Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/pat.c
10817 views
1
/*
2
* Handle caching attributes in page tables (PAT)
3
*
4
* Authors: Venkatesh Pallipadi <[email protected]>
5
* Suresh B Siddha <[email protected]>
6
*
7
* Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8
*/
9
10
#include <linux/seq_file.h>
11
#include <linux/bootmem.h>
12
#include <linux/debugfs.h>
13
#include <linux/kernel.h>
14
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/mm.h>
17
#include <linux/fs.h>
18
#include <linux/rbtree.h>
19
20
#include <asm/cacheflush.h>
21
#include <asm/processor.h>
22
#include <asm/tlbflush.h>
23
#include <asm/x86_init.h>
24
#include <asm/pgtable.h>
25
#include <asm/fcntl.h>
26
#include <asm/e820.h>
27
#include <asm/mtrr.h>
28
#include <asm/page.h>
29
#include <asm/msr.h>
30
#include <asm/pat.h>
31
#include <asm/io.h>
32
33
#include "pat_internal.h"
34
35
#ifdef CONFIG_X86_PAT
36
int __read_mostly pat_enabled = 1;
37
38
static inline void pat_disable(const char *reason)
39
{
40
pat_enabled = 0;
41
printk(KERN_INFO "%s\n", reason);
42
}
43
44
static int __init nopat(char *str)
45
{
46
pat_disable("PAT support disabled.");
47
return 0;
48
}
49
early_param("nopat", nopat);
50
#else
51
static inline void pat_disable(const char *reason)
52
{
53
(void)reason;
54
}
55
#endif
56
57
58
int pat_debug_enable;
59
60
static int __init pat_debug_setup(char *str)
61
{
62
pat_debug_enable = 1;
63
return 0;
64
}
65
__setup("debugpat", pat_debug_setup);
66
67
static u64 __read_mostly boot_pat_state;
68
69
enum {
70
PAT_UC = 0, /* uncached */
71
PAT_WC = 1, /* Write combining */
72
PAT_WT = 4, /* Write Through */
73
PAT_WP = 5, /* Write Protected */
74
PAT_WB = 6, /* Write Back (default) */
75
PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
76
};
77
78
#define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
79
80
void pat_init(void)
81
{
82
u64 pat;
83
bool boot_cpu = !boot_pat_state;
84
85
if (!pat_enabled)
86
return;
87
88
if (!cpu_has_pat) {
89
if (!boot_pat_state) {
90
pat_disable("PAT not supported by CPU.");
91
return;
92
} else {
93
/*
94
* If this happens we are on a secondary CPU, but
95
* switched to PAT on the boot CPU. We have no way to
96
* undo PAT.
97
*/
98
printk(KERN_ERR "PAT enabled, "
99
"but not supported by secondary CPU\n");
100
BUG();
101
}
102
}
103
104
/* Set PWT to Write-Combining. All other bits stay the same */
105
/*
106
* PTE encoding used in Linux:
107
* PAT
108
* |PCD
109
* ||PWT
110
* |||
111
* 000 WB _PAGE_CACHE_WB
112
* 001 WC _PAGE_CACHE_WC
113
* 010 UC- _PAGE_CACHE_UC_MINUS
114
* 011 UC _PAGE_CACHE_UC
115
* PAT bit unused
116
*/
117
pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
118
PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119
120
/* Boot CPU check */
121
if (!boot_pat_state)
122
rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123
124
wrmsrl(MSR_IA32_CR_PAT, pat);
125
126
if (boot_cpu)
127
printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
128
smp_processor_id(), boot_pat_state, pat);
129
}
130
131
#undef PAT
132
133
static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
134
135
/*
136
* Does intersection of PAT memory type and MTRR memory type and returns
137
* the resulting memory type as PAT understands it.
138
* (Type in pat and mtrr will not have same value)
139
* The intersection is based on "Effective Memory Type" tables in IA-32
140
* SDM vol 3a
141
*/
142
static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
143
{
144
/*
145
* Look for MTRR hint to get the effective type in case where PAT
146
* request is for WB.
147
*/
148
if (req_type == _PAGE_CACHE_WB) {
149
u8 mtrr_type;
150
151
mtrr_type = mtrr_type_lookup(start, end);
152
if (mtrr_type != MTRR_TYPE_WRBACK)
153
return _PAGE_CACHE_UC_MINUS;
154
155
return _PAGE_CACHE_WB;
156
}
157
158
return req_type;
159
}
160
161
static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
162
{
163
int ram_page = 0, not_rampage = 0;
164
unsigned long page_nr;
165
166
for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
167
++page_nr) {
168
/*
169
* For legacy reasons, physical address range in the legacy ISA
170
* region is tracked as non-RAM. This will allow users of
171
* /dev/mem to map portions of legacy ISA region, even when
172
* some of those portions are listed(or not even listed) with
173
* different e820 types(RAM/reserved/..)
174
*/
175
if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
176
page_is_ram(page_nr))
177
ram_page = 1;
178
else
179
not_rampage = 1;
180
181
if (ram_page == not_rampage)
182
return -1;
183
}
184
185
return ram_page;
186
}
187
188
/*
189
* For RAM pages, we use page flags to mark the pages with appropriate type.
190
* Here we do two pass:
191
* - Find the memtype of all the pages in the range, look for any conflicts
192
* - In case of no conflicts, set the new memtype for pages in the range
193
*/
194
static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
195
unsigned long *new_type)
196
{
197
struct page *page;
198
u64 pfn;
199
200
if (req_type == _PAGE_CACHE_UC) {
201
/* We do not support strong UC */
202
WARN_ON_ONCE(1);
203
req_type = _PAGE_CACHE_UC_MINUS;
204
}
205
206
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
207
unsigned long type;
208
209
page = pfn_to_page(pfn);
210
type = get_page_memtype(page);
211
if (type != -1) {
212
printk(KERN_INFO "reserve_ram_pages_type failed "
213
"0x%Lx-0x%Lx, track 0x%lx, req 0x%lx\n",
214
start, end, type, req_type);
215
if (new_type)
216
*new_type = type;
217
218
return -EBUSY;
219
}
220
}
221
222
if (new_type)
223
*new_type = req_type;
224
225
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
226
page = pfn_to_page(pfn);
227
set_page_memtype(page, req_type);
228
}
229
return 0;
230
}
231
232
static int free_ram_pages_type(u64 start, u64 end)
233
{
234
struct page *page;
235
u64 pfn;
236
237
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
238
page = pfn_to_page(pfn);
239
set_page_memtype(page, -1);
240
}
241
return 0;
242
}
243
244
/*
245
* req_type typically has one of the:
246
* - _PAGE_CACHE_WB
247
* - _PAGE_CACHE_WC
248
* - _PAGE_CACHE_UC_MINUS
249
* - _PAGE_CACHE_UC
250
*
251
* If new_type is NULL, function will return an error if it cannot reserve the
252
* region with req_type. If new_type is non-NULL, function will return
253
* available type in new_type in case of no error. In case of any error
254
* it will return a negative return value.
255
*/
256
int reserve_memtype(u64 start, u64 end, unsigned long req_type,
257
unsigned long *new_type)
258
{
259
struct memtype *new;
260
unsigned long actual_type;
261
int is_range_ram;
262
int err = 0;
263
264
BUG_ON(start >= end); /* end is exclusive */
265
266
if (!pat_enabled) {
267
/* This is identical to page table setting without PAT */
268
if (new_type) {
269
if (req_type == _PAGE_CACHE_WC)
270
*new_type = _PAGE_CACHE_UC_MINUS;
271
else
272
*new_type = req_type & _PAGE_CACHE_MASK;
273
}
274
return 0;
275
}
276
277
/* Low ISA region is always mapped WB in page table. No need to track */
278
if (x86_platform.is_untracked_pat_range(start, end)) {
279
if (new_type)
280
*new_type = _PAGE_CACHE_WB;
281
return 0;
282
}
283
284
/*
285
* Call mtrr_lookup to get the type hint. This is an
286
* optimization for /dev/mem mmap'ers into WB memory (BIOS
287
* tools and ACPI tools). Use WB request for WB memory and use
288
* UC_MINUS otherwise.
289
*/
290
actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
291
292
if (new_type)
293
*new_type = actual_type;
294
295
is_range_ram = pat_pagerange_is_ram(start, end);
296
if (is_range_ram == 1) {
297
298
err = reserve_ram_pages_type(start, end, req_type, new_type);
299
300
return err;
301
} else if (is_range_ram < 0) {
302
return -EINVAL;
303
}
304
305
new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
306
if (!new)
307
return -ENOMEM;
308
309
new->start = start;
310
new->end = end;
311
new->type = actual_type;
312
313
spin_lock(&memtype_lock);
314
315
err = rbt_memtype_check_insert(new, new_type);
316
if (err) {
317
printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
318
"track %s, req %s\n",
319
start, end, cattr_name(new->type), cattr_name(req_type));
320
kfree(new);
321
spin_unlock(&memtype_lock);
322
323
return err;
324
}
325
326
spin_unlock(&memtype_lock);
327
328
dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
329
start, end, cattr_name(new->type), cattr_name(req_type),
330
new_type ? cattr_name(*new_type) : "-");
331
332
return err;
333
}
334
335
int free_memtype(u64 start, u64 end)
336
{
337
int err = -EINVAL;
338
int is_range_ram;
339
struct memtype *entry;
340
341
if (!pat_enabled)
342
return 0;
343
344
/* Low ISA region is always mapped WB. No need to track */
345
if (x86_platform.is_untracked_pat_range(start, end))
346
return 0;
347
348
is_range_ram = pat_pagerange_is_ram(start, end);
349
if (is_range_ram == 1) {
350
351
err = free_ram_pages_type(start, end);
352
353
return err;
354
} else if (is_range_ram < 0) {
355
return -EINVAL;
356
}
357
358
spin_lock(&memtype_lock);
359
entry = rbt_memtype_erase(start, end);
360
spin_unlock(&memtype_lock);
361
362
if (!entry) {
363
printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
364
current->comm, current->pid, start, end);
365
return -EINVAL;
366
}
367
368
kfree(entry);
369
370
dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
371
372
return 0;
373
}
374
375
376
/**
377
* lookup_memtype - Looksup the memory type for a physical address
378
* @paddr: physical address of which memory type needs to be looked up
379
*
380
* Only to be called when PAT is enabled
381
*
382
* Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
383
* _PAGE_CACHE_UC
384
*/
385
static unsigned long lookup_memtype(u64 paddr)
386
{
387
int rettype = _PAGE_CACHE_WB;
388
struct memtype *entry;
389
390
if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
391
return rettype;
392
393
if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
394
struct page *page;
395
page = pfn_to_page(paddr >> PAGE_SHIFT);
396
rettype = get_page_memtype(page);
397
/*
398
* -1 from get_page_memtype() implies RAM page is in its
399
* default state and not reserved, and hence of type WB
400
*/
401
if (rettype == -1)
402
rettype = _PAGE_CACHE_WB;
403
404
return rettype;
405
}
406
407
spin_lock(&memtype_lock);
408
409
entry = rbt_memtype_lookup(paddr);
410
if (entry != NULL)
411
rettype = entry->type;
412
else
413
rettype = _PAGE_CACHE_UC_MINUS;
414
415
spin_unlock(&memtype_lock);
416
return rettype;
417
}
418
419
/**
420
* io_reserve_memtype - Request a memory type mapping for a region of memory
421
* @start: start (physical address) of the region
422
* @end: end (physical address) of the region
423
* @type: A pointer to memtype, with requested type. On success, requested
424
* or any other compatible type that was available for the region is returned
425
*
426
* On success, returns 0
427
* On failure, returns non-zero
428
*/
429
int io_reserve_memtype(resource_size_t start, resource_size_t end,
430
unsigned long *type)
431
{
432
resource_size_t size = end - start;
433
unsigned long req_type = *type;
434
unsigned long new_type;
435
int ret;
436
437
WARN_ON_ONCE(iomem_map_sanity_check(start, size));
438
439
ret = reserve_memtype(start, end, req_type, &new_type);
440
if (ret)
441
goto out_err;
442
443
if (!is_new_memtype_allowed(start, size, req_type, new_type))
444
goto out_free;
445
446
if (kernel_map_sync_memtype(start, size, new_type) < 0)
447
goto out_free;
448
449
*type = new_type;
450
return 0;
451
452
out_free:
453
free_memtype(start, end);
454
ret = -EBUSY;
455
out_err:
456
return ret;
457
}
458
459
/**
460
* io_free_memtype - Release a memory type mapping for a region of memory
461
* @start: start (physical address) of the region
462
* @end: end (physical address) of the region
463
*/
464
void io_free_memtype(resource_size_t start, resource_size_t end)
465
{
466
free_memtype(start, end);
467
}
468
469
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
470
unsigned long size, pgprot_t vma_prot)
471
{
472
return vma_prot;
473
}
474
475
#ifdef CONFIG_STRICT_DEVMEM
476
/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
477
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
478
{
479
return 1;
480
}
481
#else
482
/* This check is needed to avoid cache aliasing when PAT is enabled */
483
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
484
{
485
u64 from = ((u64)pfn) << PAGE_SHIFT;
486
u64 to = from + size;
487
u64 cursor = from;
488
489
if (!pat_enabled)
490
return 1;
491
492
while (cursor < to) {
493
if (!devmem_is_allowed(pfn)) {
494
printk(KERN_INFO
495
"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
496
current->comm, from, to);
497
return 0;
498
}
499
cursor += PAGE_SIZE;
500
pfn++;
501
}
502
return 1;
503
}
504
#endif /* CONFIG_STRICT_DEVMEM */
505
506
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
507
unsigned long size, pgprot_t *vma_prot)
508
{
509
unsigned long flags = _PAGE_CACHE_WB;
510
511
if (!range_is_allowed(pfn, size))
512
return 0;
513
514
if (file->f_flags & O_DSYNC)
515
flags = _PAGE_CACHE_UC_MINUS;
516
517
#ifdef CONFIG_X86_32
518
/*
519
* On the PPro and successors, the MTRRs are used to set
520
* memory types for physical addresses outside main memory,
521
* so blindly setting UC or PWT on those pages is wrong.
522
* For Pentiums and earlier, the surround logic should disable
523
* caching for the high addresses through the KEN pin, but
524
* we maintain the tradition of paranoia in this code.
525
*/
526
if (!pat_enabled &&
527
!(boot_cpu_has(X86_FEATURE_MTRR) ||
528
boot_cpu_has(X86_FEATURE_K6_MTRR) ||
529
boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
530
boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
531
(pfn << PAGE_SHIFT) >= __pa(high_memory)) {
532
flags = _PAGE_CACHE_UC;
533
}
534
#endif
535
536
*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
537
flags);
538
return 1;
539
}
540
541
/*
542
* Change the memory type for the physial address range in kernel identity
543
* mapping space if that range is a part of identity map.
544
*/
545
int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
546
{
547
unsigned long id_sz;
548
549
if (base >= __pa(high_memory))
550
return 0;
551
552
id_sz = (__pa(high_memory) < base + size) ?
553
__pa(high_memory) - base :
554
size;
555
556
if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
557
printk(KERN_INFO
558
"%s:%d ioremap_change_attr failed %s "
559
"for %Lx-%Lx\n",
560
current->comm, current->pid,
561
cattr_name(flags),
562
base, (unsigned long long)(base + size));
563
return -EINVAL;
564
}
565
return 0;
566
}
567
568
/*
569
* Internal interface to reserve a range of physical memory with prot.
570
* Reserved non RAM regions only and after successful reserve_memtype,
571
* this func also keeps identity mapping (if any) in sync with this new prot.
572
*/
573
static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
574
int strict_prot)
575
{
576
int is_ram = 0;
577
int ret;
578
unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
579
unsigned long flags = want_flags;
580
581
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
582
583
/*
584
* reserve_pfn_range() for RAM pages. We do not refcount to keep
585
* track of number of mappings of RAM pages. We can assert that
586
* the type requested matches the type of first page in the range.
587
*/
588
if (is_ram) {
589
if (!pat_enabled)
590
return 0;
591
592
flags = lookup_memtype(paddr);
593
if (want_flags != flags) {
594
printk(KERN_WARNING
595
"%s:%d map pfn RAM range req %s for %Lx-%Lx, got %s\n",
596
current->comm, current->pid,
597
cattr_name(want_flags),
598
(unsigned long long)paddr,
599
(unsigned long long)(paddr + size),
600
cattr_name(flags));
601
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
602
(~_PAGE_CACHE_MASK)) |
603
flags);
604
}
605
return 0;
606
}
607
608
ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
609
if (ret)
610
return ret;
611
612
if (flags != want_flags) {
613
if (strict_prot ||
614
!is_new_memtype_allowed(paddr, size, want_flags, flags)) {
615
free_memtype(paddr, paddr + size);
616
printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
617
" for %Lx-%Lx, got %s\n",
618
current->comm, current->pid,
619
cattr_name(want_flags),
620
(unsigned long long)paddr,
621
(unsigned long long)(paddr + size),
622
cattr_name(flags));
623
return -EINVAL;
624
}
625
/*
626
* We allow returning different type than the one requested in
627
* non strict case.
628
*/
629
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
630
(~_PAGE_CACHE_MASK)) |
631
flags);
632
}
633
634
if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
635
free_memtype(paddr, paddr + size);
636
return -EINVAL;
637
}
638
return 0;
639
}
640
641
/*
642
* Internal interface to free a range of physical memory.
643
* Frees non RAM regions only.
644
*/
645
static void free_pfn_range(u64 paddr, unsigned long size)
646
{
647
int is_ram;
648
649
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
650
if (is_ram == 0)
651
free_memtype(paddr, paddr + size);
652
}
653
654
/*
655
* track_pfn_vma_copy is called when vma that is covering the pfnmap gets
656
* copied through copy_page_range().
657
*
658
* If the vma has a linear pfn mapping for the entire range, we get the prot
659
* from pte and reserve the entire vma range with single reserve_pfn_range call.
660
*/
661
int track_pfn_vma_copy(struct vm_area_struct *vma)
662
{
663
resource_size_t paddr;
664
unsigned long prot;
665
unsigned long vma_size = vma->vm_end - vma->vm_start;
666
pgprot_t pgprot;
667
668
if (is_linear_pfn_mapping(vma)) {
669
/*
670
* reserve the whole chunk covered by vma. We need the
671
* starting address and protection from pte.
672
*/
673
if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
674
WARN_ON_ONCE(1);
675
return -EINVAL;
676
}
677
pgprot = __pgprot(prot);
678
return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
679
}
680
681
return 0;
682
}
683
684
/*
685
* track_pfn_vma_new is called when a _new_ pfn mapping is being established
686
* for physical range indicated by pfn and size.
687
*
688
* prot is passed in as a parameter for the new mapping. If the vma has a
689
* linear pfn mapping for the entire range reserve the entire vma range with
690
* single reserve_pfn_range call.
691
*/
692
int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
693
unsigned long pfn, unsigned long size)
694
{
695
unsigned long flags;
696
resource_size_t paddr;
697
unsigned long vma_size = vma->vm_end - vma->vm_start;
698
699
if (is_linear_pfn_mapping(vma)) {
700
/* reserve the whole chunk starting from vm_pgoff */
701
paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
702
return reserve_pfn_range(paddr, vma_size, prot, 0);
703
}
704
705
if (!pat_enabled)
706
return 0;
707
708
/* for vm_insert_pfn and friends, we set prot based on lookup */
709
flags = lookup_memtype(pfn << PAGE_SHIFT);
710
*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
711
flags);
712
713
return 0;
714
}
715
716
/*
717
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
718
* untrack can be called for a specific region indicated by pfn and size or
719
* can be for the entire vma (in which case size can be zero).
720
*/
721
void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
722
unsigned long size)
723
{
724
resource_size_t paddr;
725
unsigned long vma_size = vma->vm_end - vma->vm_start;
726
727
if (is_linear_pfn_mapping(vma)) {
728
/* free the whole chunk starting from vm_pgoff */
729
paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
730
free_pfn_range(paddr, vma_size);
731
return;
732
}
733
}
734
735
pgprot_t pgprot_writecombine(pgprot_t prot)
736
{
737
if (pat_enabled)
738
return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
739
else
740
return pgprot_noncached(prot);
741
}
742
EXPORT_SYMBOL_GPL(pgprot_writecombine);
743
744
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
745
746
static struct memtype *memtype_get_idx(loff_t pos)
747
{
748
struct memtype *print_entry;
749
int ret;
750
751
print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
752
if (!print_entry)
753
return NULL;
754
755
spin_lock(&memtype_lock);
756
ret = rbt_memtype_copy_nth_element(print_entry, pos);
757
spin_unlock(&memtype_lock);
758
759
if (!ret) {
760
return print_entry;
761
} else {
762
kfree(print_entry);
763
return NULL;
764
}
765
}
766
767
static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
768
{
769
if (*pos == 0) {
770
++*pos;
771
seq_printf(seq, "PAT memtype list:\n");
772
}
773
774
return memtype_get_idx(*pos);
775
}
776
777
static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
778
{
779
++*pos;
780
return memtype_get_idx(*pos);
781
}
782
783
static void memtype_seq_stop(struct seq_file *seq, void *v)
784
{
785
}
786
787
static int memtype_seq_show(struct seq_file *seq, void *v)
788
{
789
struct memtype *print_entry = (struct memtype *)v;
790
791
seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
792
print_entry->start, print_entry->end);
793
kfree(print_entry);
794
795
return 0;
796
}
797
798
static const struct seq_operations memtype_seq_ops = {
799
.start = memtype_seq_start,
800
.next = memtype_seq_next,
801
.stop = memtype_seq_stop,
802
.show = memtype_seq_show,
803
};
804
805
static int memtype_seq_open(struct inode *inode, struct file *file)
806
{
807
return seq_open(file, &memtype_seq_ops);
808
}
809
810
static const struct file_operations memtype_fops = {
811
.open = memtype_seq_open,
812
.read = seq_read,
813
.llseek = seq_lseek,
814
.release = seq_release,
815
};
816
817
static int __init pat_memtype_list_init(void)
818
{
819
if (pat_enabled) {
820
debugfs_create_file("pat_memtype_list", S_IRUSR,
821
arch_debugfs_dir, NULL, &memtype_fops);
822
}
823
return 0;
824
}
825
826
late_initcall(pat_memtype_list_init);
827
828
#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
829
830