Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/x86/platform/uv/uv_time.c
10818 views
1
/*
2
* SGI RTC clock/timer routines.
3
*
4
* This program is free software; you can redistribute it and/or modify
5
* it under the terms of the GNU General Public License as published by
6
* the Free Software Foundation; either version 2 of the License, or
7
* (at your option) any later version.
8
*
9
* This program is distributed in the hope that it will be useful,
10
* but WITHOUT ANY WARRANTY; without even the implied warranty of
11
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
* GNU General Public License for more details.
13
*
14
* You should have received a copy of the GNU General Public License
15
* along with this program; if not, write to the Free Software
16
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17
*
18
* Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19
* Copyright (c) Dimitri Sivanich
20
*/
21
#include <linux/clockchips.h>
22
#include <linux/slab.h>
23
24
#include <asm/uv/uv_mmrs.h>
25
#include <asm/uv/uv_hub.h>
26
#include <asm/uv/bios.h>
27
#include <asm/uv/uv.h>
28
#include <asm/apic.h>
29
#include <asm/cpu.h>
30
31
#define RTC_NAME "sgi_rtc"
32
33
static cycle_t uv_read_rtc(struct clocksource *cs);
34
static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35
static void uv_rtc_timer_setup(enum clock_event_mode,
36
struct clock_event_device *);
37
38
static struct clocksource clocksource_uv = {
39
.name = RTC_NAME,
40
.rating = 400,
41
.read = uv_read_rtc,
42
.mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
44
};
45
46
static struct clock_event_device clock_event_device_uv = {
47
.name = RTC_NAME,
48
.features = CLOCK_EVT_FEAT_ONESHOT,
49
.shift = 20,
50
.rating = 400,
51
.irq = -1,
52
.set_next_event = uv_rtc_next_event,
53
.set_mode = uv_rtc_timer_setup,
54
.event_handler = NULL,
55
};
56
57
static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58
59
/* There is one of these allocated per node */
60
struct uv_rtc_timer_head {
61
spinlock_t lock;
62
/* next cpu waiting for timer, local node relative: */
63
int next_cpu;
64
/* number of cpus on this node: */
65
int ncpus;
66
struct {
67
int lcpu; /* systemwide logical cpu number */
68
u64 expires; /* next timer expiration for this cpu */
69
} cpu[1];
70
};
71
72
/*
73
* Access to uv_rtc_timer_head via blade id.
74
*/
75
static struct uv_rtc_timer_head **blade_info __read_mostly;
76
77
static int uv_rtc_evt_enable;
78
79
/*
80
* Hardware interface routines
81
*/
82
83
/* Send IPIs to another node */
84
static void uv_rtc_send_IPI(int cpu)
85
{
86
unsigned long apicid, val;
87
int pnode;
88
89
apicid = cpu_physical_id(cpu);
90
pnode = uv_apicid_to_pnode(apicid);
91
apicid |= uv_apicid_hibits;
92
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93
(apicid << UVH_IPI_INT_APIC_ID_SHFT) |
94
(X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
95
96
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
97
}
98
99
/* Check for an RTC interrupt pending */
100
static int uv_intr_pending(int pnode)
101
{
102
if (is_uv1_hub())
103
return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
104
UV1H_EVENT_OCCURRED0_RTC1_MASK;
105
else
106
return uv_read_global_mmr64(pnode, UV2H_EVENT_OCCURRED2) &
107
UV2H_EVENT_OCCURRED2_RTC_1_MASK;
108
}
109
110
/* Setup interrupt and return non-zero if early expiration occurred. */
111
static int uv_setup_intr(int cpu, u64 expires)
112
{
113
u64 val;
114
unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115
int pnode = uv_cpu_to_pnode(cpu);
116
117
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
118
UVH_RTC1_INT_CONFIG_M_MASK);
119
uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
120
121
if (is_uv1_hub())
122
uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
123
UV1H_EVENT_OCCURRED0_RTC1_MASK);
124
else
125
uv_write_global_mmr64(pnode, UV2H_EVENT_OCCURRED2_ALIAS,
126
UV2H_EVENT_OCCURRED2_RTC_1_MASK);
127
128
val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
129
((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
130
131
/* Set configuration */
132
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133
/* Initialize comparator value */
134
uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
135
136
if (uv_read_rtc(NULL) <= expires)
137
return 0;
138
139
return !uv_intr_pending(pnode);
140
}
141
142
/*
143
* Per-cpu timer tracking routines
144
*/
145
146
static __init void uv_rtc_deallocate_timers(void)
147
{
148
int bid;
149
150
for_each_possible_blade(bid) {
151
kfree(blade_info[bid]);
152
}
153
kfree(blade_info);
154
}
155
156
/* Allocate per-node list of cpu timer expiration times. */
157
static __init int uv_rtc_allocate_timers(void)
158
{
159
int cpu;
160
161
blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162
if (!blade_info)
163
return -ENOMEM;
164
memset(blade_info, 0, uv_possible_blades * sizeof(void *));
165
166
for_each_present_cpu(cpu) {
167
int nid = cpu_to_node(cpu);
168
int bid = uv_cpu_to_blade_id(cpu);
169
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
170
struct uv_rtc_timer_head *head = blade_info[bid];
171
172
if (!head) {
173
head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
174
(uv_blade_nr_possible_cpus(bid) *
175
2 * sizeof(u64)),
176
GFP_KERNEL, nid);
177
if (!head) {
178
uv_rtc_deallocate_timers();
179
return -ENOMEM;
180
}
181
spin_lock_init(&head->lock);
182
head->ncpus = uv_blade_nr_possible_cpus(bid);
183
head->next_cpu = -1;
184
blade_info[bid] = head;
185
}
186
187
head->cpu[bcpu].lcpu = cpu;
188
head->cpu[bcpu].expires = ULLONG_MAX;
189
}
190
191
return 0;
192
}
193
194
/* Find and set the next expiring timer. */
195
static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
196
{
197
u64 lowest = ULLONG_MAX;
198
int c, bcpu = -1;
199
200
head->next_cpu = -1;
201
for (c = 0; c < head->ncpus; c++) {
202
u64 exp = head->cpu[c].expires;
203
if (exp < lowest) {
204
bcpu = c;
205
lowest = exp;
206
}
207
}
208
if (bcpu >= 0) {
209
head->next_cpu = bcpu;
210
c = head->cpu[bcpu].lcpu;
211
if (uv_setup_intr(c, lowest))
212
/* If we didn't set it up in time, trigger */
213
uv_rtc_send_IPI(c);
214
} else {
215
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
216
UVH_RTC1_INT_CONFIG_M_MASK);
217
}
218
}
219
220
/*
221
* Set expiration time for current cpu.
222
*
223
* Returns 1 if we missed the expiration time.
224
*/
225
static int uv_rtc_set_timer(int cpu, u64 expires)
226
{
227
int pnode = uv_cpu_to_pnode(cpu);
228
int bid = uv_cpu_to_blade_id(cpu);
229
struct uv_rtc_timer_head *head = blade_info[bid];
230
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
231
u64 *t = &head->cpu[bcpu].expires;
232
unsigned long flags;
233
int next_cpu;
234
235
spin_lock_irqsave(&head->lock, flags);
236
237
next_cpu = head->next_cpu;
238
*t = expires;
239
240
/* Will this one be next to go off? */
241
if (next_cpu < 0 || bcpu == next_cpu ||
242
expires < head->cpu[next_cpu].expires) {
243
head->next_cpu = bcpu;
244
if (uv_setup_intr(cpu, expires)) {
245
*t = ULLONG_MAX;
246
uv_rtc_find_next_timer(head, pnode);
247
spin_unlock_irqrestore(&head->lock, flags);
248
return -ETIME;
249
}
250
}
251
252
spin_unlock_irqrestore(&head->lock, flags);
253
return 0;
254
}
255
256
/*
257
* Unset expiration time for current cpu.
258
*
259
* Returns 1 if this timer was pending.
260
*/
261
static int uv_rtc_unset_timer(int cpu, int force)
262
{
263
int pnode = uv_cpu_to_pnode(cpu);
264
int bid = uv_cpu_to_blade_id(cpu);
265
struct uv_rtc_timer_head *head = blade_info[bid];
266
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
267
u64 *t = &head->cpu[bcpu].expires;
268
unsigned long flags;
269
int rc = 0;
270
271
spin_lock_irqsave(&head->lock, flags);
272
273
if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
274
rc = 1;
275
276
if (rc) {
277
*t = ULLONG_MAX;
278
/* Was the hardware setup for this timer? */
279
if (head->next_cpu == bcpu)
280
uv_rtc_find_next_timer(head, pnode);
281
}
282
283
spin_unlock_irqrestore(&head->lock, flags);
284
285
return rc;
286
}
287
288
289
/*
290
* Kernel interface routines.
291
*/
292
293
/*
294
* Read the RTC.
295
*
296
* Starting with HUB rev 2.0, the UV RTC register is replicated across all
297
* cachelines of it's own page. This allows faster simultaneous reads
298
* from a given socket.
299
*/
300
static cycle_t uv_read_rtc(struct clocksource *cs)
301
{
302
unsigned long offset;
303
304
if (uv_get_min_hub_revision_id() == 1)
305
offset = 0;
306
else
307
offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
308
309
return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
310
}
311
312
/*
313
* Program the next event, relative to now
314
*/
315
static int uv_rtc_next_event(unsigned long delta,
316
struct clock_event_device *ced)
317
{
318
int ced_cpu = cpumask_first(ced->cpumask);
319
320
return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
321
}
322
323
/*
324
* Setup the RTC timer in oneshot mode
325
*/
326
static void uv_rtc_timer_setup(enum clock_event_mode mode,
327
struct clock_event_device *evt)
328
{
329
int ced_cpu = cpumask_first(evt->cpumask);
330
331
switch (mode) {
332
case CLOCK_EVT_MODE_PERIODIC:
333
case CLOCK_EVT_MODE_ONESHOT:
334
case CLOCK_EVT_MODE_RESUME:
335
/* Nothing to do here yet */
336
break;
337
case CLOCK_EVT_MODE_UNUSED:
338
case CLOCK_EVT_MODE_SHUTDOWN:
339
uv_rtc_unset_timer(ced_cpu, 1);
340
break;
341
}
342
}
343
344
static void uv_rtc_interrupt(void)
345
{
346
int cpu = smp_processor_id();
347
struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
348
349
if (!ced || !ced->event_handler)
350
return;
351
352
if (uv_rtc_unset_timer(cpu, 0) != 1)
353
return;
354
355
ced->event_handler(ced);
356
}
357
358
static int __init uv_enable_evt_rtc(char *str)
359
{
360
uv_rtc_evt_enable = 1;
361
362
return 1;
363
}
364
__setup("uvrtcevt", uv_enable_evt_rtc);
365
366
static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
367
{
368
struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
369
370
*ced = clock_event_device_uv;
371
ced->cpumask = cpumask_of(smp_processor_id());
372
clockevents_register_device(ced);
373
}
374
375
static __init int uv_rtc_setup_clock(void)
376
{
377
int rc;
378
379
if (!is_uv_system())
380
return -ENODEV;
381
382
/* If single blade, prefer tsc */
383
if (uv_num_possible_blades() == 1)
384
clocksource_uv.rating = 250;
385
386
rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
387
if (rc)
388
printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
389
else
390
printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
391
sn_rtc_cycles_per_second/(unsigned long)1E6);
392
393
if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
394
return rc;
395
396
/* Setup and register clockevents */
397
rc = uv_rtc_allocate_timers();
398
if (rc)
399
goto error;
400
401
x86_platform_ipi_callback = uv_rtc_interrupt;
402
403
clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
404
NSEC_PER_SEC, clock_event_device_uv.shift);
405
406
clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
407
sn_rtc_cycles_per_second;
408
409
clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
410
(NSEC_PER_SEC / sn_rtc_cycles_per_second);
411
412
rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
413
if (rc) {
414
x86_platform_ipi_callback = NULL;
415
uv_rtc_deallocate_timers();
416
goto error;
417
}
418
419
printk(KERN_INFO "UV RTC clockevents registered\n");
420
421
return 0;
422
423
error:
424
clocksource_unregister(&clocksource_uv);
425
printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
426
427
return rc;
428
}
429
arch_initcall(uv_rtc_setup_clock);
430
431