Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/pci/olpc.c
10818 views
1
/*
2
* Low-level PCI config space access for OLPC systems who lack the VSA
3
* PCI virtualization software.
4
*
5
* Copyright © 2006 Advanced Micro Devices, Inc.
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation; either version 2 of the License, or
10
* (at your option) any later version.
11
*
12
* The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
13
* has some I/O functions (display, southbridge, sound, USB HCIs, etc)
14
* that more or less behave like PCI devices, but the hardware doesn't
15
* directly implement the PCI configuration space headers. AMD provides
16
* "VSA" (Virtual System Architecture) software that emulates PCI config
17
* space for these devices, by trapping I/O accesses to PCI config register
18
* (CF8/CFC) and running some code in System Management Mode interrupt state.
19
* On the OLPC platform, we don't want to use that VSA code because
20
* (a) it slows down suspend/resume, and (b) recompiling it requires special
21
* compilers that are hard to get. So instead of letting the complex VSA
22
* code simulate the PCI config registers for the on-chip devices, we
23
* just simulate them the easy way, by inserting the code into the
24
* pci_write_config and pci_read_config path. Most of the config registers
25
* are read-only anyway, so the bulk of the simulation is just table lookup.
26
*/
27
28
#include <linux/pci.h>
29
#include <linux/init.h>
30
#include <asm/olpc.h>
31
#include <asm/geode.h>
32
#include <asm/pci_x86.h>
33
34
/*
35
* In the tables below, the first two line (8 longwords) are the
36
* size masks that are used when the higher level PCI code determines
37
* the size of the region by writing ~0 to a base address register
38
* and reading back the result.
39
*
40
* The following lines are the values that are read during normal
41
* PCI config access cycles, i.e. not after just having written
42
* ~0 to a base address register.
43
*/
44
45
static const uint32_t lxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
46
0x0, 0x0, 0x0, 0x0,
47
0x0, 0x0, 0x0, 0x0,
48
49
0x281022, 0x2200005, 0x6000021, 0x80f808, /* AMD Vendor ID */
50
0x0, 0x0, 0x0, 0x0, /* No virtual registers, hence no BAR */
51
0x0, 0x0, 0x0, 0x28100b,
52
0x0, 0x0, 0x0, 0x0,
53
0x0, 0x0, 0x0, 0x0,
54
0x0, 0x0, 0x0, 0x0,
55
0x0, 0x0, 0x0, 0x0,
56
};
57
58
static const uint32_t gxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
59
0xfffffffd, 0x0, 0x0, 0x0,
60
0x0, 0x0, 0x0, 0x0,
61
62
0x28100b, 0x2200005, 0x6000021, 0x80f808, /* NSC Vendor ID */
63
0xac1d, 0x0, 0x0, 0x0, /* I/O BAR - base of virtual registers */
64
0x0, 0x0, 0x0, 0x28100b,
65
0x0, 0x0, 0x0, 0x0,
66
0x0, 0x0, 0x0, 0x0,
67
0x0, 0x0, 0x0, 0x0,
68
0x0, 0x0, 0x0, 0x0,
69
};
70
71
static const uint32_t lxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
72
0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
73
0xffffc000, 0x0, 0x0, 0x0,
74
75
0x20811022, 0x2200003, 0x3000000, 0x0, /* AMD Vendor ID */
76
0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
77
0xfe00c000, 0x0, 0x0, 0x30100b, /* VIP */
78
0x0, 0x0, 0x0, 0x10e, /* INTA, IRQ14 for graphics accel */
79
0x0, 0x0, 0x0, 0x0,
80
0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */
81
0x0, 0x0, 0x0, 0x0,
82
};
83
84
static const uint32_t gxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
85
0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
86
0x0, 0x0, 0x0, 0x0,
87
88
0x30100b, 0x2200003, 0x3000000, 0x0, /* NSC Vendor ID */
89
0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
90
0x0, 0x0, 0x0, 0x30100b,
91
0x0, 0x0, 0x0, 0x0,
92
0x0, 0x0, 0x0, 0x0,
93
0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */
94
0x0, 0x0, 0x0, 0x0,
95
};
96
97
static const uint32_t aes_hdr[] = { /* dev 1 function 2 - devfn = 0xa */
98
0xffffc000, 0x0, 0x0, 0x0,
99
0x0, 0x0, 0x0, 0x0,
100
101
0x20821022, 0x2a00006, 0x10100000, 0x8, /* NSC Vendor ID */
102
0xfe010000, 0x0, 0x0, 0x0, /* AES registers */
103
0x0, 0x0, 0x0, 0x20821022,
104
0x0, 0x0, 0x0, 0x0,
105
0x0, 0x0, 0x0, 0x0,
106
0x0, 0x0, 0x0, 0x0,
107
0x0, 0x0, 0x0, 0x0,
108
};
109
110
111
static const uint32_t isa_hdr[] = { /* dev f function 0 - devfn = 78 */
112
0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
113
0xffffff81, 0xffffffc1, 0x0, 0x0,
114
115
0x20901022, 0x2a00049, 0x6010003, 0x802000,
116
0x18b1, 0x1001, 0x1801, 0x1881, /* SMB-8 GPIO-256 MFGPT-64 IRQ-32 */
117
0x1401, 0x1841, 0x0, 0x20901022, /* PMS-128 ACPI-64 */
118
0x0, 0x0, 0x0, 0x0,
119
0x0, 0x0, 0x0, 0x0,
120
0x0, 0x0, 0x0, 0xaa5b, /* IRQ steering */
121
0x0, 0x0, 0x0, 0x0,
122
};
123
124
static const uint32_t ac97_hdr[] = { /* dev f function 3 - devfn = 7b */
125
0xffffff81, 0x0, 0x0, 0x0,
126
0x0, 0x0, 0x0, 0x0,
127
128
0x20931022, 0x2a00041, 0x4010001, 0x0,
129
0x1481, 0x0, 0x0, 0x0, /* I/O BAR-128 */
130
0x0, 0x0, 0x0, 0x20931022,
131
0x0, 0x0, 0x0, 0x205, /* IntB, IRQ5 */
132
0x0, 0x0, 0x0, 0x0,
133
0x0, 0x0, 0x0, 0x0,
134
0x0, 0x0, 0x0, 0x0,
135
};
136
137
static const uint32_t ohci_hdr[] = { /* dev f function 4 - devfn = 7c */
138
0xfffff000, 0x0, 0x0, 0x0,
139
0x0, 0x0, 0x0, 0x0,
140
141
0x20941022, 0x2300006, 0xc031002, 0x0,
142
0xfe01a000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */
143
0x0, 0x0, 0x0, 0x20941022,
144
0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */
145
0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O,
146
44 is mask 8103 (power control) */
147
0x0, 0x0, 0x0, 0x0,
148
0x0, 0x0, 0x0, 0x0,
149
};
150
151
static const uint32_t ehci_hdr[] = { /* dev f function 4 - devfn = 7d */
152
0xfffff000, 0x0, 0x0, 0x0,
153
0x0, 0x0, 0x0, 0x0,
154
155
0x20951022, 0x2300006, 0xc032002, 0x0,
156
0xfe01b000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */
157
0x0, 0x0, 0x0, 0x20951022,
158
0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */
159
0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O, 44 is
160
mask 8103 (power control) */
161
#if 0
162
0x1, 0x40080000, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */
163
#endif
164
0x01000001, 0x0, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */
165
0x2020, 0x0, 0x0, 0x0, /* (EHCI page 8) 60 SBRN (R/O),
166
61 FLADJ (R/W), PORTWAKECAP */
167
};
168
169
static uint32_t ff_loc = ~0;
170
static uint32_t zero_loc;
171
static int bar_probing; /* Set after a write of ~0 to a BAR */
172
static int is_lx;
173
174
#define NB_SLOT 0x1 /* Northbridge - GX chip - Device 1 */
175
#define SB_SLOT 0xf /* Southbridge - CS5536 chip - Device F */
176
177
static int is_simulated(unsigned int bus, unsigned int devfn)
178
{
179
return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
180
(PCI_SLOT(devfn) == SB_SLOT)));
181
}
182
183
static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
184
{
185
uint32_t addr;
186
187
/*
188
* This is a little bit tricky. The header maps consist of
189
* 0x20 bytes of size masks, followed by 0x70 bytes of header data.
190
* In the normal case, when not probing a BAR's size, we want
191
* to access the header data, so we add 0x20 to the reg offset,
192
* thus skipping the size mask area.
193
* In the BAR probing case, we want to access the size mask for
194
* the BAR, so we subtract 0x10 (the config header offset for
195
* BAR0), and don't skip the size mask area.
196
*/
197
198
addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
199
200
bar_probing = 0;
201
return (uint32_t *)addr;
202
}
203
204
static int pci_olpc_read(unsigned int seg, unsigned int bus,
205
unsigned int devfn, int reg, int len, uint32_t *value)
206
{
207
uint32_t *addr;
208
209
/* Use the hardware mechanism for non-simulated devices */
210
if (!is_simulated(bus, devfn))
211
return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
212
213
/*
214
* No device has config registers past 0x70, so we save table space
215
* by not storing entries for the nonexistent registers
216
*/
217
if (reg >= 0x70)
218
addr = &zero_loc;
219
else {
220
switch (devfn) {
221
case 0x8:
222
addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
223
break;
224
case 0x9:
225
addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
226
break;
227
case 0xa:
228
addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
229
break;
230
case 0x78:
231
addr = hdr_addr(isa_hdr, reg);
232
break;
233
case 0x7b:
234
addr = hdr_addr(ac97_hdr, reg);
235
break;
236
case 0x7c:
237
addr = hdr_addr(ohci_hdr, reg);
238
break;
239
case 0x7d:
240
addr = hdr_addr(ehci_hdr, reg);
241
break;
242
default:
243
addr = &ff_loc;
244
break;
245
}
246
}
247
switch (len) {
248
case 1:
249
*value = *(uint8_t *)addr;
250
break;
251
case 2:
252
*value = *(uint16_t *)addr;
253
break;
254
case 4:
255
*value = *addr;
256
break;
257
default:
258
BUG();
259
}
260
261
return 0;
262
}
263
264
static int pci_olpc_write(unsigned int seg, unsigned int bus,
265
unsigned int devfn, int reg, int len, uint32_t value)
266
{
267
/* Use the hardware mechanism for non-simulated devices */
268
if (!is_simulated(bus, devfn))
269
return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
270
271
/* XXX we may want to extend this to simulate EHCI power management */
272
273
/*
274
* Mostly we just discard writes, but if the write is a size probe
275
* (i.e. writing ~0 to a BAR), we remember it and arrange to return
276
* the appropriate size mask on the next read. This is cheating
277
* to some extent, because it depends on the fact that the next
278
* access after such a write will always be a read to the same BAR.
279
*/
280
281
if ((reg >= 0x10) && (reg < 0x2c)) {
282
/* write is to a BAR */
283
if (value == ~0)
284
bar_probing = 1;
285
} else {
286
/*
287
* No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
288
* CACHE_LINE_SIZE, or PM registers.
289
*/
290
if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
291
(reg != PCI_LATENCY_TIMER) &&
292
(reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
293
printk(KERN_WARNING "OLPC PCI: Config write to devfn"
294
" %x reg %x value %x\n", devfn, reg, value);
295
}
296
297
return 0;
298
}
299
300
static struct pci_raw_ops pci_olpc_conf = {
301
.read = pci_olpc_read,
302
.write = pci_olpc_write,
303
};
304
305
int __init pci_olpc_init(void)
306
{
307
printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
308
raw_pci_ops = &pci_olpc_conf;
309
is_lx = is_geode_lx();
310
return 0;
311
}
312
313