Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/platform/efi/efi.c
10820 views
1
/*
2
* Common EFI (Extensible Firmware Interface) support functions
3
* Based on Extensible Firmware Interface Specification version 1.0
4
*
5
* Copyright (C) 1999 VA Linux Systems
6
* Copyright (C) 1999 Walt Drummond <[email protected]>
7
* Copyright (C) 1999-2002 Hewlett-Packard Co.
8
* David Mosberger-Tang <[email protected]>
9
* Stephane Eranian <[email protected]>
10
* Copyright (C) 2005-2008 Intel Co.
11
* Fenghua Yu <[email protected]>
12
* Bibo Mao <[email protected]>
13
* Chandramouli Narayanan <[email protected]>
14
* Huang Ying <[email protected]>
15
*
16
* Copied from efi_32.c to eliminate the duplicated code between EFI
17
* 32/64 support code. --ying 2007-10-26
18
*
19
* All EFI Runtime Services are not implemented yet as EFI only
20
* supports physical mode addressing on SoftSDV. This is to be fixed
21
* in a future version. --drummond 1999-07-20
22
*
23
* Implemented EFI runtime services and virtual mode calls. --davidm
24
*
25
* Goutham Rao: <[email protected]>
26
* Skip non-WB memory and ignore empty memory ranges.
27
*/
28
29
#include <linux/kernel.h>
30
#include <linux/init.h>
31
#include <linux/efi.h>
32
#include <linux/bootmem.h>
33
#include <linux/memblock.h>
34
#include <linux/spinlock.h>
35
#include <linux/uaccess.h>
36
#include <linux/time.h>
37
#include <linux/io.h>
38
#include <linux/reboot.h>
39
#include <linux/bcd.h>
40
41
#include <asm/setup.h>
42
#include <asm/efi.h>
43
#include <asm/time.h>
44
#include <asm/cacheflush.h>
45
#include <asm/tlbflush.h>
46
#include <asm/x86_init.h>
47
48
#define EFI_DEBUG 1
49
#define PFX "EFI: "
50
51
int efi_enabled;
52
EXPORT_SYMBOL(efi_enabled);
53
54
struct efi efi;
55
EXPORT_SYMBOL(efi);
56
57
struct efi_memory_map memmap;
58
59
static struct efi efi_phys __initdata;
60
static efi_system_table_t efi_systab __initdata;
61
62
static int __init setup_noefi(char *arg)
63
{
64
efi_enabled = 0;
65
return 0;
66
}
67
early_param("noefi", setup_noefi);
68
69
int add_efi_memmap;
70
EXPORT_SYMBOL(add_efi_memmap);
71
72
static int __init setup_add_efi_memmap(char *arg)
73
{
74
add_efi_memmap = 1;
75
return 0;
76
}
77
early_param("add_efi_memmap", setup_add_efi_memmap);
78
79
80
static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
81
{
82
return efi_call_virt2(get_time, tm, tc);
83
}
84
85
static efi_status_t virt_efi_set_time(efi_time_t *tm)
86
{
87
return efi_call_virt1(set_time, tm);
88
}
89
90
static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
91
efi_bool_t *pending,
92
efi_time_t *tm)
93
{
94
return efi_call_virt3(get_wakeup_time,
95
enabled, pending, tm);
96
}
97
98
static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
99
{
100
return efi_call_virt2(set_wakeup_time,
101
enabled, tm);
102
}
103
104
static efi_status_t virt_efi_get_variable(efi_char16_t *name,
105
efi_guid_t *vendor,
106
u32 *attr,
107
unsigned long *data_size,
108
void *data)
109
{
110
return efi_call_virt5(get_variable,
111
name, vendor, attr,
112
data_size, data);
113
}
114
115
static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
116
efi_char16_t *name,
117
efi_guid_t *vendor)
118
{
119
return efi_call_virt3(get_next_variable,
120
name_size, name, vendor);
121
}
122
123
static efi_status_t virt_efi_set_variable(efi_char16_t *name,
124
efi_guid_t *vendor,
125
unsigned long attr,
126
unsigned long data_size,
127
void *data)
128
{
129
return efi_call_virt5(set_variable,
130
name, vendor, attr,
131
data_size, data);
132
}
133
134
static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
135
{
136
return efi_call_virt1(get_next_high_mono_count, count);
137
}
138
139
static void virt_efi_reset_system(int reset_type,
140
efi_status_t status,
141
unsigned long data_size,
142
efi_char16_t *data)
143
{
144
efi_call_virt4(reset_system, reset_type, status,
145
data_size, data);
146
}
147
148
static efi_status_t __init phys_efi_set_virtual_address_map(
149
unsigned long memory_map_size,
150
unsigned long descriptor_size,
151
u32 descriptor_version,
152
efi_memory_desc_t *virtual_map)
153
{
154
efi_status_t status;
155
156
efi_call_phys_prelog();
157
status = efi_call_phys4(efi_phys.set_virtual_address_map,
158
memory_map_size, descriptor_size,
159
descriptor_version, virtual_map);
160
efi_call_phys_epilog();
161
return status;
162
}
163
164
static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
165
efi_time_cap_t *tc)
166
{
167
efi_status_t status;
168
169
efi_call_phys_prelog();
170
status = efi_call_phys2(efi_phys.get_time, tm, tc);
171
efi_call_phys_epilog();
172
return status;
173
}
174
175
int efi_set_rtc_mmss(unsigned long nowtime)
176
{
177
int real_seconds, real_minutes;
178
efi_status_t status;
179
efi_time_t eft;
180
efi_time_cap_t cap;
181
182
status = efi.get_time(&eft, &cap);
183
if (status != EFI_SUCCESS) {
184
printk(KERN_ERR "Oops: efitime: can't read time!\n");
185
return -1;
186
}
187
188
real_seconds = nowtime % 60;
189
real_minutes = nowtime / 60;
190
if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
191
real_minutes += 30;
192
real_minutes %= 60;
193
eft.minute = real_minutes;
194
eft.second = real_seconds;
195
196
status = efi.set_time(&eft);
197
if (status != EFI_SUCCESS) {
198
printk(KERN_ERR "Oops: efitime: can't write time!\n");
199
return -1;
200
}
201
return 0;
202
}
203
204
unsigned long efi_get_time(void)
205
{
206
efi_status_t status;
207
efi_time_t eft;
208
efi_time_cap_t cap;
209
210
status = efi.get_time(&eft, &cap);
211
if (status != EFI_SUCCESS)
212
printk(KERN_ERR "Oops: efitime: can't read time!\n");
213
214
return mktime(eft.year, eft.month, eft.day, eft.hour,
215
eft.minute, eft.second);
216
}
217
218
/*
219
* Tell the kernel about the EFI memory map. This might include
220
* more than the max 128 entries that can fit in the e820 legacy
221
* (zeropage) memory map.
222
*/
223
224
static void __init do_add_efi_memmap(void)
225
{
226
void *p;
227
228
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
229
efi_memory_desc_t *md = p;
230
unsigned long long start = md->phys_addr;
231
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
232
int e820_type;
233
234
switch (md->type) {
235
case EFI_LOADER_CODE:
236
case EFI_LOADER_DATA:
237
case EFI_BOOT_SERVICES_CODE:
238
case EFI_BOOT_SERVICES_DATA:
239
case EFI_CONVENTIONAL_MEMORY:
240
if (md->attribute & EFI_MEMORY_WB)
241
e820_type = E820_RAM;
242
else
243
e820_type = E820_RESERVED;
244
break;
245
case EFI_ACPI_RECLAIM_MEMORY:
246
e820_type = E820_ACPI;
247
break;
248
case EFI_ACPI_MEMORY_NVS:
249
e820_type = E820_NVS;
250
break;
251
case EFI_UNUSABLE_MEMORY:
252
e820_type = E820_UNUSABLE;
253
break;
254
default:
255
/*
256
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
257
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
258
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
259
*/
260
e820_type = E820_RESERVED;
261
break;
262
}
263
e820_add_region(start, size, e820_type);
264
}
265
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
266
}
267
268
void __init efi_memblock_x86_reserve_range(void)
269
{
270
unsigned long pmap;
271
272
#ifdef CONFIG_X86_32
273
pmap = boot_params.efi_info.efi_memmap;
274
#else
275
pmap = (boot_params.efi_info.efi_memmap |
276
((__u64)boot_params.efi_info.efi_memmap_hi<<32));
277
#endif
278
memmap.phys_map = (void *)pmap;
279
memmap.nr_map = boot_params.efi_info.efi_memmap_size /
280
boot_params.efi_info.efi_memdesc_size;
281
memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
282
memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
283
memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
284
"EFI memmap");
285
}
286
287
#if EFI_DEBUG
288
static void __init print_efi_memmap(void)
289
{
290
efi_memory_desc_t *md;
291
void *p;
292
int i;
293
294
for (p = memmap.map, i = 0;
295
p < memmap.map_end;
296
p += memmap.desc_size, i++) {
297
md = p;
298
printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
299
"range=[0x%016llx-0x%016llx) (%lluMB)\n",
300
i, md->type, md->attribute, md->phys_addr,
301
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
302
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
303
}
304
}
305
#endif /* EFI_DEBUG */
306
307
void __init efi_reserve_boot_services(void)
308
{
309
void *p;
310
311
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
312
efi_memory_desc_t *md = p;
313
u64 start = md->phys_addr;
314
u64 size = md->num_pages << EFI_PAGE_SHIFT;
315
316
if (md->type != EFI_BOOT_SERVICES_CODE &&
317
md->type != EFI_BOOT_SERVICES_DATA)
318
continue;
319
/* Only reserve where possible:
320
* - Not within any already allocated areas
321
* - Not over any memory area (really needed, if above?)
322
* - Not within any part of the kernel
323
* - Not the bios reserved area
324
*/
325
if ((start+size >= virt_to_phys(_text)
326
&& start <= virt_to_phys(_end)) ||
327
!e820_all_mapped(start, start+size, E820_RAM) ||
328
memblock_x86_check_reserved_size(&start, &size,
329
1<<EFI_PAGE_SHIFT)) {
330
/* Could not reserve, skip it */
331
md->num_pages = 0;
332
memblock_dbg(PFX "Could not reserve boot range "
333
"[0x%010llx-0x%010llx]\n",
334
start, start+size-1);
335
} else
336
memblock_x86_reserve_range(start, start+size,
337
"EFI Boot");
338
}
339
}
340
341
static void __init efi_free_boot_services(void)
342
{
343
void *p;
344
345
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
346
efi_memory_desc_t *md = p;
347
unsigned long long start = md->phys_addr;
348
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
349
350
if (md->type != EFI_BOOT_SERVICES_CODE &&
351
md->type != EFI_BOOT_SERVICES_DATA)
352
continue;
353
354
/* Could not reserve boot area */
355
if (!size)
356
continue;
357
358
free_bootmem_late(start, size);
359
}
360
}
361
362
void __init efi_init(void)
363
{
364
efi_config_table_t *config_tables;
365
efi_runtime_services_t *runtime;
366
efi_char16_t *c16;
367
char vendor[100] = "unknown";
368
int i = 0;
369
void *tmp;
370
371
#ifdef CONFIG_X86_32
372
efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
373
#else
374
efi_phys.systab = (efi_system_table_t *)
375
(boot_params.efi_info.efi_systab |
376
((__u64)boot_params.efi_info.efi_systab_hi<<32));
377
#endif
378
379
efi.systab = early_ioremap((unsigned long)efi_phys.systab,
380
sizeof(efi_system_table_t));
381
if (efi.systab == NULL)
382
printk(KERN_ERR "Couldn't map the EFI system table!\n");
383
memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
384
early_iounmap(efi.systab, sizeof(efi_system_table_t));
385
efi.systab = &efi_systab;
386
387
/*
388
* Verify the EFI Table
389
*/
390
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
391
printk(KERN_ERR "EFI system table signature incorrect!\n");
392
if ((efi.systab->hdr.revision >> 16) == 0)
393
printk(KERN_ERR "Warning: EFI system table version "
394
"%d.%02d, expected 1.00 or greater!\n",
395
efi.systab->hdr.revision >> 16,
396
efi.systab->hdr.revision & 0xffff);
397
398
/*
399
* Show what we know for posterity
400
*/
401
c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
402
if (c16) {
403
for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
404
vendor[i] = *c16++;
405
vendor[i] = '\0';
406
} else
407
printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
408
early_iounmap(tmp, 2);
409
410
printk(KERN_INFO "EFI v%u.%.02u by %s\n",
411
efi.systab->hdr.revision >> 16,
412
efi.systab->hdr.revision & 0xffff, vendor);
413
414
/*
415
* Let's see what config tables the firmware passed to us.
416
*/
417
config_tables = early_ioremap(
418
efi.systab->tables,
419
efi.systab->nr_tables * sizeof(efi_config_table_t));
420
if (config_tables == NULL)
421
printk(KERN_ERR "Could not map EFI Configuration Table!\n");
422
423
printk(KERN_INFO);
424
for (i = 0; i < efi.systab->nr_tables; i++) {
425
if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
426
efi.mps = config_tables[i].table;
427
printk(" MPS=0x%lx ", config_tables[i].table);
428
} else if (!efi_guidcmp(config_tables[i].guid,
429
ACPI_20_TABLE_GUID)) {
430
efi.acpi20 = config_tables[i].table;
431
printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
432
} else if (!efi_guidcmp(config_tables[i].guid,
433
ACPI_TABLE_GUID)) {
434
efi.acpi = config_tables[i].table;
435
printk(" ACPI=0x%lx ", config_tables[i].table);
436
} else if (!efi_guidcmp(config_tables[i].guid,
437
SMBIOS_TABLE_GUID)) {
438
efi.smbios = config_tables[i].table;
439
printk(" SMBIOS=0x%lx ", config_tables[i].table);
440
#ifdef CONFIG_X86_UV
441
} else if (!efi_guidcmp(config_tables[i].guid,
442
UV_SYSTEM_TABLE_GUID)) {
443
efi.uv_systab = config_tables[i].table;
444
printk(" UVsystab=0x%lx ", config_tables[i].table);
445
#endif
446
} else if (!efi_guidcmp(config_tables[i].guid,
447
HCDP_TABLE_GUID)) {
448
efi.hcdp = config_tables[i].table;
449
printk(" HCDP=0x%lx ", config_tables[i].table);
450
} else if (!efi_guidcmp(config_tables[i].guid,
451
UGA_IO_PROTOCOL_GUID)) {
452
efi.uga = config_tables[i].table;
453
printk(" UGA=0x%lx ", config_tables[i].table);
454
}
455
}
456
printk("\n");
457
early_iounmap(config_tables,
458
efi.systab->nr_tables * sizeof(efi_config_table_t));
459
460
/*
461
* Check out the runtime services table. We need to map
462
* the runtime services table so that we can grab the physical
463
* address of several of the EFI runtime functions, needed to
464
* set the firmware into virtual mode.
465
*/
466
runtime = early_ioremap((unsigned long)efi.systab->runtime,
467
sizeof(efi_runtime_services_t));
468
if (runtime != NULL) {
469
/*
470
* We will only need *early* access to the following
471
* two EFI runtime services before set_virtual_address_map
472
* is invoked.
473
*/
474
efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
475
efi_phys.set_virtual_address_map =
476
(efi_set_virtual_address_map_t *)
477
runtime->set_virtual_address_map;
478
/*
479
* Make efi_get_time can be called before entering
480
* virtual mode.
481
*/
482
efi.get_time = phys_efi_get_time;
483
} else
484
printk(KERN_ERR "Could not map the EFI runtime service "
485
"table!\n");
486
early_iounmap(runtime, sizeof(efi_runtime_services_t));
487
488
/* Map the EFI memory map */
489
memmap.map = early_ioremap((unsigned long)memmap.phys_map,
490
memmap.nr_map * memmap.desc_size);
491
if (memmap.map == NULL)
492
printk(KERN_ERR "Could not map the EFI memory map!\n");
493
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
494
495
if (memmap.desc_size != sizeof(efi_memory_desc_t))
496
printk(KERN_WARNING
497
"Kernel-defined memdesc doesn't match the one from EFI!\n");
498
499
if (add_efi_memmap)
500
do_add_efi_memmap();
501
502
#ifdef CONFIG_X86_32
503
x86_platform.get_wallclock = efi_get_time;
504
x86_platform.set_wallclock = efi_set_rtc_mmss;
505
#endif
506
507
#if EFI_DEBUG
508
print_efi_memmap();
509
#endif
510
}
511
512
void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
513
{
514
u64 addr, npages;
515
516
addr = md->virt_addr;
517
npages = md->num_pages;
518
519
memrange_efi_to_native(&addr, &npages);
520
521
if (executable)
522
set_memory_x(addr, npages);
523
else
524
set_memory_nx(addr, npages);
525
}
526
527
static void __init runtime_code_page_mkexec(void)
528
{
529
efi_memory_desc_t *md;
530
void *p;
531
532
/* Make EFI runtime service code area executable */
533
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
534
md = p;
535
536
if (md->type != EFI_RUNTIME_SERVICES_CODE)
537
continue;
538
539
efi_set_executable(md, true);
540
}
541
}
542
543
/*
544
* This function will switch the EFI runtime services to virtual mode.
545
* Essentially, look through the EFI memmap and map every region that
546
* has the runtime attribute bit set in its memory descriptor and update
547
* that memory descriptor with the virtual address obtained from ioremap().
548
* This enables the runtime services to be called without having to
549
* thunk back into physical mode for every invocation.
550
*/
551
void __init efi_enter_virtual_mode(void)
552
{
553
efi_memory_desc_t *md, *prev_md = NULL;
554
efi_status_t status;
555
unsigned long size;
556
u64 end, systab, addr, npages, end_pfn;
557
void *p, *va, *new_memmap = NULL;
558
int count = 0;
559
560
efi.systab = NULL;
561
562
/* Merge contiguous regions of the same type and attribute */
563
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
564
u64 prev_size;
565
md = p;
566
567
if (!prev_md) {
568
prev_md = md;
569
continue;
570
}
571
572
if (prev_md->type != md->type ||
573
prev_md->attribute != md->attribute) {
574
prev_md = md;
575
continue;
576
}
577
578
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
579
580
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
581
prev_md->num_pages += md->num_pages;
582
md->type = EFI_RESERVED_TYPE;
583
md->attribute = 0;
584
continue;
585
}
586
prev_md = md;
587
}
588
589
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
590
md = p;
591
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
592
md->type != EFI_BOOT_SERVICES_CODE &&
593
md->type != EFI_BOOT_SERVICES_DATA)
594
continue;
595
596
size = md->num_pages << EFI_PAGE_SHIFT;
597
end = md->phys_addr + size;
598
599
end_pfn = PFN_UP(end);
600
if (end_pfn <= max_low_pfn_mapped
601
|| (end_pfn > (1UL << (32 - PAGE_SHIFT))
602
&& end_pfn <= max_pfn_mapped))
603
va = __va(md->phys_addr);
604
else
605
va = efi_ioremap(md->phys_addr, size, md->type);
606
607
md->virt_addr = (u64) (unsigned long) va;
608
609
if (!va) {
610
printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
611
(unsigned long long)md->phys_addr);
612
continue;
613
}
614
615
if (!(md->attribute & EFI_MEMORY_WB)) {
616
addr = md->virt_addr;
617
npages = md->num_pages;
618
memrange_efi_to_native(&addr, &npages);
619
set_memory_uc(addr, npages);
620
}
621
622
systab = (u64) (unsigned long) efi_phys.systab;
623
if (md->phys_addr <= systab && systab < end) {
624
systab += md->virt_addr - md->phys_addr;
625
efi.systab = (efi_system_table_t *) (unsigned long) systab;
626
}
627
new_memmap = krealloc(new_memmap,
628
(count + 1) * memmap.desc_size,
629
GFP_KERNEL);
630
memcpy(new_memmap + (count * memmap.desc_size), md,
631
memmap.desc_size);
632
count++;
633
}
634
635
BUG_ON(!efi.systab);
636
637
status = phys_efi_set_virtual_address_map(
638
memmap.desc_size * count,
639
memmap.desc_size,
640
memmap.desc_version,
641
(efi_memory_desc_t *)__pa(new_memmap));
642
643
if (status != EFI_SUCCESS) {
644
printk(KERN_ALERT "Unable to switch EFI into virtual mode "
645
"(status=%lx)!\n", status);
646
panic("EFI call to SetVirtualAddressMap() failed!");
647
}
648
649
/*
650
* Thankfully, it does seem that no runtime services other than
651
* SetVirtualAddressMap() will touch boot services code, so we can
652
* get rid of it all at this point
653
*/
654
efi_free_boot_services();
655
656
/*
657
* Now that EFI is in virtual mode, update the function
658
* pointers in the runtime service table to the new virtual addresses.
659
*
660
* Call EFI services through wrapper functions.
661
*/
662
efi.get_time = virt_efi_get_time;
663
efi.set_time = virt_efi_set_time;
664
efi.get_wakeup_time = virt_efi_get_wakeup_time;
665
efi.set_wakeup_time = virt_efi_set_wakeup_time;
666
efi.get_variable = virt_efi_get_variable;
667
efi.get_next_variable = virt_efi_get_next_variable;
668
efi.set_variable = virt_efi_set_variable;
669
efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
670
efi.reset_system = virt_efi_reset_system;
671
efi.set_virtual_address_map = NULL;
672
if (__supported_pte_mask & _PAGE_NX)
673
runtime_code_page_mkexec();
674
early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
675
memmap.map = NULL;
676
kfree(new_memmap);
677
}
678
679
/*
680
* Convenience functions to obtain memory types and attributes
681
*/
682
u32 efi_mem_type(unsigned long phys_addr)
683
{
684
efi_memory_desc_t *md;
685
void *p;
686
687
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
688
md = p;
689
if ((md->phys_addr <= phys_addr) &&
690
(phys_addr < (md->phys_addr +
691
(md->num_pages << EFI_PAGE_SHIFT))))
692
return md->type;
693
}
694
return 0;
695
}
696
697
u64 efi_mem_attributes(unsigned long phys_addr)
698
{
699
efi_memory_desc_t *md;
700
void *p;
701
702
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
703
md = p;
704
if ((md->phys_addr <= phys_addr) &&
705
(phys_addr < (md->phys_addr +
706
(md->num_pages << EFI_PAGE_SHIFT))))
707
return md->attribute;
708
}
709
return 0;
710
}
711
712