long address, unsigned int *level)
334
{
335
pgd_t *pgd = pgd_offset_k(address);
336
pud_t *pud;
337
pmd_t *pmd;
338
339
*level = PG_LEVEL_NONE;
340
341
if (pgd_none(*pgd))
342
return NULL;
343
344
pud = pud_offset(pgd, address);
345
if (pud_none(*pud))
346
return NULL;
347
348
*level = PG_LEVEL_1G;
349
if (pud_large(*pud) || !pud_present(*pud))
350
return (pte_t *)pud;
351
352
pmd = pmd_offset(pud, address);
353
if (pmd_none(*pmd))
354
return NULL;
355
356
*level = PG_LEVEL_2M;
357
if (pmd_large(*pmd) || !pmd_present(*pmd))
358
return (pte_t *)pmd;
359
360
*level = PG_LEVEL_4K;
361
362
return pte_offset_kernel(pmd, address);
363
}
364
EXPORT_SYMBOL_GPL(lookup_address);
365
366
/*
367
* Set the new pmd in all the pgds we know about:
368
*/
369
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
370
{
371
/* change init_mm */
372
set_pte_atomic(kpte, pte);
373
#ifdef CONFIG_X86_32
374
if (!SHARED_KERNEL_PMD) {
375
struct page *page;
376
377
list_for_each_entry(page, &pgd_list, lru) {
378
pgd_t *pgd;
379
pud_t *pud;
380
pmd_t *pmd;
381
382
pgd = (pgd_t *)page_address(page) + pgd_index(address);
383
pud = pud_offset(pgd, address);
384
pmd = pmd_offset(pud, address);
385
set_pte_atomic((pte_t *)pmd, pte);
386
}
387
}
388
#endif
389
}
390
391
static int
392
try_preserve_large_page(pte_t *kpte, unsigned long address,
393
struct cpa_data *cpa)
394
{
395
unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
396
pte_t new_pte, old_pte, *tmp;
397
pgprot_t old_prot, new_prot, req_prot;
398
int i, do_split = 1;
399
unsigned int level;
400
401
if (cpa->force_split)
402
return 1;
403
404
spin_lock(&pgd_lock);
405
/*
406
* Check for races, another CPU might have split this page
407
* up already:
408
*/
409
tmp = lookup_address(address, &level);
410
if (tmp != kpte)
411
goto out_unlock;
412
413
switch (level) {
414
case PG_LEVEL_2M:
415
psize = PMD_PAGE_SIZE;
416
pmask = PMD_PAGE_MASK;
417
break;
418
#ifdef CONFIG_X86_64
419
case PG_LEVEL_1G:
420
psize = PUD_PAGE_SIZE;
421
pmask = PUD_PAGE_MASK;
422
break;
423
#endif
424
default:
425
do_split = -EINVAL;
426
goto out_unlock;
427
}
428
429
/*
430
* Calculate the number of pages, which fit into this large
431
* page starting at address:
432
*/
433
nextpage_addr = (address + psize) & pmask;
434
numpages = (nextpage_addr - address) >> PAGE_SHIFT;
435
if (numpages < cpa->numpages)
436
cpa->numpages = numpages;
437
438
/*
439
* We are safe now. Check whether the new pgprot is the same:
440
*/
441
old_pte = *kpte;
442
old_prot = new_prot = req_prot = pte_pgprot(old_pte);
443
444
pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
445
pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
446
447
/*
448
* old_pte points to the large page base address. So we need
449
* to add the offset of the virtual address:
450
*/
451
pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
452
cpa->pfn = pfn;
453
454
new_prot = static_protections(req_prot, address, pfn);
455
456
/*
457
* We need to check the full range, whether
458
* static_protection() requires a different pgprot for one of
459
* the pages in the range we try to preserve:
460
*/
461
addr = address & pmask;
462
pfn = pte_pfn(old_pte);
463
for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
464
pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
465
466
if (pgprot_val(chk_prot) != pgprot_val(new_prot))
467
goto out_unlock;
468
}
469
470
/*
471
* If there are no changes, return. maxpages has been updated
472
* above:
473
*/
474
if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
475
do_split = 0;
476
goto out_unlock;
477
}
478
479
/*
480
* We need to change the attributes. Check, whether we can
481
* change the large page in one go. We request a split, when
482
* the address is not aligned and the number of pages is
483
* smaller than the number of pages in the large page. Note
484
* that we limited the number of possible pages already to
485
* the number of pages in the large page.
486
*/
487
if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
488
/*
489
* The address is aligned and the number of pages
490
* covers the full page.
491
*/
492
new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
493
__set_pmd_pte(kpte, address, new_pte);
494
cpa->flags |= CPA_FLUSHTLB;
495
do_split = 0;
496
}
497
498
out_unlock:
499
spin_unlock(&pgd_lock);
500
501
return do_split;
502
}
503
504
static int split_large_page(pte_t *kpte, unsigned long address)
505
{
506
unsigned long pfn, pfninc = 1;
507
unsigned int i, level;
508
pte_t *pbase, *tmp;
509
pgprot_t ref_prot;
510
struct page *base;
511
512
if (!debug_pagealloc)
513
spin_unlock(&cpa_lock);
514
base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
515
if (!debug_pagealloc)
516
spin_lock(&cpa_lock);
517
if (!base)
518
return -ENOMEM;
519
520
spin_lock(&pgd_lock);
521
/*
522
* Check for races, another CPU might have split this page
523
* up for us already:
524
*/
525
tmp = lookup_address(address, &level);
526
if (tmp != kpte)
527
goto out_unlock;
528
529
pbase = (pte_t *)page_address(base);
530
paravirt_alloc_pte(&init_mm, page_to_pfn(base));
531
ref_prot = pte_pgprot(pte_clrhuge(*kpte));
532
/*
533
* If we ever want to utilize the PAT bit, we need to
534
* update this function to make sure it's converted from
535
* bit 12 to bit 7 when we cross from the 2MB level to
536
* the 4K level:
537
*/
538
WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
539
540
#ifdef CONFIG_X86_64
541
if (level == PG_LEVEL_1G) {
542
pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
543
pgprot_val(ref_prot) |= _PAGE_PSE;
544
}
545
#endif
546
547
/*
548
* Get the target pfn from the original entry:
549
*/
550
pfn = pte_pfn(*kpte);
551
for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
552
set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
553
554
if (address >= (unsigned long)__va(0) &&
555
address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
556
split_page_count(level);
557
558
#ifdef CONFIG_X86_64
559
if (address >= (unsigned long)__va(1UL<<32) &&
560
address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
561
split_page_count(level);
562
#endif
563
564
/*
565
* Install the new, split up pagetable.
566
*
567
* We use the standard kernel pagetable protections for the new
568
* pagetable protections, the actual ptes set above control the
569
* primary protection behavior:
570
*/
571
__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
572
573
/*
574
* Intel Atom errata AAH41 workaround.
575
*
576
* The real fix should be in hw or in a microcode update, but
577
* we also probabilistically try to reduce the window of having
578
* a large TLB mixed with 4K TLBs while instruction fetches are
579
* going on.
580
*/
581
__flush_tlb_all();
582
583
base = NULL;
584
585
out_unlock:
586
/*
587
* If we dropped out via the lookup_address check under
588
* pgd_lock then stick the page back into the pool:
589
*/
590
if (base)
591
__free_page(base);
592
spin_unlock(&pgd_lock);
593
594
return 0;
595
}
596
597
static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
598
int primary)
599
{
600
/*
601
* Ignore all non primary paths.
602
*/
603
if (!primary)
604
return 0;
605
606
/*
607
* Ignore the NULL PTE for kernel identity mapping, as it is expected
608
* to have holes.
609
* Also set numpages to '1' indicating that we processed cpa req for
610
* one virtual address page and its pfn. TBD: numpages can be set based
611
* on the initial value and the level returned by lookup_address().
612
*/
613
if (within(vaddr, PAGE_OFFSET,
614
PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
615
cpa->numpages = 1;
616
cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
617
return 0;
618
} else {
619
WARN(1, KERN_WARNING "CPA: called for zero pte. "
620
"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
621
*cpa->vaddr);
622
623
return -EFAULT;
624
}
625
}
626
627
static int __change_page_attr(struct cpa_data *cpa, int primary)
628
{
629
unsigned long address;
630
int do_split, err;
631
unsigned int level;
632
pte_t *kpte, old_pte;
633
634
if (cpa->flags & CPA_PAGES_ARRAY) {
635
struct page *page = cpa->pages[cpa->curpage];
636
if (unlikely(PageHighMem(page)))
637
return 0;
638
address = (unsigned long)page_address(page);
639
} else if (cpa->flags & CPA_ARRAY)
640
address = cpa->vaddr[cpa->curpage];
641
else
642
address = *cpa->vaddr;
643
repeat:
644
kpte = lookup_address(address, &level);
645
if (!kpte)
646
return __cpa_process_fault(cpa, address, primary);
647
648
old_pte = *kpte;
649
if (!pte_val(old_pte))
650
return __cpa_process_fault(cpa, address, primary);
651
652
if (level == PG_LEVEL_4K) {
653
pte_t new_pte;
654
pgprot_t new_prot = pte_pgprot(old_pte);
655
unsigned long pfn = pte_pfn(old_pte);
656
657
pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
658
pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
659
660
new_prot = static_protections(new_prot, address, pfn);
661
662
/*
663
* We need to keep the pfn from the existing PTE,
664
* after all we're only going to change it's attributes
665
* not the memory it points to
666
*/
667
new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
668
cpa->pfn = pfn;
669
/*
670
* Do we really change anything ?
671
*/
672
if (pte_val(old_pte) != pte_val(new_pte)) {
673
set_pte_atomic(kpte, new_pte);
674
cpa->flags |= CPA_FLUSHTLB;
675
}
676
cpa->numpages = 1;
677
return 0;
678
}
679
680
/*
681
* Check, whether we can keep the large page intact
682
* and just change the pte:
683
*/
684
do_split = try_preserve_large_page(kpte, address, cpa);
685
/*
686
* When the range fits into the existing large page,
687
* return. cp->numpages and cpa->tlbflush have been updated in
688
* try_large_page:
689
*/
690
if (do_split <= 0)
691
return do_split;
692
693
/*
694
* We have to split the large page:
695
*/
696
err = split_large_page(kpte, address);
697
if (!err) {
698
/*
699
* Do a global flush tlb after splitting the large page
700
* and before we do the actual change page attribute in the PTE.
701
*
702
* With out this, we violate the TLB application note, that says
703
* "The TLBs may contain both ordinary and large-page
704
* translations for a 4-KByte range of linear addresses. This
705
* may occur if software modifies the paging structures so that
706
* the page size used for the address range changes. If the two
707
* translations differ with respect to page frame or attributes
708
* (e.g., permissions), processor behavior is undefined and may
709
* be implementation-specific."
710
*
711
* We do this global tlb flush inside the cpa_lock, so that we
712
* don't allow any other cpu, with stale tlb entries change the
713
* page attribute in parallel, that also falls into the
714
* just split large page entry.
715
*/
716
flush_tlb_all();
717
goto repeat;
718
}
719
720
return err;
721
}
722
723
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
724
725
static int cpa_process_alias(struct cpa_data *cpa)
726
{
727
struct cpa_data alias_cpa;
728
unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
729
unsigned long vaddr;
730
int ret;
731
732
if (cpa->pfn >= max_pfn_mapped)
733
return 0;
734
735
#ifdef CONFIG_X86_64
736
if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
737
return 0;
738
#endif
739
/*
740
* No need to redo, when the primary call touched the direct
741
* mapping already:
742
*/
743
if (cpa->flags & CPA_PAGES_ARRAY) {
744
struct page *page = cpa->pages[cpa->curpage];
745
if (unlikely(PageHighMem(page)))
746
return 0;
747
vaddr = (unsigned long)page_address(page);
748
} else if (cpa->flags & CPA_ARRAY)
749
vaddr = cpa->vaddr[cpa->curpage];
750
else
751
vaddr = *cpa->vaddr;
752
753
if (!(within(vaddr, PAGE_OFFSET,
754
PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
755
756
alias_cpa = *cpa;
757
alias_cpa.vaddr = &laddr;
758
alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
759
760
ret = __change_page_attr_set_clr(&alias_cpa, 0);
761
if (ret)
762
return ret;
763
}
764
765
#ifdef CONFIG_X86_64
766
/*
767
* If the primary call didn't touch the high mapping already
768
* and the physical address is inside the kernel map, we need
769
* to touch the high mapped kernel as well:
770
*/
771
if (!within(vaddr, (unsigned long)_text, _brk_end) &&
772
within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
773
unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
774
__START_KERNEL_map - phys_base;
775
alias_cpa = *cpa;
776
alias_cpa.vaddr = &temp_cpa_vaddr;
777
alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
778
779
/*
780
* The high mapping range is imprecise, so ignore the
781
* return value.
782
*/
783
__change_page_attr_set_clr(&alias_cpa, 0);
784
}
785
#endif
786
787
return 0;
788
}
789
790
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
791
{
792
int ret, numpages = cpa->numpages;
793
794
while (numpages) {
795
/*
796
* Store the remaining nr of pages for the large page
797
* preservation check.
798
*/
799
cpa->numpages = numpages;
800
/* for array changes, we can't use large page */
801
if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
802
cpa->numpages = 1;
803
804
if (!debug_pagealloc)
805
spin_lock(&cpa_lock);
806
ret = __change_page_attr(cpa, checkalias);
807
if (!debug_pagealloc)
808
spin_unlock(&cpa_lock);
809
if (ret)
810
return ret;
811
812
if (checkalias) {
813
ret = cpa_process_alias(cpa);
814
if (ret)
815
return ret;
816
}
817
818
/*
819
* Adjust the number of pages with the result of the
820
* CPA operation. Either a large page has been
821
* preserved or a single page update happened.
822
*/
823
BUG_ON(cpa->numpages > numpages);
824
numpages -= cpa->numpages;
825
if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
826
cpa->curpage++;
827
else
828
*cpa->vaddr += cpa->numpages * PAGE_SIZE;
829
830
}
831
return 0;
832
}
833
834
static inline int cache_attr(pgprot_t attr)
835
{
836
return pgprot_val(attr) &
837
(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
838
}
839
840
static int change_page_attr_set_clr(unsigned long *addr, int numpages,
841
pgprot_t mask_set, pgprot_t mask_clr,
842
int force_split, int in_flag,
843
struct page **pages)
844
{
845
struct cpa_data cpa;
846
int ret, cache, checkalias;
847
unsigned long baddr = 0;
848
849
/*
850
* Check, if we are requested to change a not supported
851
* feature:
852
*/
853
mask_set = canon_pgprot(mask_set);
854
mask_clr = canon_pgprot(mask_clr);
855
if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
856
return 0;
857
858
/* Ensure we are PAGE_SIZE aligned */
859
if (in_flag & CPA_ARRAY) {
860
int i;
861
for (i = 0; i < numpages; i++) {
862
if (addr[i] & ~PAGE_MASK) {
863
addr[i] &= PAGE_MASK;
864
WARN_ON_ONCE(1);
865
}
866
}
867
} else if (!(in_flag & CPA_PAGES_ARRAY)) {
868
/*
869
* in_flag of CPA_PAGES_ARRAY implies it is aligned.
870
* No need to cehck in that case
871
*/
872
if (*addr & ~PAGE_MASK) {
873
*addr &= PAGE_MASK;
874
/*
875
* People should not be passing in unaligned addresses:
876
*/
877
WARN_ON_ONCE(1);
878
}
879
/*
880
* Save address for cache flush. *addr is modified in the call
881
* to __change_page_attr_set_clr() below.
882
*/
883
baddr = *addr;
884
}
885
886
/* Must avoid aliasing mappings in the highmem code */
887
kmap_flush_unused();
888
889
vm_unmap_aliases();
890
891
cpa.vaddr = addr;
892
cpa.pages = pages;
893
cpa.numpages = numpages;
894
cpa.mask_set = mask_set;
895
cpa.mask_clr = mask_clr;
896
cpa.flags = 0;
897
cpa.curpage = 0;
898
cpa.force_split = force_split;
899
900
if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
901
cpa.flags |= in_flag;
902
903
/* No alias checking for _NX bit modifications */
904
checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
905
906
ret = __change_page_attr_set_clr(&cpa, checkalias);
907
908
/*
909
* Check whether we really changed something:
910
*/
911
if (!(cpa.flags & CPA_FLUSHTLB))
912
goto out;
913
914
/*
915
* No need to flush, when we did not set any of the caching
916
* attributes:
917
*/
918
cache = cache_attr(mask_set);
919
920
/*
921
* On success we use clflush, when the CPU supports it to
922
* avoid the wbindv. If the CPU does not support it and in the
923
* error case we fall back to cpa_flush_all (which uses
924
* wbindv):
925
*/
926
if (!ret && cpu_has_clflush) {
927
if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
928
cpa_flush_array(addr, numpages, cache,
929
cpa.flags, pages);
930
} else
931
cpa_flush_range(baddr, numpages, cache);
932
} else
933
cpa_flush_all(cache);
934
935
out:
936
return ret;
937
}
938
939
static inline int change_page_attr_set(unsigned long *addr, int numpages,
940
pgprot_t mask, int array)
941
{
942
return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
943
(array ? CPA_ARRAY : 0), NULL);
944
}
945
946
static inline int change_page_attr_clear(unsigned long *addr, int numpages,
947
pgprot_t mask, int array)
948
{
949
return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
950
(array ? CPA_ARRAY : 0), NULL);
951
}
952
953
static inline int cpa_set_pages_array(struct page **pages, int numpages,
954
pgprot_t mask)
955
{
956
return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
957
CPA_PAGES_ARRAY, pages);
958
}
959
960
static inline int cpa_clear_pages_array(struct page **pages, int numpages,
961
pgprot_t mask)
962
{
963
return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
964
CPA_PAGES_ARRAY, pages);
965
}
966
967
int _set_memory_uc(unsigned long addr, int numpages)
968
{
969
/*
970
* for now UC MINUS. see comments in ioremap_nocache()
971
*/
972
return change_page_attr_set(&addr, numpages,
973
__pgprot(_PAGE_CACHE_UC_MINUS), 0);
974
}
975
976
int set_memory_uc(unsigned long addr, int numpages)
977
{
978
int ret;
979
980
/*
981
* for now UC MINUS. see comments in ioremap_nocache()
982
*/
983
ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
984
_PAGE_CACHE_UC_MINUS, NULL);
985
if (ret)
986
goto out_err;
987
988
ret = _set_memory_uc(addr, numpages);
989
if (ret)
990
goto out_free;
991
992
return 0;
993
994
out_free:
995
free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
996
out_err:
997
return ret;
998
}
999
EXPORT_SYMBOL(set_memory_uc);
1000
1001
int _set_memory_array(unsigned long *addr, int addrinarray,
1002
unsigned long new_type)
1003
{
1004
int i, j;
1005
int ret;
1006
1007
/*
1008
* for now UC MINUS. see comments in ioremap_nocache()
1009
*/
1010
for (i = 0; i < addrinarray; i++) {
1011
ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1012
new_type, NULL);
1013
if (ret)
1014
goto out_free;
1015
}
1016
1017
ret = change_page_attr_set(addr, addrinarray,
1018
__pgprot(_PAGE_CACHE_UC_MINUS), 1);
1019
1020
if (!ret && new_type == _PAGE_CACHE_WC)
1021
ret = change_page_attr_set_clr(addr, addrinarray,
1022
__pgprot(_PAGE_CACHE_WC),
1023
__pgprot(_PAGE_CACHE_MASK),
1024
0, CPA_ARRAY, NULL);
1025
if (ret)
1026
goto out_free;
1027
1028
return 0;
1029
1030
out_free:
1031
for (j = 0; j < i; j++)
1032
free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1033
1034
return ret;
1035
}
1036
1037
int set_memory_array_uc(unsigned long *addr, int addrinarray)
1038
{
1039
return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1040
}
1041
EXPORT_SYMBOL(set_memory_array_uc);
1042
1043
int set_memory_array_wc(unsigned long *addr, int addrinarray)
1044
{
1045
return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1046
}
1047
EXPORT_SYMBOL(set_memory_array_wc);
1048
1049
int _set_memory_wc(unsigned long addr, int numpages)
1050
{
1051
int ret;
1052
unsigned long addr_copy = addr;
1053
1054
ret = change_page_attr_set(&addr, numpages,
1055
__pgprot(_PAGE_CACHE_UC_MINUS), 0);
1056
if (!ret) {
1057
ret = change_page_attr_set_clr(&addr_copy, numpages,
1058
__pgprot(_PAGE_CACHE_WC),
1059
__pgprot(_PAGE_CACHE_MASK),
1060
0, 0, NULL);
1061
}
1062
return ret;
1063
}
1064
1065
int set_memory_wc(unsigned long addr, int numpages)
1066
{
1067
int ret;
1068
1069
if (!pat_enabled)
1070
return set_memory_uc(addr, numpages);
1071
1072
ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1073
_PAGE_CACHE_WC, NULL);
1074
if (ret)
1075
goto out_err;
1076
1077
ret = _set_memory_wc(addr, numpages);
1078
if (ret)
1079
goto out_free;
1080
1081
return 0;
1082
1083
out_free:
1084
free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1085
out_err:
1086
return ret;
1087
}
1088
EXPORT_SYMBOL(set_memory_wc);
1089
1090
int _set_memory_wb(unsigned long addr, int numpages)
1091
{
1092
return change_page_attr_clear(&addr, numpages,
1093
__pgprot(_PAGE_CACHE_MASK), 0);
1094
}
1095
1096
int set_memory_wb(unsigned long addr, int numpages)
1097
{
1098
int ret;
1099
1100
ret = _set_memory_wb(addr, numpages);
1101
if (ret)
1102
return ret;
1103
1104
free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1105
return 0;
1106
}
1107
EXPORT_SYMBOL(set_memory_wb);
1108
1109
int set_memory_array_wb(unsigned long *addr, int addrinarray)
1110
{
1111
int i;
1112
int ret;
1113
1114
ret = change_page_attr_clear(addr, addrinarray,
1115
__pgprot(_PAGE_CACHE_MASK), 1);
1116
if (ret)
1117
return ret;
1118
1119
for (i = 0; i < addrinarray; i++)
1120
free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1121
1122
return 0;
1123
}
1124
EXPORT_SYMBOL(set_memory_array_wb);
1125
1126
int set_memory_x(unsigned long addr, int numpages)
1127
{
1128
if (!(__supported_pte_mask & _PAGE_NX))
1129
return 0;
1130
1131
return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1132
}
1133
EXPORT_SYMBOL(set_memory_x);
1134
1135
int set_memory_nx(unsigned long addr, int numpages)
1136
{
1137
if (!(__supported_pte_mask & _PAGE_NX))
1138
return 0;
1139
1140
return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1141
}
1142
EXPORT_SYMBOL(set_memory_nx);
1143
1144
int set_memory_ro(unsigned long addr, int numpages)
1145
{
1146
return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1147
}
1148
EXPORT_SYMBOL_GPL(set_memory_ro);
1149
1150
int set_memory_rw(unsigned long addr, int numpages)
1151
{
1152
return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1153
}
1154
EXPORT_SYMBOL_GPL(set_memory_rw);
1155
1156
int set_memory_np(unsigned long addr, int numpages)
1157
{
1158
return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1159
}
1160
1161
int set_memory_4k(unsigned long addr, int numpages)
1162
{
1163
return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1164
__pgprot(0), 1, 0, NULL);
1165
}
1166
1167
int set_pages_uc(struct page *page, int numpages)
1168
{
1169
unsigned long addr = (unsigned long)page_address(page);
1170
1171
return set_memory_uc(addr, numpages);
1172
}
1173
EXPORT_SYMBOL(set_pages_uc);
1174
1175
static int _set_pages_array(struct page **pages, int addrinarray,
1176
unsigned long new_type)
1177
{
1178
unsigned long start;
1179
unsigned long end;
1180
int i;
1181
int free_idx;
1182
int ret;
1183
1184
for (i = 0; i < addrinarray; i++) {
1185
if (PageHighMem(pages[i]))
1186
continue;
1187
start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1188
end = start + PAGE_SIZE;
1189
if (reserve_memtype(start, end, new_type, NULL))
1190
goto err_out;
1191
}
1192
1193
ret = cpa_set_pages_array(pages, addrinarray,
1194
__pgprot(_PAGE_CACHE_UC_MINUS));
1195
if (!ret && new_type == _PAGE_CACHE_WC)
1196
ret = change_page_attr_set_clr(NULL, addrinarray,
1197
__pgprot(_PAGE_CACHE_WC),
1198
__pgprot(_PAGE_CACHE_MASK),
1199
0, CPA_PAGES_ARRAY, pages);
1200
if (ret)
1201
goto err_out;
1202
return 0; /* Success */
1203
err_out:
1204
free_idx = i;
1205
for (i = 0; i < free_idx; i++) {
1206
if (PageHighMem(pages[i]))
1207
continue;
1208
start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1209
end = start + PAGE_SIZE;
1210
free_memtype(start, end);
1211
}
1212
return -EINVAL;
1213
}
1214
1215
int set_pages_array_uc(struct page **pages, int addrinarray)
1216
{
1217
return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1218
}
1219
EXPORT_SYMBOL(set_pages_array_uc);
1220
1221
int set_pages_array_wc(struct page **pages, int addrinarray)
1222
{
1223
return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1224
}
1225
EXPORT_SYMBOL(set_pages_array_wc);
1226
1227
int set_pages_wb(struct page *page, int numpages)
1228
{
1229
unsigned long addr = (unsigned long)page_address(page);
1230
1231
return set_memory_wb(addr, numpages);
1232
}
1233
EXPORT_SYMBOL(set_pages_wb);
1234
1235
int set_pages_array_wb(struct page **pages, int addrinarray)
1236
{
1237
int retval;
1238
unsigned long start;
1239
unsigned long end;
1240
int i;
1241
1242
retval = cpa_clear_pages_array(pages, addrinarray,
1243
__pgprot(_PAGE_CACHE_MASK));
1244
if (retval)
1245
return retval;
1246
1247
for (i = 0; i < addrinarray; i++) {
1248
if (PageHighMem(pages[i]))
1249
continue;
1250
start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1251
end = start + PAGE_SIZE;
1252
free_memtype(start, end);
1253
}
1254
1255
return 0;
1256
}
1257
EXPORT_SYMBOL(set_pages_array_wb);
1258
1259
int set_pages_x(struct page *page, int numpages)
1260
{
1261
unsigned long addr = (unsigned long)page_address(page);
1262
1263
return set_memory_x(addr, numpages);
1264
}
1265
EXPORT_SYMBOL(set_pages_x);
1266
1267
int set_pages_nx(struct page *page, int numpages)
1268
{
1269
unsigned long addr = (unsigned long)page_address(page);
1270
1271
return set_memory_nx(addr, numpages);
1272
}
1273
EXPORT_SYMBOL(set_pages_nx);
1274
1275
int set_pages_ro(struct page *page, int numpages)
1276
{
1277
unsigned long addr = (unsigned long)page_address(page);
1278
1279
return set_memory_ro(addr, numpages);
1280
}
1281
1282
int set_pages_rw(struct page *page, int numpages)
1283
{
1284
unsigned long addr = (unsigned long)page_address(page);
1285
1286
return set_memory_rw(addr, numpages);
1287
}
1288
1289
#ifdef CONFIG_DEBUG_PAGEALLOC
1290
1291
static int __set_pages_p(struct page *page, int numpages)
1292
{
1293
unsigned long tempaddr = (unsigned long) page_address(page);
1294
struct cpa_data cpa = { .vaddr = &tempaddr,
1295
.numpages = numpages,
1296
.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1297
.mask_clr = __pgprot(0),
1298
.flags = 0};
1299
1300
/*
1301
* No alias checking needed for setting present flag. otherwise,
1302
* we may need to break large pages for 64-bit kernel text
1303
* mappings (this adds to complexity if we want to do this from
1304
* atomic context especially). Let's keep it simple!
1305
*/
1306
return __change_page_attr_set_clr(&cpa, 0);
1307
}
1308
1309
static int __set_pages_np(struct page *page, int numpages)
1310
{
1311
unsigned long tempaddr = (unsigned long) page_address(page);
1312
struct cpa_data cpa = { .vaddr = &tempaddr,
1313
.numpages = numpages,
1314
.mask_set = __pgprot(0),
1315
.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1316
.flags = 0};
1317
1318
/*
1319
* No alias checking needed for setting not present flag. otherwise,
1320
* we may need to break large pages for 64-bit kernel text
1321
* mappings (this adds to complexity if we want to do this from
1322
* atomic context especially). Let's keep it simple!
1323
*/
1324
return __change_page_attr_set_clr(&cpa, 0);
1325
}
1326
1327
void kernel_map_pages(struct page *page, int numpages, int enable)
1328
{
1329
if (PageHighMem(page))
1330
return;
1331
if (!enable) {
1332
debug_check_no_locks_freed(page_address(page),
1333
numpages * PAGE_SIZE);
1334
}
1335
1336
/*
1337
* If page allocator is not up yet then do not call c_p_a():
1338
*/
1339
if (!debug_pagealloc_enabled)
1340
return;
1341
1342
/*
1343
* The return value is ignored as the calls cannot fail.
1344
* Large pages for identity mappings are not used at boot time
1345
* and hence no memory allocations during large page split.
1346
*/
1347
if (enable)
1348
__set_pages_p(page, numpages);
1349
else
1350
__set_pages_np(page, numpages);
1351
1352
/*
1353
* We should perform an IPI and flush all tlbs,
1354
* but that can deadlock->flush only current cpu:
1355
*/
1356
__flush_tlb_all();
1357
}
1358
1359
#ifdef CONFIG_HIBERNATION
1360
1361
bool kernel_page_present(struct page *page)
1362
{
1363
unsigned int level;
1364
pte_t *pte;
1365
1366
if (PageHighMem(page))
1367
return false;
1368
1369
pte = lookup_address((unsigned long)page_address(page), &level);
1370
return (pte_val(*pte) & _PAGE_PRESENT);
1371
}
1372
1373
#endif /* CONFIG_HIBERNATION */
1374
1375
#endif /* CONFIG_DEBUG_PAGEALLOC */
1376
1377
/*
1378
* The testcases use internal knowledge of the implementation that shouldn't
1379
* be exposed to the rest of the kernel. Include these directly here.
1380
*/
1381
#ifdef CONFIG_CPA_DEBUG
1382
#include "pageattr-test.c"
1383
#endif
1384
1385