Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/mm/pgtable.c
10817 views
1
#include <linux/mm.h>
2
#include <linux/gfp.h>
3
#include <asm/pgalloc.h>
4
#include <asm/pgtable.h>
5
#include <asm/tlb.h>
6
#include <asm/fixmap.h>
7
8
#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10
#ifdef CONFIG_HIGHPTE
11
#define PGALLOC_USER_GFP __GFP_HIGHMEM
12
#else
13
#define PGALLOC_USER_GFP 0
14
#endif
15
16
gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19
{
20
return (pte_t *)__get_free_page(PGALLOC_GFP);
21
}
22
23
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24
{
25
struct page *pte;
26
27
pte = alloc_pages(__userpte_alloc_gfp, 0);
28
if (pte)
29
pgtable_page_ctor(pte);
30
return pte;
31
}
32
33
static int __init setup_userpte(char *arg)
34
{
35
if (!arg)
36
return -EINVAL;
37
38
/*
39
* "userpte=nohigh" disables allocation of user pagetables in
40
* high memory.
41
*/
42
if (strcmp(arg, "nohigh") == 0)
43
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44
else
45
return -EINVAL;
46
return 0;
47
}
48
early_param("userpte", setup_userpte);
49
50
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51
{
52
pgtable_page_dtor(pte);
53
paravirt_release_pte(page_to_pfn(pte));
54
tlb_remove_page(tlb, pte);
55
}
56
57
#if PAGETABLE_LEVELS > 2
58
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59
{
60
paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61
tlb_remove_page(tlb, virt_to_page(pmd));
62
}
63
64
#if PAGETABLE_LEVELS > 3
65
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66
{
67
paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68
tlb_remove_page(tlb, virt_to_page(pud));
69
}
70
#endif /* PAGETABLE_LEVELS > 3 */
71
#endif /* PAGETABLE_LEVELS > 2 */
72
73
static inline void pgd_list_add(pgd_t *pgd)
74
{
75
struct page *page = virt_to_page(pgd);
76
77
list_add(&page->lru, &pgd_list);
78
}
79
80
static inline void pgd_list_del(pgd_t *pgd)
81
{
82
struct page *page = virt_to_page(pgd);
83
84
list_del(&page->lru);
85
}
86
87
#define UNSHARED_PTRS_PER_PGD \
88
(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89
90
91
static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
92
{
93
BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
94
virt_to_page(pgd)->index = (pgoff_t)mm;
95
}
96
97
struct mm_struct *pgd_page_get_mm(struct page *page)
98
{
99
return (struct mm_struct *)page->index;
100
}
101
102
static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103
{
104
/* If the pgd points to a shared pagetable level (either the
105
ptes in non-PAE, or shared PMD in PAE), then just copy the
106
references from swapper_pg_dir. */
107
if (PAGETABLE_LEVELS == 2 ||
108
(PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109
PAGETABLE_LEVELS == 4) {
110
clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111
swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112
KERNEL_PGD_PTRS);
113
}
114
115
/* list required to sync kernel mapping updates */
116
if (!SHARED_KERNEL_PMD) {
117
pgd_set_mm(pgd, mm);
118
pgd_list_add(pgd);
119
}
120
}
121
122
static void pgd_dtor(pgd_t *pgd)
123
{
124
if (SHARED_KERNEL_PMD)
125
return;
126
127
spin_lock(&pgd_lock);
128
pgd_list_del(pgd);
129
spin_unlock(&pgd_lock);
130
}
131
132
/*
133
* List of all pgd's needed for non-PAE so it can invalidate entries
134
* in both cached and uncached pgd's; not needed for PAE since the
135
* kernel pmd is shared. If PAE were not to share the pmd a similar
136
* tactic would be needed. This is essentially codepath-based locking
137
* against pageattr.c; it is the unique case in which a valid change
138
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
139
* vmalloc faults work because attached pagetables are never freed.
140
* -- wli
141
*/
142
143
#ifdef CONFIG_X86_PAE
144
/*
145
* In PAE mode, we need to do a cr3 reload (=tlb flush) when
146
* updating the top-level pagetable entries to guarantee the
147
* processor notices the update. Since this is expensive, and
148
* all 4 top-level entries are used almost immediately in a
149
* new process's life, we just pre-populate them here.
150
*
151
* Also, if we're in a paravirt environment where the kernel pmd is
152
* not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153
* and initialize the kernel pmds here.
154
*/
155
#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
156
157
void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
158
{
159
paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
160
161
/* Note: almost everything apart from _PAGE_PRESENT is
162
reserved at the pmd (PDPT) level. */
163
set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
164
165
/*
166
* According to Intel App note "TLBs, Paging-Structure Caches,
167
* and Their Invalidation", April 2007, document 317080-001,
168
* section 8.1: in PAE mode we explicitly have to flush the
169
* TLB via cr3 if the top-level pgd is changed...
170
*/
171
flush_tlb_mm(mm);
172
}
173
#else /* !CONFIG_X86_PAE */
174
175
/* No need to prepopulate any pagetable entries in non-PAE modes. */
176
#define PREALLOCATED_PMDS 0
177
178
#endif /* CONFIG_X86_PAE */
179
180
static void free_pmds(pmd_t *pmds[])
181
{
182
int i;
183
184
for(i = 0; i < PREALLOCATED_PMDS; i++)
185
if (pmds[i])
186
free_page((unsigned long)pmds[i]);
187
}
188
189
static int preallocate_pmds(pmd_t *pmds[])
190
{
191
int i;
192
bool failed = false;
193
194
for(i = 0; i < PREALLOCATED_PMDS; i++) {
195
pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
196
if (pmd == NULL)
197
failed = true;
198
pmds[i] = pmd;
199
}
200
201
if (failed) {
202
free_pmds(pmds);
203
return -ENOMEM;
204
}
205
206
return 0;
207
}
208
209
/*
210
* Mop up any pmd pages which may still be attached to the pgd.
211
* Normally they will be freed by munmap/exit_mmap, but any pmd we
212
* preallocate which never got a corresponding vma will need to be
213
* freed manually.
214
*/
215
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
216
{
217
int i;
218
219
for(i = 0; i < PREALLOCATED_PMDS; i++) {
220
pgd_t pgd = pgdp[i];
221
222
if (pgd_val(pgd) != 0) {
223
pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
224
225
pgdp[i] = native_make_pgd(0);
226
227
paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
228
pmd_free(mm, pmd);
229
}
230
}
231
}
232
233
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
234
{
235
pud_t *pud;
236
unsigned long addr;
237
int i;
238
239
if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
240
return;
241
242
pud = pud_offset(pgd, 0);
243
244
for (addr = i = 0; i < PREALLOCATED_PMDS;
245
i++, pud++, addr += PUD_SIZE) {
246
pmd_t *pmd = pmds[i];
247
248
if (i >= KERNEL_PGD_BOUNDARY)
249
memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
250
sizeof(pmd_t) * PTRS_PER_PMD);
251
252
pud_populate(mm, pud, pmd);
253
}
254
}
255
256
pgd_t *pgd_alloc(struct mm_struct *mm)
257
{
258
pgd_t *pgd;
259
pmd_t *pmds[PREALLOCATED_PMDS];
260
261
pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
262
263
if (pgd == NULL)
264
goto out;
265
266
mm->pgd = pgd;
267
268
if (preallocate_pmds(pmds) != 0)
269
goto out_free_pgd;
270
271
if (paravirt_pgd_alloc(mm) != 0)
272
goto out_free_pmds;
273
274
/*
275
* Make sure that pre-populating the pmds is atomic with
276
* respect to anything walking the pgd_list, so that they
277
* never see a partially populated pgd.
278
*/
279
spin_lock(&pgd_lock);
280
281
pgd_ctor(mm, pgd);
282
pgd_prepopulate_pmd(mm, pgd, pmds);
283
284
spin_unlock(&pgd_lock);
285
286
return pgd;
287
288
out_free_pmds:
289
free_pmds(pmds);
290
out_free_pgd:
291
free_page((unsigned long)pgd);
292
out:
293
return NULL;
294
}
295
296
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
297
{
298
pgd_mop_up_pmds(mm, pgd);
299
pgd_dtor(pgd);
300
paravirt_pgd_free(mm, pgd);
301
free_page((unsigned long)pgd);
302
}
303
304
int ptep_set_access_flags(struct vm_area_struct *vma,
305
unsigned long address, pte_t *ptep,
306
pte_t entry, int dirty)
307
{
308
int changed = !pte_same(*ptep, entry);
309
310
if (changed && dirty) {
311
*ptep = entry;
312
pte_update_defer(vma->vm_mm, address, ptep);
313
flush_tlb_page(vma, address);
314
}
315
316
return changed;
317
}
318
319
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
320
int pmdp_set_access_flags(struct vm_area_struct *vma,
321
unsigned long address, pmd_t *pmdp,
322
pmd_t entry, int dirty)
323
{
324
int changed = !pmd_same(*pmdp, entry);
325
326
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
327
328
if (changed && dirty) {
329
*pmdp = entry;
330
pmd_update_defer(vma->vm_mm, address, pmdp);
331
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
332
}
333
334
return changed;
335
}
336
#endif
337
338
int ptep_test_and_clear_young(struct vm_area_struct *vma,
339
unsigned long addr, pte_t *ptep)
340
{
341
int ret = 0;
342
343
if (pte_young(*ptep))
344
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
345
(unsigned long *) &ptep->pte);
346
347
if (ret)
348
pte_update(vma->vm_mm, addr, ptep);
349
350
return ret;
351
}
352
353
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
354
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
355
unsigned long addr, pmd_t *pmdp)
356
{
357
int ret = 0;
358
359
if (pmd_young(*pmdp))
360
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
361
(unsigned long *)pmdp);
362
363
if (ret)
364
pmd_update(vma->vm_mm, addr, pmdp);
365
366
return ret;
367
}
368
#endif
369
370
int ptep_clear_flush_young(struct vm_area_struct *vma,
371
unsigned long address, pte_t *ptep)
372
{
373
int young;
374
375
young = ptep_test_and_clear_young(vma, address, ptep);
376
if (young)
377
flush_tlb_page(vma, address);
378
379
return young;
380
}
381
382
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383
int pmdp_clear_flush_young(struct vm_area_struct *vma,
384
unsigned long address, pmd_t *pmdp)
385
{
386
int young;
387
388
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
389
390
young = pmdp_test_and_clear_young(vma, address, pmdp);
391
if (young)
392
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
393
394
return young;
395
}
396
397
void pmdp_splitting_flush(struct vm_area_struct *vma,
398
unsigned long address, pmd_t *pmdp)
399
{
400
int set;
401
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
402
set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
403
(unsigned long *)pmdp);
404
if (set) {
405
pmd_update(vma->vm_mm, address, pmdp);
406
/* need tlb flush only to serialize against gup-fast */
407
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
408
}
409
}
410
#endif
411
412
/**
413
* reserve_top_address - reserves a hole in the top of kernel address space
414
* @reserve - size of hole to reserve
415
*
416
* Can be used to relocate the fixmap area and poke a hole in the top
417
* of kernel address space to make room for a hypervisor.
418
*/
419
void __init reserve_top_address(unsigned long reserve)
420
{
421
#ifdef CONFIG_X86_32
422
BUG_ON(fixmaps_set > 0);
423
printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
424
(int)-reserve);
425
__FIXADDR_TOP = -reserve - PAGE_SIZE;
426
#endif
427
}
428
429
int fixmaps_set;
430
431
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
432
{
433
unsigned long address = __fix_to_virt(idx);
434
435
if (idx >= __end_of_fixed_addresses) {
436
BUG();
437
return;
438
}
439
set_pte_vaddr(address, pte);
440
fixmaps_set++;
441
}
442
443
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
444
pgprot_t flags)
445
{
446
__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
447
}
448
449